
A Omitted Proofs
A.1 Derivation of Primal-Dual Formulation

min
x∈C

P (x) =
1

n

n∑
i=1

fi(a
>
i x) + g(x)

= min
x∈C,b=Ax

1

n

n∑
i=1

fi(bi) + g(x)

= min
x∈C,b

max
y

{
1

n

n∑
i=1

fi(bi) + g(x) +
1

n
〈y, Ax− b〉

}

= min
x∈C

max
y

{
g(x) +

1

n
〈y, Ax〉+ min

b

{
1

n

n∑
i=1

fi(bi)−
1

n
〈y, b〉

}}

= min
x∈C

max
y

{
L(x,y) := g(x) +

1

n
〈y, Ax〉 − 1

n

n∑
i=1

f∗i (yi)

}

= max
y

{
D(y) := min

x∈C

{
g(x) +

1

n
〈y, Ax〉 − 1

n

n∑
i=1

f∗i (yi)

}}
We use Von Neumann-Fan minimax theorem for the whole derivation when swapping each min-max
formula [7]. For the last equality, there is a convex constraint in the minimization part. Although
the original Von Neumann-Fan doesn’t have constraints, it naturally applies to the case when x
(assuming function is convex to x) is bounded in a convex set, since we could change f(x,y) to
f(x,y) + IC(x), where IC(x) = 0 if x ∈ C and∞ otherwise. Then the property will be properly
inherited.

A.2 Notation and simple facts

Recall primal, dual and Lagrangian forms:

P (x)
def
=

1

n

n∑
i=1

fi(a
>
i x) + g(x)

L(x,y)
def
= g(x) +

1

n
y>Ax− 1

n

n∑
i=1

f∗i (yi)

D(y)
def
= min

x∈C
L(x,y) = L(x̄(y),y)

Similar to the definitions in [24], we introduce the primal gap defined as ∆
(t)
p

def
= L(x(t+1),y(t))−

D(y(t)), and dual gap ∆
(t)
d

def
= D∗ −D(y(t)). Recall the assumptions:

• fi is convex and β-smooth, and is α strongly convex over some convex set, and linear
otherwise.

• R = maxi ‖ai‖22,∀i ∈ [n].

• g is µ-strongly convex and L-smooth.

To begin with, it is easy to verify that f∗i is 1/β-strongly convex and is 1/α-smooth on a convex set
and infinity otherwise (See Claim A.6). For simplicity we first assume α ≥ 1

2β and then generalize
the result.

Claim A.1. • SinceD(y) = minx∈C{g(x)+ 1
ny
>Ax}− 1

n

∑n
i=1 f

∗
i (y),−D(y) is at least

1
β -strongly convex.

• Based on our update rule, ∃g ∈ ∂y 1
n

∑
i f
∗
i (y(t)), such that

y
(t)

I(t)
− y

(t−1)

I(t)
= δ(

1

n
AI(t),:x

(t) − gI(t)). (19)

11

And our update rule ensures that I(t) consists of indices i ∈ [n] that maximizes | 1na
>
i x

(t) − gi|.

A.3 Primal Progress

Lemma A.2. (Primal Progress)

L(x(t+1),y(t))− L(x̄(t),y(t)) ≤ (1− η

2
)
(
L(x(t),y(t))− L(x̄(t),y(t))

)
Or equivalently,

(1− η

2
)(L(x(t+1),y(t))− L(x(t),y(t))) ≤ −η

2

(
L(x(t+1),y(t))− L(x̄(t),y(t))

)
≡ −η

2
∆(t)
p

Proof. Simply replace ht as L(x(t),y(t)) − D(y(t)) and ht+1 as L(x(t+1),y(t)) − D(y(t)) in
Inequality (4). We could conclude that ht+1 ≤ (1 − η + η2 L

µ)ht. Therefore when η ≤ µ
2L ,

ht+1 ≤ (1− η
2)ht and the first part of Lemma A.2 is true. Some simple rearrangement suffices the

second part of the lemma.

