
Supplements “On Tractable Computation of Expected Predictions”

A Proofs

A.1 Proofs of Propositions 1 and 3

We will first prove Proposition 3, from which Proposition 1 directly follows. For a PSDD OR node n
and RC OR node m,

Mk(gm, pn) = E
x∼pn(x)

[
gkm(x)

]
= E

x∼pn(x)

 ∑
j∈ch(m)

1j(x)(gj(x) + φj)

k

= E
x∼pn(x)

∑
j∈ch(m)

[
(1j(x)(gj(x) + φj))

k
]

(11)

= E
x∼pn(x)

∑
j∈ch(m)

k∑
l=0

(
k

l

)
glj(x)φ

k−l
j 1j(x)

=
∑
x

pn(x)
∑

j∈ch(m)

k∑
l=0

(
k

l

)
glj(x)φ

k−l
j 1j(x)

=
∑
x

∑
i∈ch(n)

θipi(x)
∑

j∈ch(m)

k∑
l=0

(
k

l

)
glj(x)φ

k−l
j 1j(x)

=
∑

i∈ch(n)

θi
∑

j∈ch(m)

k∑
l=0

(
k

l

)
φk−lj

∑
x

pi(x)g
l
j(x)1j(x)

=
∑

i∈ch(n)

θi
∑

j∈ch(m)

k∑
l=0

(
k

l

)
φk−lj E

x∼pi(x)
[1j(x)g

l
j(x)]

=
∑

i∈ch(n)

θi
∑

j∈ch(m)

k∑
l=0

(
k

l

)
φk−lj Ml(1j · gj , pi). (12)

Equation 11 follows from determinism as at most one j will have a non-zero 1j(x). In Equation 12,
note that we denote, with slight abuse of notation, M0(1j · gj , pi) = Ex∼pi(x)[1j(x)] =M1(1j , pi).
This concludes the proof of Proposition 3.

We obtain Proposition 1 by applying above result with k = 1:

M1(gm, pn) =
∑

i∈ch(n)

θi
∑

j∈ch(m)

1∑
l=0

(
1

l

)
φ1−lj Ml(1j · gj , pi)

=
∑

i∈ch(n)

θi
∑

j∈ch(m)

(φjM0(1j · gj , pi) +M1(1j · gj , pi))

=
∑

i∈ch(n)

θi
∑

j∈ch(m)

(φjM1(1j , pi) +M1(1j · gj , pi)) .

A.2 Proofs of Proposition 2 and 4

Again, we will first prove Proposition 4. For a PSDD AND node n and RC AND node m,

Mk(1mgm, pn) = E
x∼pn(x)

[
1m(x)gkm(x)

]
12

= E
x∼pn(x)

[
1m(x)

(
gmL

(xL) + gmR
(xR)

)k]
=
∑
xL,xR

pnL
(xL)pnR

(xR)1m(x)
(
gmL

(xL) + gmR
(xR)

)k
=
∑
xL,xR

pnL
(xL)pnR

(xR)1mL
(xL)1mR

(xR)

k∑
l=0

(
k

l

)
glmL

(xL)gk−lmR
(xR) (13)

=

k∑
l=0

(
k

l

)(∑
xL

pnL
(xL)1mL

(xL)glmL
(xL)

)(∑
xR

pnR
(xR)1mR

(xR)gk−lmR
(xR)

)

=

k∑
l=0

(
k

l

)
E

xL∼pnL
(xL)

[
1mL

(xL)glmL
(xL)

]
E

xR∼pnR
(xR)

[
1mR

(xR)gk−lmR
(xR)

]
=

k∑
l=0

(
k

l

)
Ml(1mL

· gmL
, pnL

)Mk−l(1mR
· gmR

, pnR
).

Equation 13 follows from decomposability: 1m(x) = 1{x |= [m]} = 1{x |= [mL ∧ mR]} =
1{xL |= [mL]}1{xR |= [mR]} = 1mL

(xL)1mR
(xR). This concludes the proof of Proposition 4.

