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Abstract

We study three fundamental statistical learning problems: distribution estimation,
property estimation, and property testing. We establish the profile maximum likeli-
hood (PML) estimator as the first unified sample-optimal approach to a wide range
of learning tasks. In particular, for every alphabet size k and desired accuracy ε:
Distribution estimation Under `1 distance, PML yields optimal Θ(k/(ε2 log k))
sample complexity for sorted distribution estimation, and a PML-based estimator
empirically outperforms the Good-Turing estimator on the actual distribution;
Additive property estimation For a broad class of additive properties, the PML
plug-in estimator uses just four times the sample size required by the best estimator
to achieve roughly twice its error, with exponentially higher confidence;
α-Rényi entropy estimation For an integer α > 1, the PML plug-in estimator
has optimal k1−1/α sample complexity; for non-integer α > 3/4, the PML plug-in
estimator has sample complexity lower than the state of the art;
Identity testing In testing whether an unknown distribution is equal to or at least ε
far from a given distribution in `1 distance, a PML-based tester achieves the optimal
sample complexity up to logarithmic factors of k.
With minor modifications, most of these results also hold for a near-linear-time
computable variant of PML.
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1 Introduction

A distribution p over a discrete alphabet X of size k corresponds to an element of the simplex

∆X :=

{
p ∈ Rk≥0 :

∑
x∈X

p(x) = 1

}
.

A distribution property is a mapping f : ∆X → R associating a real value with each distribution. A
distribution property f is symmetric if it is invariant under domain-symbol permutations. A symmetric
property is additive, i.e., additively separable, if it can be written as f(p) :=

∑
x f(p(x)), where for

simplicity we use f to denote both the property and the corresponding real function.

Many important symmetric properties are additive. For example,

• Support size S(p) :=
∑
x 1p(x)>0, a fundamental quantity arising in the study of vocabu-

lary size [33, 61, 77], population estimation [39, 59], and database studies [42].
• Support coverage Cm(p) :=

∑
x(1 − (1 − p(x))m), where m is a given parameter, the

expected number of distinct elements observed in a sample of size m, arising in biologi-
cal [20, 56] and ecological [20–22, 27] research;

• Shannon entropy H(p) := −
∑
x p(x) log p(x), the primary measure of information [28,

76] with numerous applications to machine learning [15, 26, 73] and neuroscience [34, 58];
• Distance to uniformity D(p) := ‖p− pu‖1, where pu is the uniform distribution over ∆X ,

a property being central to the field of distribution property testing [11, 13, 16, 75].

Besides being additive and symmetric, these four properties have yet another attribute in common.
Under the appropriate interpretation, they are also all 1-Lipschitz. Specifically, for two distributions
p, q ∈ ∆X , let Γp,q be the collection of distributions over X × X with marginals p and q on the first
and second factors respectively. The relative earth-mover distance [80], between p and q is

R(p, q) := inf
γ∈Γp,q

E
(X,Y )∼γ

∣∣∣∣log
p(X)

q(Y )

∣∣∣∣ .
One can verify [80, 81] that H , D, and C̃m := Cm/m are all 1-Lipschitz on the metric space
(∆X , R), and S̃ := S/k is 1-Lipschitz over (∆≥1/k, R), the set of distributions in ∆X whose
nonzero probabilities are at least 1/k. We will study all such Lipschitz properties in later sections.

An important symmetric non-additive property is Rényi entropy, a well-known measure of randomness
with numerous applications to unsupervised learning [50, 89] and image registration [57, 62]. For
a distribution p ∈ ∆X and a non-negative real parameter α 6= 1, the α-Rényi entropy [74] of p is
Hα(p) := (1− α)−1 log (

∑
x p

α
x). In particular, denoted by H1(p) := limα→1Hα(p), the 1-Rényi

entropy is exactly Shannon entropy [74].

1.1 Problems of interest

In this work, we consider three fundamental statistical learning problems concerning the estimation
and testing of distributions and their properties.