A.4 Primal Dual Progress

In order to get a clue on how to analyze the dual progress, we first look at how the primal and dual
evolve through iterations.
For an index set I and a vector y ∈ Rn, denote yI =

∑
i∈I yiei ∈ Rk as the subarray of y indexed

by I , with |I| = k. Recall Algorithm 1 selects the coordinates to update in the dual variable as I(t).

Lemma A.3. (Primal-Dual Progress).

∆
(t)
d −∆

(t−1)
d + ∆(t)

p −∆(t−1)
p

≤ L(x(t+1),y(t))− L(x(t),y(t))− 1

2δ
‖y(t) − y(t−1)‖2

+
2δRk

n2
‖x̄(t) − x(t)‖2.

Proof. Notice we have claimed that −D(y) is 1
β -strongly convex and for all g ∈ ∂y 1

n

∑n
i f
∗
i (y(t)),

∆
(t)
d −∆

(t−1)
d =

(
−D(y(t))

)
−
(
−D(y(t−1))

)
≤ 〈−∇yL(x̄(t),y(t)),y(t) − y(t−1)〉 − 1

2β
‖y(t) − y(t−1)‖2

= −〈 1
n
AI(t),:x̄

(t) − gI(t) ,y
(t)

I(t)
− y

(t−1)

I(t)
〉 − 1

2β
‖y(t) − y(t−1)‖2 (20)

Meanwhile since −L(x,y) is 1
α -smooth over its feasible set,

L(x(t),y(t))− L(x(t),y(t−1))

= −L(x(t),y(t−1))− (−L(x(t),y(t)))

≤ (
1

n
AI(t),:x

(t) − gI(t))
>(y

(t)

I(t)
− y

(t−1)

I(t)
) +

1

2α
‖y(t−1)

I(t)
− y

(t)

I(t)
‖2

= (
1

δ
+

1

2α
)‖y(t) − y(t−1)‖2. (21)

Also, with the update rule of dual variables, we could make use of Eqn. (19) and re-write Eqn. (20)
as:

∆
(t)
d −∆

(t−1)
d

≤ −〈 1
n
AI(t),:x̄

(t) − gI(t) ,y
(t)

I(t)
− y

(t−1)

I(t)
〉 − 1

δ
‖y(t) − y(t−1)‖2

+(y(t) − y(t−1))>(
1

n
AI(t),:x

(t) − gI(t))−
1

2β
‖y(t) − y(t−1)‖2

= −〈 1
n
AI(t),:(x̄

(t) − x(t)),y
(t)

I(t)
− y

(t−1)

I(t)
〉 − (

1

δ
+

1

2β
)‖y(t) − y(t−1)‖2 (22)

12

Together we get:

∆
(t)
d −∆

(t−1)
d + ∆(t)

p −∆(t−1)
p

=L(x(t+1),y(t))− L(x(t),y(t)) + L(x(t),y(t))− L(x(t),y(t−1))

+ 2(∆
(t)
d −∆

(t−1)
d)

≤L(x(t+1),y(t))− L(x(t),y(t)) + (
1

δ
+

1

2α
)‖y(t−1)

I(t)
− y

(t)

I(t)
‖2 + 2(∆

(t)
d −∆

(t−1)
d)

(from Eqn. (21))

≤L(x(t+1),y(t))− L(x(t),y(t)) + (
1

δ
+

1

2α
)‖y(t−1)

I(t)
− y

(t)

I(t)
‖2

− 2〈 1
n
AI(t),:(x̄

(t) − x(t)),y
(t)

I(t)
− y

(t−1)

I(t)
〉 − 2(

1

δ
+

1

2β
)‖y(t) − y(t−1)‖2

(from Eqn. (22))

=L(x(t+1),y(t))− L(x(t),y(t))− 2〈 1
n
AI(t),:(x̄

(t) − x(t)),y
(t)

I(t)
− y

(t−1)

I(t)
〉

− (
1

δ
+

1

β
− 1

2α
)‖y(t) − y(t−1)‖2

≤L(x(t+1),y(t))− L(x(t),y(t)) + 2δ‖ 1

n
AI(t),:(x̄

(t) − x(t))‖2

− (
1

δ
− 1

2δ
)‖y(t) − y(t−1)‖2 (since 2ab ≤ γa2 + 1/γb2)

≤L(x(t+1),y(t))− L(x(t),y(t))− 1

2δ
‖y(t) − y(t−1)‖2

+
2δRk

n2
‖x̄(t) − x(t)‖2

Therefore we will connect the progress induced by −‖y(t) − y(t−1)‖ and dual gap ∆
(t)
d next.