We obtain Proposition 2 by combining above result at k = 1 with Equation 4:

M1(1m · gm, pn)

=

1∑
l=0

(
1

l

)
Ml(1mL

· gmL
, pnL

)M1−l(1mR
· gmR

, pnR
)

=M0(1mL
· gmL

, pnL
)M1(1mR

· gmR
, pnR

) +M1(1mL
· gmL

, pnL
)M0(1mR

· gmR
, pnR

)

=M1(1mL
, pnL

)M1(gmR
, pnR

) +M1(1mR
, pnR

)M1(gmL
, pnL

).

A.3 Proof of Theorem 2

The proof is by reduction from the model counting problem (#SAT) which is known to be #P-hard.

Given a CNF formula α, let us construct β and γ as follows. For every variable Xi appearing in
clause αj , introduce an auxiliary variable Xij . Then:

β ≡
∧
i

(Xi1 ⇔ · · · ⇔ Xij ⇔ · · · ⇔ Xim) ,

γ ≡
∧
j

∨
i

lα(Xij).

Here, lα(Xij) denotes the literal of Xi (i.e., Xi or ¬Xi) in clause αj . Thus, γ is the same CNF
formula as α, except that a variable in α appears as several different copies in γ. The formula β
ensures that the copied variables are all equivalent. Thus, the model count of α must equal the model
count of β ∧ γ.

Consider a right-linear vtree in which variables appear in the following order: X11, X12, . . . ,
X1j , . . . , Xij , The PSDD sub-circuit involving copies of variable Xi has exactly two model and
size that is linear in the number of copies. There are as many such sub-circuits as there are variables
in the original formula α, each of which can be chained together directly to obtain β. The key insight
in doing so is that sub-circuits corresponding to different variables Xi are independent of one another.
Then, we can construct a PSDD circuit structure whose logical formula represents β in polytime. In a
single top down pass, we can parameterize the PSDD pn such that it represents a uniform distribution:
each model is assigned a probability of 1/2n.

Next, consider a right-linear vtree with the variables appearing in the following order:
X11, X21, . . . , Xn1, . . . , Xij , Then, we can construct a logical circuit that represents γ in
polynomial time, as each variable appears exactly once in the formula. That is, each clause αj will
have a PSDD sub-circuit with linear size (in the number of literals appearing in the clause), and

13

the size of their conjunction α will simply be the sum of the sizes of such sub-circuits. We can
parameterize it as a regression circuit gm by assigning 0 to all inputs to OR gates and adding a single
OR gate on top of the root node with a weight 1. Then this regression circuit outputs 1 if and only if
the input assignment satisfies γ.

Then the expectation of regression circuit gm w.r.t. PSDD pn (which does not share the same vtree)
can be used to compute the model count of α as follows:

M1(gm, pn) = E
x∼pn(x)

[gm(x)] =
∑
x

pn(x)gm(x) =
∑
x

1

2n
1[x |= β]1[x |= γ]

=
1

2n

∑
x

1[x |= β ∧ γ] = 1

2n
MC(β ∧ γ) = 1

2n
MC(α)

Thus, #SAT can be reduced to the problem of computing expectations of a regression circuit w.r.t. a
PSDD that does not share the same vtree.

A.4 Proof of Theorem 3

The proof is by reduction from computing expectation of a logistic regression w.r.t. a naive Bayes
distribution, which was shown to be NP-hard.

Given a naive Bayes distribution P (X, C), we can build a PSDD pn that represents the same
distribution in polynomial time by employing a right-linear vtree in which the class variable appears
at the top, followed by the features. Because the feature distribution conditioned on the class variable
is fully factorized, the PSDD sub-circuits corresponding to P (X|C) and P (X|¬C) will each have
size that is linear in the number of features.