(Sorted) distribution estimation

A natural learning problem is to estimate an unknown distribution p ∈ ∆X from an i.i.d. sample
Xn ∼ p. For any two distributions p, q ∈ ∆X , let `(p, q) be the loss when we approximate p by q.
A distribution estimator p̂ : X ∗ → ∆X associates every sequence xn ∈ X ∗ with a distribution p̂(xn).
We measure the performance of an estimator by its sample complexity

n(p̂, ε, δ) := min{n : ∀p ∈ ∆X , Pr
Xn∼p

(`(p, p̂(Xn)) ≥ ε) ≤ δ},

the smallest sample size that p̂ requires to estimate all distributions in ∆X to a desired accuracy
ε > 0, with error probability δ ∈ (0, 1). The sample complexity of distribution estimation over ∆X is

n(ε, δ) := min{n(p̂, ε, δ) : p̂ : X ∗ → ∆X },
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the lowest sample complexity of any estimator. For simplicity, we will omit δ when δ = 1/3.

For a distribution p ∈ ∆X , we denote by {p} the multiset of its probabilities. The sorted `1 distance
between two distributions p, q ∈ ∆X is

`<
1(p, q) := min

p′∈∆X :{p′}={p}
‖p′ − q‖1 ,

the smallest `1 distance between q and any sorted version of p. As illustrated in Section 7.1, this is
essentially the 1-Wasserstein distance between uniform measures on the probability multisets {p}
and {q}. We will consider both the sorted and unsorted `1 distances.

Property estimation

Often we would like to estimate a given property f of an unknown distribution p ∈ ∆X based on
a sample Xn ∼ p. A property estimator is a mapping f̂ : X ∗ → R. Analogously, the sample
complexity of f̂ in estimating f over a set P ⊂ ∆X is

nf (f̂ ,P, ε, δ) := min{n : ∀p ∈ P, Pr
Xn∼p

(|f̂(Xn)− f(p)| ≥ ε) ≤ δ},

the smallest sample size that f̂ requires to estimate f with accuracy ε and confidence 1− δ, for all
distributions in P . The sample complexity of estimating f over P is

nf (P, ε, δ) := min{nf (f̂ ,P, ε, δ) : f̂ : X ∗ → R},

the lowest sample complexity of any estimator. For simplicity, we will omit P when P = ∆X , and
omit δ when δ = 1/3. The standard “median trick" shows that log(1/δ) ·nf (P, ε) ≥ Ω(nf (P, ε, δ)).
By convention, we say an estimator f̂ is sample-optimal if nf (f̂ ,P, ε) = Θ(nf (P, ε)).

Property testing: Identity testing

A closely related problem is distribution property testing, of which identity testing is the most
fundamental and well-studied [16, 36]. Given an error parameter ε, a distribution q, and a sample
Xn from an unknown distribution p, identity testing aims to distinguish between the null hypothesis

H0 : p = q

and the alternative hypothesis
H1 : ‖p− q‖1 ≥ ε.

A property tester is a mapping t̂ : X ∗ → {0, 1}, indicating whether H0 or H1 is accepted. Analogous
to the two formulations above, the sample complexity of t̂ is

nq(t̂, ε, δ) := min{n : ∀i ∈ {0, 1} and ∀p ∈ Hi, Pr
Xn∼p

(
t̂(Xn) 6= i

)
≤ δ},

and the sample complexity of identity testing with respect to q is

nq(ε, δ) := min{n(t̂, ε, δ) : t̂ : X ∗ → {0, 1}}.

Again, when δ = 1/3, we will omit δ. For q = pu, the problem is also known as uniformity testing.

1.2 Profile maximum likelihood

The multiplicity of a symbol x ∈ X in a sequence xn := x1, . . . , xn ∈ X ∗ is µx(xn) := |{j : xj =
x, 1 ≤ j ≤ n}|, the number of times x appears in xn. These multiplicities induce an empirical
distribution pµ(xn) that associates a probability µx(xn)/n with each symbol x ∈ X .

The prevalence of an integer i ≥ 0 in xn is the number ϕi(xn) of symbols appearing i times in xn.
For known X , the value of ϕ0 can be deduced from the remaining multiplicities, hence we define
the profile of xn to be ϕ(xn) = (ϕ1(xn), . . . , ϕn(xn)), the vector of all positive prevalences. For
example, ϕ(alfalfa) = (0, 2, 1, 0, 0, 0, 0). Note that the profile of xn also corresponds to the multiset
of multiplicities of distinct symbols in xn.