A.5 Dual progress

Claim A.4. An α-strongly convex function f satisfies:

f(x)− f∗ ≤ 1

2α
‖∇f(x)‖22

This simply due to f(x)− f∗ ≤ 〈∇f(x),x− x̄〉 − α
2 ‖x− x̄‖22 ≤ 1

2α‖∇f(x)‖2 + α
2 ‖x− x̄‖2 −

α
2 ‖x− x̄‖2 = 1

2α‖∇f(x)‖2.

Since −D is 1
β -strongly convex, we get

∆
(t)
d = D∗ −D(y(t)) ≤β

2
‖∇D(y(t))‖22

=
β

2
‖ 1

n
Ax̄(t) − g‖22

≤nβ
2k
‖ 1

n
AĪ,:x̄

(t) − gĪ‖22, (23)

where Ī is a set of size k that maximizes the values of A>i x̄
(t) − gi.

Lemma A.5 (Dual Progress).

−‖y(t) − y(t−1)‖2 ≤ − kδ
nβ

∆
(t)
d +

kδ

n2
R‖x̄(t) − x(t)‖22

13

Proof of Lemma A.5. Define ∆ = 1
nA(x̄(t) − x(t)). Since

− ‖ 1

n
A>I(t)x

(t) − gI(t)‖2

≤− ‖ 1

n
A>Ī x

(t) − gĪ‖2 (choice of I(t))

=− ‖ 1

n
A>Ī x̄

(t) − gĪ −∆Ī‖2

≤− 1

2
‖ 1

n
A>Ī x̄

(t) − gĪ‖2 + ‖∆Ī‖22
(since −(a+ b)2 ≤ −1/2a2 + b2)

≤− k

nβ
∆

(t)
d + ‖∆Ī‖22 (from (23))

≤− k

nβ
∆

(t)
d +

k

n2
R‖x̄(t) − x(t)‖22

With the relation between 1
nA
>
I(t)

x(t) − gI(t) and y(t) − y(t−1) we finish the proof.

A.6 Convergence on Duality Gap

Now we are able to merge the primal/dual progress to get the overall progress on the duality gap.

Proof of Theorem 4.1. We simply blend Lemma A.2 and Lemma A.5 with the primal-dual progress
(Lemma A.3):

∆
(t)
d −∆

(t−1)
d + ∆(t)

p −∆(t−1)
p

≤L(x(t+1),y(t))− L(x(t),y(t))− 1

2δ
‖y(t) − y(t−1)‖2

+
2δRk

n2
‖x̄(t) − x(t)‖2 (Lemma A.3)

≤L(x(t+1),y(t))− L(x(t),y(t)) +
δ

2
(− k

nβ
∆

(t)
d +

k

n2
R‖x̄(t) − x(t)‖22)

+
2δRk

n2
‖x̄(t) − x(t)‖2 (Lemma A.5)

=L(x(t+1),y(t))− L(x(t),y(t))− kδ

2nβ
∆

(t)
d +

5Rδk

2n2
‖x̄(t) − x(t)‖22

≤L(x(t+1),y(t))− L(x(t),y(t))− kδ

2nβ
∆

(t)
d +

5Rδk

µn2
(L(x(t),y(t))− L(x̄(t),y(t)))

=(1− 5Rδk

µn2
)(L(x(t+1),y(t))− L(x(t),y(t)))− kδ

2nβ
∆

(t)
d

+
5Rδk

µn2
(L(x(t+1),y(t))− L(x̄(t),y(t)))

≤− kδ

2nβ
∆

(t)
d −

(
(1− 5Rδk

µn2
)
µ

4L
− 5Rδk

µn2

)
∆(t)
p (Lemma A.2)

When setting kδ
2nβ = (1− 5Rδk

µn2) µ
4L −

5Rδk
µn2 , we get that ∆(t) ≤ 1

1+a∆(t−1), where 1/a = O(Lµ (1 +
Rβ
nµ)). Therefore it takes O(Lµ (1 + Rβ

nµ) log 1
ε) for ∆(t) to reach ε.