Moreover, given a logistic regression model f(x) = σ(w(x)), we can build a corresponding logistic
circuit σ ◦ gm in polytime using the same vtree as the PSDD described previously. Specifically,
each non-leaf node v in the vtree corresponds to an AND gate, and for each its child we add an OR
gate with paramter 0 (to keep the structure of alternating between AND and OR gates), recursively
building the circuit. The leaf node for each variable X become an OR gate with 2 children X and
¬X , with parameters wi and 0, respectively. The leaf nodes involving the class variable C will simply
have weights 0. As shown in [15], logistic circuits become equivalent to logistic regression on the
feature embedding space, define by the structure of the circuit, as well as the “raw” features. With
this parametrization, we ensure that the extra features introduced by the logistic circuit structure will
alway have weight 0, so overall the circuit becomes equivalent to the original logistic regression.
That is, w(x) = gm(C,x) = gm(¬C,x) for all assignments x.

Figure 4 gives an example of the construction of the circuits using a given vtree, logistic regression,
and a naive Bayes model. The logistic regression model is defined as f(x) =

∑
i xiwi, and for the

naive Bayes model parameters are θc = P (c), θxi|c = P (xi | c), and θxi|¬c = P (xi | ¬c). Other
values can be easily computed using the complement rule, for example θ¬xi|c = 1− θxi|c. Finally,
the naive Bayes distribution is now defined as: P (x, C) = θC

∏
i θxi|C .

The expectation of such logistic circuit σ ◦ gm w.r.t. PSDD pn is equal to the expectation of original
logistic regression f w.r.t. naive Bayes P as the following:

M1(σ ◦ gm, pn) = E
cx∼pn(cx)

[σ(gm(cx))] = E
cx∼P (cx)

[f(x)] = E
x∼P (x)

[f(x)].

A.5 Approximating expected prediction of classifiers

In this section, we provide more intuition on how we derived our approximation method for the case
of classification. As mentioned in the main text, we define the following d-order approximation:

Td(γ ◦ gm, pn) ,
∑d

k=0

γ(k)(α)

k!
Mk(gm − α, pn)

We can use Td(γ ◦ gm, pn) as an approximation to M1(γ ◦ gm, pn) because:

M1(γ ◦ gm, pn) =Ex∼pn(x)
[
γ(gm(x))

]
= Ex∼pn(x)

∑∞

i=0

γ(i)(α)

i!

(
gm(x)− α

)i
14

C

X1

X2 X3

(a) A vtree

w1 0 w2 0 w3 0

0 0

0

w0

X1 ¬X1 X2 ¬X2 X3 ¬X3

C¬C

(b) Logistic Regression as a Logistic Circuit conforming to the vtree

θx1|c θ¬x1|c θx2|c θ¬x1|c θx3|c θ¬x3|c

1

1
0 1

θx1|¬c θ¬x1|¬c θx2|¬c θ¬x2|¬c θx3|¬c θ¬x3|¬c

1

1
1 0

θc θ¬c

X1 ¬X1 X2 ¬X2 X3 ¬X3 X1 ¬X1 X2 ¬X2 X3 ¬X3

C¬C C¬C

(c) Naive Bayes as a PSDD conforming to the vtree

Figure 4: A vtree (a) over X = {X1, X2, X3} and corresponding circuits that are respectively
equivalent to a given Logistic Regression model with parameters w0, w1, w2, w3, and a Naive Bayes
model with parameters θc, θxi|c, θxi|¬c.

≈
∑d

i=0

γ(i)(α)

i!
Ex∼pn(x)

(
gm(x)− α

)i
= Td(γ ◦ gm, pn)

For example, given a PSDD with root n and a logistic circuit with root m and sigmoid activation, the
Taylor series around point α = 0 and d = 5 gives us:

M1(γ ◦ gm, pn) ≈ T5(γ ◦ gm, pn) =
1

2
+
M1(gm, pn)

4
− M3(gm, pn)

48
+
M5(gm, pn)

480

In general, we would like to expand the Taylor series around a point that converges quickly. In our
case, we employ α ≈M1(gm, pn). All these Taylor expansion terms can be computed efficiently, as
long as taking the derivatives of our non-linearity can be done efficiently at point α.