For a distribution p ∈ ∆X , let
p(xn) := Pr

Xn∼p
(Xn = xn)

4



be the probability of observing a sequence xn under i.i.d. sampling from p, and let

p(ϕ) :=
∑

yn:ϕ(yn)=ϕ

p(yn)

be the probability of observing a profile ϕ. While the sequence maximum likelihood estimator maps
a sequence to its empirical distribution, which maximizes the sequence probability p(xn), the profile
maximum likelihood (PML) estimator [66] over a set P ⊆ ∆X maps each profile ϕ to a distribution

pϕ := arg max
p

p(ϕ)

that maximizes the profile probability. Relaxing the optimization objective, for any β ∈ (0, 1), a β-
approximate PML estimator [5] maps each profile ϕ to a distribution pβϕ such that pβϕ(ϕ) ≥ β · pϕ(ϕ).

Originating from the principle of maximum likelihood, PML was proved [2, 5, 7, 8, 29, 66] to possess
a number of useful attributes, such as existence over finite discrete domains, majorization by empirical
distributions, consistency for distribution estimation under both sorted and unsorted `1 distances, and
competitiveness to other profile-based estimators.

Let ε be an error parameter and f be one of the four properties in the introduction. Set n := nf (ε).
Recently, Acharya et al. [5] showed that for some absolute constant c′ > 0, if c < c′ and ε ≥ n−c, then
a plug-in estimator for f , using an exp(−n1−Θ(c))-approximate PML, is sample-optimal. Motivated
by this result, Charikar et al. [23] constructed an explicit exp(−O(n2/3 log3 n))-approximate PML
(APML) whose computation time is near-linear in n. Combined, these results provide a unified,
sample-optimal, and near-linear-time computable plug-in estimator for the four properties.

2 New results and implications

2.1 New results

Additive property estimation

Recall that for any property f , the expression nf (ε) denotes the smallest sample size required by any
estimator to achieve accuracy ε with confidence 2/3, for all distributions in ∆X . Let f be an additive
symmetric property that is 1-Lipschitz on (∆X , R). Let ε > 0 and n ≥ nf (ε) be error and sampling
parameters. For an absolute constant c ∈ (10−2, 10−1), if ε ≥ n−c,
Theorem 1. The PML plug-in estimator, when given a sample of size 4n from any distribution
p ∈ ∆X , will estimate f(p) up to an error of (2 + o(1))ε, with probability at least 1− exp (−4

√
n).

For a different c > 0, Theorem 1 also holds for APML, which is near-linear-time computable [23].

Rényi entropy estimation

For X of finite size k and any p ∈ ∆X , it is well-known that Hα(p) ∈ [0, log k]. The following
theorems characterize the performance of the PML plug-in estimator in estimating Rényi entropy.

For any distribution p ∈ ∆X , error parameter ε ∈ (0, 1), absolute constant λ ∈ (0, 0.1), and sampling
parameter n, draw a sample Xn ∼ p and denote its profile by ϕ. Then for sufficiently large k,

Theorem 2. For α ∈ (3/4, 1), if n = Ωα(k1/α/(ε1/α log k)),

Pr (|Hα(pϕ)−Hα(p)| ≥ ε) ≤ exp(−
√
n).

Theorem 3. For non-integer α > 1, if n = Ωα(k/(ε1/α log k)),

Pr (|Hα(pϕ)−Hα(p)| ≥ ε) ≤ exp(−n1−λ).

Theorem 4. For integer α > 1, if n = Ωα(k1−1/α(ε2 log(1/ε))−(1+α)) and Hα(p) ≤ (log n)/4,

Pr(|Hα(pϕ)−Hα(p)| ≥ ε) ≤ 1/3.

Replacing 3/4 by 5/6, Theorem 2 also holds for APML with a better probability bound exp(−n2/3).
In addition, Theorem 3 holds for APML without any modifications.
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Sorted distribution estimation

Let c be the absolute constant defined just prior to Theorem 1. For any distribution p ∈ ∆X , error
parameter ε ∈ (0, 1), and sampling parameter n, draw a sample Xn ∼ p and denote its profile by ϕ.

Theorem 5. If n = Ω(n(ε)) = Ω
(
k/(ε2 log k)

)
and ε ≥ n−c,

Pr(`<
1(pϕ, p) ≥ ε) ≤ exp(−Ω(

√
n)).

For a different c > 0, Theorem 5 also holds for APML with a better probability bound exp(−n2/3).

Identity testing

The recent works of Diakonikolas and Kane [30] and Goldreich [35] provided a procedure reducing
identity testing to uniformity testing, while modifying the desired accuracy and alphabet size by only
absolute constant factors. Hence below we consider uniformity testing.