When β > 2α, we could redefine the primal-dual process as ∆(t) := (βα − 1)∆
(t)
d + ∆

(t)
p and rewrite

some of the key steps, especially for the overall primal-dual progress.

14

∆(t) −∆(t−1)

=(
β

α
− 1)(∆

(t)
d −∆

(t−1)
d) + ∆(t)

p −∆(t−1)
p

=L(x(t+1),y(t))− L(x(t),y(t)) + L(x(t),y(t))− L(x(t),y(t−1))

+
β

α
(∆

(t)
d −∆

(t−1)
d)

≤L(x(t+1),y(t))− L(x(t),y(t)) + (
1

δ
+

1

2α
)‖y(t−1)

I(t)
− y

(t)

I(t)
‖2

− β

α
〈 1
n
AI(t),:(x̄

(t) − x(t)),y
(t)

I(t)
− y

(t−1)

I(t)
〉 − β

α
(
1

δ
+

1

2β
)‖y(t) − y(t−1)‖2

(from Eqn. (21) and (22))

=L(x(t+1),y(t))− L(x(t),y(t))− β

α
〈 1
n
AI(t),:(x̄

(t) − x(t)),y
(t)

I(t)
− y

(t−1)

I(t)
〉

− (
β

α
− 1)

1

δ
‖y(t) − y(t−1)‖2

≤L(x(t+1),y(t))− L(x(t),y(t)) +
3β

2α
δ‖ 1

n
AI(t),:(x̄

(t) − x(t))‖2

− (
3β

4α
− 1)

1

δ
‖y(t) − y(t−1)‖2 (since ab ≤ δa2 + 1/(4δ)b2)

≤L(x(t+1),y(t))− L(x(t),y(t)) +
β

α
δ‖ 1

n
AI(t),:(x̄

(t) − x(t))‖2

− β

4αδ
‖y(t) − y(t−1)‖2 (since β/α ≥ 2)

≤L(x(t+1),y(t))− L(x(t),y(t))− β

4αδ
‖y(t) − y(t−1)‖2

+
βδRk

αn2
‖x̄(t) − x(t)‖2

Similarly to the previous setting, we get the whole primal-dual progress is bounded as follows:

(
β

α
− 1)(∆

(t)
d −∆

(t−1)
d) + ∆(t)

p −∆(t−1)
p

≤L(x(t+1),y(t))− L(x(t),y(t))− βδ

4α

k

nβ
∆

(t)
d

+
5βRδk

2αµn2
(L(x(t),y(t))− L(x̄(t),y(t)))

≤− β

4α

kδ

nβ
∆

(t)
d −

(
(1− 5βRδk

2αµn2
)
µ

4L
− 5βRδk

2αµn2

)
∆(t)
p

Therefore, when we set a proper k and δ such that β
4α

kδ
nβ = (βα −1)

(
(1− 5βRδk

2αµn2) µ
4L −

5βRδk
2αµn2

)
, and

since β
α−1 ≥ β

2α , we get δ = 1
k (L

µnβ+ 5βR
2αµn2 (1+4Lµ))−1. And we have ∆(t)−∆(t−1) ≤ −1/a∆(t),

where a = O(Lµ (1 + β
α
Rβ
nµ)). Therefore it takes t = O(Lµ (1 + β

α
Rβ
nµ) log 1

ε) iterations for the duality
gap ∆(t) to reach ε error.

A.7 Smooth Hinge Loss and Relevant Properties

Smooth hinge loss is defined as follows:

h(z) =


1
2 − z if z < 0
1
2 (1− z)2 if z ∈ [0, 1]
0 otherwise.

(24)

15

Our loss function over a prediction p associated with a label `i ∈ {±1} will be fi(p) = h(p`i). The
derivative of smooth hinge loss h is:

h′(z) =

{ −1 if z < 0
z − 1 if z ∈ [0, 1]
0 otherwise.