15

Table 1: Statistics as number of train, validation and test samples and features (after discretization)
for the datasets employed in the regression (top half) and classification (bottom half) experiments.

DATASET TRAIN VALID TEST FEATURES

ABALONE 2923 584 670 71
DELTA-AIRLOINS 4990 998 1141 55
ELEVATORS 11619 2323 2657 182
INSURANCE 936 187 215 36

MNIST 48000 12000 10000 784
FASHION 48000 12000 10000 784

B Datasets

We employed the following datasets for our empirical evaluation, taken from the UCI Machine
Learning repository and other regression [11] or classification suites.

Description of the datasets ABALONE7 [19] contains several physical measurements on abalone
specimens used to predict their age. DELTA-AIRLOINS collects mechanical measurements for
the task of controlling the ailerons of a F16 aircraft while the task is to predict the variation of
the action on the ailerons. ELEVATORS comprises measurements also concerned with the task of
controlling a F16 aircraft (different from DELTA-AIRLOINS), although the target variable here refers
on controlling on the elevators of the aircraft. In INSURANCE8 one wants to predict individual
medical costs billed by health insurance given several personal data of a patient. MNIST 9 comprises
gray-scale handwritten digit images used for multi-class classification. FASHION 10 is a 10-class
image classification challenge concerning fashion apparel items.

Preprocessing steps We preserve for all dataset their train and test splits if present in their respective
repositories, or create a new test set comprising 20% of the whole data. Moreover we reserve a 10%
portion of the training set as validation data used to monitor (parameter and/or structure) learning of
our models and perform early-stopping.

We perform discretization of the continuous features in the regression datasets as follows. We first try
to automatically detect the optimal number of (irregular) bins through adaptive binning by employing
a penalized likelihood scheme as in [22]. If the number of the bins found in this way exceeds ten,
we employ an equal-width binning scheme capping the bin number to ten, instead. Once the data
is discrete, we encode them as binary through the common one-hot encoding, to accommodate the
requirements of the PSDD learner we employed [16].

For image data, we binarize each sample by considering each pixel in it to be 1 if its original value
exceed the mean value of that pixel as computed on the training set.

Statistics for all the datasets after preprocessing can be found in Table 1.

Runtime of the algorithms In table 2, we report the runtimes for our method versus MICE and
Monte Carlo method, which approximates the expected prediction by sampling the generative model
and evaluating on the discriminative model. As we see, our method’s advantage in speed becomes
more clear we go to bigger models. The runtime of the Monte Carlo algorithm depends on number of
samples and the size of the generative circuit, however runtime of MICE also depends on missing
percentage of features and grows as more features go missing. Due to this, and the fact that our
method was doing better, we stopped the MICE experiments early at 30% missing for the ELEVATORS
dataset.

7https://archive.ics.uci.edu/ml/datasets/abalone
8https://www.kaggle.com/mirichoi0218/insurance
9http://yann.lecun.com/exdb/mnist/

10https://github.com/zalandoresearch/fashion-mnist

16

Table 2: Statistics on the runtime of our algorithm versus MICE and the Monte Carlo Sampling
algorithm. The reported times for prediction times are for one configuration of the experiment. As we
tried 10 different missingness percentages and repeated each 10 times, the total time of experiment is
100 times the value in the table. Learning is done only once.

Time (seconds)
ours (learning) ours (prediction) MICE MC

ABALONE 82 20 43 117
DELTA 53 24 27 126
INSURANCE 40 13 11 20
ELEVATORS 2105 31 364 994

Computing Infrastructure The experiments were run on a combination of a server with 40 CPU
cores and 500 GB of RAM, and a laptop with 6 CPU cores and 16 GB of RAM. The server was
mainly utilized for learning the circuits, albeit not using all the memory, and to parallelize different
runs of the missing value experiments. No GPUs were used for the experiments as probabilistic
circuit libraries do not support them yet.

To report the runtimes in table 2, we did a separate run of each method on the same machine (the
laptop) for fair comparison of the runtimes.

17