(25)

Its convex conjugate is:

h∗(z∗) =

{
1
2 (z∗)2 + z∗ if z∗ ∈ [−1, 0]
∞ otherwise. (26)

Notice since fi(p) = h(`ip), f∗i (p) = h∗(p/`i) = h∗(p`i).

Claim A.6. For a convex and β-smooth scalar function f , if it is α strongly convex over some
convex set, and linear otherwise, then its conjugate function f∗ is 1/β-strongly convex, and it is a
1/α-smooth function plus an indicator function over some interval [a, b].

Proof. To begin with, since f ′′(x) ≤ β,∀x, meaning f is β-smooth, then with duality we have f∗
is 1/β strongly convex [16]. Secondly, since f is α strongly convex over a convex set, meaning an
interval for R, therefore f could only be linear on (−∞, a] or [b,∞), and is α-strongly convex over
the set [a, b] (Here for simplicity a < b could be ±∞). We denote f ′(−∞) := limx→−∞ f ′(x) and
f ′(−∞) likewise. It’s easy to notice that f ′(−∞) ≤ f ′(a) < f ′(b) ≤ f ′(∞) since f is convex
overall and strongly convex over [a, b]. Therefore f(y) > f(a) + f ′(a)(y − a) when y > a and
f(y) = f(a) + f ′(a)(y − a) when y ≤ a.

Now since f∗(x∗) ≡ maxx{x∗x− f(x)}, it’s easy to verify that when x∗ < f ′(a), x∗x− f(x) =
x∗x−f(a)−f ′(a)(x−a) = −(f ′(a)−x∗)x−f(a)+f ′(a)a→∞when x→ −∞. Similarly, when
x∗ > f ′(b), f∗(x∗) = ∞. On the other hand, when x∗ ∈ [f ′(a), f ′(b)], f∗(x∗) = maxx{x∗x −
f(x)} = maxx∈[a,b]{x∗x − f(x)}. This is because x∗a − f(a) ≥ x∗y − f(y) = x∗y − f(y) −
f ′(a)(y − a),∀y ≤ a, and similarly x∗b− f(b) ≥ x∗y − f(y)∀y > b. Therefore f∗ is 1/α smooth
over the interval [f ′(a), f ′(b)], where −∞ ≤ f ′(a) < f ′(b) ≤ ∞.

A.8 Convergence of Optimization over Trace Norm Ball

The convergence analysis for trace norm ball is mostly similar to the case of `1 ball. The most
difference lies on the primal part, where our approximated update incur linear progress as well as
some error.

Lemma A.7 (Primal Progress for Algorithm 2). Suppose rank X̄(t) ≤ s and ε > 0. If each X̃
computed in our algorithm is a (1

2 ,
ε
8)-approximate solution to (18), then for every t, it satisfies

L(X(t+1), Y (t))− L(X(t), Y (t)) ≤ − µ
8L∆

(t)
p + ε

16 .

Proof. Refer to the proof in [1] we have:

L(X(t+1), Y (t))− L(X̄(t), Y (t)) ≤ (1− µ

8L
)
(
L(X(t), Y (t)))− L(X̄(t), Y (t))

)
+

εµ

16L
Now move the first term on the RHS to the left and rearrange we get:

(1− µ

8L
)(L(X(t+1), Y (t))− L(X(t), Y (t))) +

µ

8L

(
L(X(t+1), Y (t)))− L(X̄(t), Y (t))

)
≤ εµ

16L
Therefore we get:

L(X(t+1), Y (t))− L(X(t), Y (t))) ≤ − µ

8L
∆(t)
p +

ε

16
.

Now back to the convergence guarantees on the trace norm ball.

Proof of Theorem 4.3. We again define ∆ = 1
nA(X̄(t) −X(t)). G = ∇Y L(X(t), Y (t)) such that

Y
(t)

I(t),:
− Y (t−1)

I(t),:
= δ(1

n 〈AI(t),:X
(t)〉 −GI(t),:). Again we get ‖∆‖2F ≤ R

n2 ‖X̄(t) −X(t)‖2F .

∆
(t)
d ≤

β

2
‖ 1

n
AX̄(t) −G‖2F ≤

nβ

2k
‖ 1

n
AI(t),:X̄

(t) −GI(t),:‖2F

16

Other parts are exactly the same and we get:

(
β

α
− 1)(∆

(t)
d −∆

(t−1)
d) + ∆(t)

p −∆(t−1)
p

≤L(X(t+1), Y (t))− L(X(t), Y (t))− βδ

4α

k

nβ
∆

(t)
d

+
5βRδk

2αµn2
(L(X(t), Y (t))− L(X̄(t), Y (t)))

≤− β

4α

kδ

nβ
∆

(t)
d −

(
(1− 5βRδk

2αµn2
)
µ

8L
− 5βRδk

2αµn2

)
∆(t)
p + (1− 5βRδk

2αµn2
)
ε

16

(Lemma A.7)

Therefore when δ ≤ 1
k (L

µnβ + 5βR
2αµn2 (1 + 8Lµ))−1, it satisfies ∆(t) − ∆(t−1) ≤ − kδ

2βn∆(t) +
ε

16 . Therefore denote a = 2βn
kδ , we get ∆(t) ≤ a

a+1 (∆(t−1) + ε
16). Therefore we get ∆(t) ≤

(a
a+1)t∆(0) + ε

16

∑t
i=1(a

a+1)i ≤ (c
c+1)t∆(0) + ε/16. Since (a

a+1)t ≤ e−t/a, it takes around
a = O(Lµ (1 + β

α
Rβ
nµ) log 1

ε) iterations for the duality gap to get ε-error.

A.9 Difficulty on Extension to Polytope Constraints

Another important type of constraint we have not explored in this paper is the polytope constraint.
Specifically,

min
x∈M⊂Rd

f(Ax) + g(x),M = conv(A),with only access to: LMOA(r) ∈ arg min
x∈A

〈r,x〉,

whereA ⊂ Rd, |A| = m is a finite set of vectors that is usually referred as atoms. It is worth noticing
that this linear minimization oracle (LMO) for FW step naturally chooses a single vector in A that
minimizes the inner product with x. Again, this FW step creates some "partial update" that could be
appreciated in many machine learning applications. Specifically, if our computation of gradient is
again dominated by a matrix-vector (data matrix versus variable x) inner product, we could possibly
pre-compute each value of vi := Axi,xi ∈ A, and simply use vi to update the gradient information
when xi is the greedy direction provided by LMO.

When connecting to our sparse update case, we are now looking for a k-sparse update, k �
m = |A|, with the basis of A, i.e., x̃ =

∑k
i=1 λixni

,xni
∈ A. In this way, when we update

x+ ← (1− η)x + ηx̃, we will only need to compute
∑k
i=1 vni

which is O(kd) time complexity.

However, to enforce such update that is "sparse" on A is much harder. To migrate our algorithms
with `1 ball or trace norm ball, we will essentially be solving the following problem:

x̃← arg min
Λ∈∆m,‖Λ‖0≤k,x=

∑m
i=1 λixi,xi∈A

〈g,y〉+
1

2η
‖y − x‖22,

where ∆m is the m dimensional simplex, and g is the current gradient vector.

Unlike the original sparse recovery problem that could be relaxed with an `1 constraint to softly
encourage sparsity, it’s generally much harder to find the k sparse Λ in this case. Actually, it is as
hard as the lattice problem [19] and is NP hard in general.

Therefore we are not able to achieve linear convergence with cheap update with polytope-type
constraints. Nonetheless, the naive FW with primal dual formulation should still be computational
efficient in terms of per iteration cost, where a concentration on SVM on its dual form has been
explored by [22].

17

B Discussions on Efficient Coordinate Selections
The modified Block Frank-Wolfe step in Eqn. (3) achieves an s-sparse update of the iterates and
could be computed efficiently when one knows which s coordinates to update. However, in order
to find the s coordinates, one needs to compute the full gradient∇f(x) with naive implementation.
This phenomenon reminds us of greedy coordinate descent.

Even with the known fact that coordinate descent converges faster with greedy selection than with
random order[30], there have been hardness to propogate this idea because of expensive greedy
selections since the arguments that GCD converges similarly with RCD in [28], except for special
cases [25, 24, 6, 17]. This is also probability why the partial updates nature of FW steps is less
exploited before.

We investigate some possible tricks to boost GCD method that could be possibly applied to FW
methods. A recent paper [17], Karimireddy et al. make connections between the efficient choice of
the greedy coordinates with the problem of Maximum Inner Product Search (MIPS) for a composite
function P (x) = f(Ax) + g(x), where A ∈ Rn×d. We rephrase the connection for the Frank-Wolfe
algorithm. Since the computation of gradient is essentially A>∇f|Ax +∇g(x), to find its largest
magnitude is to search maximum inner products among:

±〈[ã>i |1], [∇f>|Ax|∇ig(x)]〉, i.e.±
(
ã>i ∇f|Ax +∇ig(x)

)
,

where ãi ∈ Rn is the i-th column of data matrix A, and ∇f|Ax is the gradient of f at Ax. In this
way, we are able to select the greedy coordinates by conducting MIPS for a fixed R2d×(n+1) matrix
[A>|I| − A>| − I]> and each newly generated vector [∇f>|Ax|∇gi(x)]. Therefore when ∇gi is
constant for linear function or ±λ for g(x) = λ‖x‖1, we could find the largest magnitude of the
gradient in sublinear time. Still, the problems it could conquer is very limited. It doesn’t even work
for `2 regularizer since the different coordinates in ∇ig(x) creates d new vectors in each iteration
and traditional MIPS could resolve it in time sublinear to d. Meanwhile, even with constant ∇ig(x),
it still requires at leastO((2d)c log(d)) times of inner products of dimension n+ 1 for some constant
c [34].

However, we have shown that for general composite form f(Ax) + g(x) with much more relaxed
requirements on the regularizer g, we are able to select and update each coordinate with constant
times of inner products on average while achieving linear convergence. Therefore the usage of
these tricks applied on FW method (MIPS as well as the nearest neighbor search [6]) is completely
dominated by our contribution and we omit them in the main text of this paper.

C More Results on Empirical Studies
C.1 More experiments with `1 norm

To investigate more on how our algorithms perform with different choices of parameters, we conducted
more empirical studies with different settings of condition numbers. Specifically, we vary the
parameter µ that controls the strong convexity of the primal function. Experiments are shown in
Figure 2.

C.2 Experiments with trace norm ball on synthetic data

For trace norm constraints, we also implemented our proposal Primal Dual Block Frank Wolfe to
compare with some prior work, especially Block FW [1]. Since prior work were mostly implemented
in Matlab to tackle trace norm projections, we therefore also use Matlab to show fair comparisons.
We choose quadratic loss f(AX) = ‖AX − B‖2F and g to be `2 regularizer with µ = 10/n. The
synthetic sensing matrix A ∈ Rn×d is dense with n = 1000 and d = 800. Our observation B is
of dimension 1000× 600 and is generated by a ground truth matrix X0 such that B = AX0. Here
X0 ∈ R800×600 is constructed with low rank structure. We vary its rank s to be 10, 20, and 100. The
comparisons with stochastic FW, blockFW [1], STORC [13], SCGS [23], and projected SVRG [15]
are presented in Figure 3, which verifies that our proposal PDBFW consistently outperforms the
baseline algorithms.

18

Figure 2: Convergence result comparison of different algorithms on smoothed hinge loss by varying
the coefficient of the regularizer. The first row is the results ran on the rcv1.binary dataset, while the
second row is the results ran on the news20.binary dataset. The first column is the result when the
regularizer coeffcient µ is set to 1/n. The middle column is when µ = 10/n, and the right column is
when µ = 100/n.

Figure 3: Convergence comparison of our Primal Dual Block Frank Wolfe and other baselines.
Figures show the relative primal objective value decreases with the wall time.

19

	Omitted Proofs
	Derivation of Primal-Dual Formulation
	Notation and simple facts
	Primal Progress
	Primal Dual Progress
	Dual progress
	Convergence on Duality Gap
	Smooth Hinge Loss and Relevant Properties
	Convergence of Optimization over Trace Norm Ball
	Difficulty on Extension to Polytope Constraints

	Discussions on Efficient Coordinate Selections
	More Results on Empirical Studies
	More experiments with 1 norm
	Experiments with trace norm ball on synthetic data