The uniformity tester TPML shown in Figure 1 is purely based on PML and satisfies

Theorem 6. If ε = Ω̃(k−1/4) and n = Ω̃(
√
k/ε2), then the tester TPML(X

n) will be correct with
probability at least 1− k−2. The tester also distinguishes between p = pu and ‖p− pu‖2 ≥ ε/

√
k.

The Ω̃(·) notation only hides logarithmic factors of k. The tester TPML is near-optimal as for uniform
distribution pu, the results in [32] yield an Ω(

√
k log k/ε2) lower bound on npu(ε, k−2).

The rest of the paper is organized as follows. Section 2.2 presents several immediate implications.
Section 3 and Section 4 illustrate PML’s theoretical and practical advantages by comparing it to
existing methods for a variety of learning tasks. Section 5 to 8 present the proofs of Theorem 1 to 6.

Input: parameters k, ε, and a sample Xn ∼ p with profile ϕ.
if maxxµx(Xn) ≥ 3 max{1, n/k} log k then return 1;

elif ‖pϕ − pu‖2 ≥ 3ε/(4
√
k) then return 1;

else return 0.

Figure 1: Uniformity tester TPML

2.2 Implications

Several immediate implications are in order.

We say that a plug-in estimator is universally sample-optimal for estimating symmetric properties
if there exist absolute positive constants c1, c2 and c3, such that for any 1-Lipschitz property on
(∆X , R), with probability ≥ 9/10, the plug-in estimator uses just c1 times the sample size n required
by the minimax estimator to achieve c2 times its error, whenever this error is at least n−c3 .

Note that the “1-Lipschitz property” class can be replaced by other general property classes, but not
by those containing only a few specific properties, since “universal” means “applicable to all cases”.

Theorem 1 makes PML the first plug-in estimator that is universally sample-optimal for a broad class
of distribution properties. In particular, Theorem 1 also covers the four properties considered in [5].
To see this, as mentioned in the introduction, C̃m, H , and D are 1-Lipschitz on (∆X , R); as for S̃,
the following result [5] relates it to C̃m for distributions in ∆≥1/k, and proves PML’s optimality.

Lemma 1. For any ε > 0, m = k log(1/ε), and p ∈ ∆≥1/k,

|S̃(p)− C̃m(p) log (1/ε) | ≤ ε.

The theorem also applies to many other properties. As an example [80], given an integer s > 0, let
fs(x) := min{x, |x− 1/s|}. Then to within a factor of two, fs(p) :=

∑
x fs(px) approximates the

`1 distance between any distribution p and the closest uniform distribution in ∆X of support size s.

In Section 3.2 we compare Theorem 1 with existing results and present more of its implications.

6



Theorem 2 and 3 imply that for all non-integer α > 3/4 (resp. α > 5/6), the PML (resp. APML)
plug-in estimator achieves a sample complexity better than the best currently known [6]. This makes
both the PML and APML plug-in estimators the state-of-the-art algorithms for estimating non-integer
order Rényi entropy. See Section 3.3 for an introduction of known results, and see Section 3.4 for a
detailed comparison between existing methods and ours.

Theorem 4 shows that for all integer α > 1, the sample complexity of the PML plug-in estimator
has optimal k1−1/α dependence [6, 63] on the alphabet size.

Theorem 5 makes APML the first distribution estimator under sorted `1 distance that is both near-
linear-time computable and sample-optimal for a range of desired accuracy ε beyond inverse poly-
logarithmic of n. In comparison, existing algorithms [2, 43, 82] either run in polynomial time in the
sample sizes, or are only known to achieve optimal sample complexity for ε = Ω(1/

√
log n), which

is essentially different from the applicable range of ε ≥ n−Θ(1) in Theorem 5. We provide a more
detailed comparison in Section 3.6.

Theorem 6 provides the first PML-based uniformity tester with near-optimal sample complexity.
As stated, the tester also distinguishes between p = pu and ‖p− pu‖2 ≥ ε/

√
k. This is a stronger

guarantee since by the Cauchy-Schwarz inequality, ‖p− pu‖1 ≥ ε implies ‖p− pu‖2 ≥ ε/
√
k.

Note that several other uniformity testers in the literature (see Section 3.7) also provide the same `2
testing guarantee, since all of them are essentially counting sample collisions, i.e., the number of
location pairs such that the sample points at those locations are equal.

3 Related work and comparisons

3.1 Additive property estimation

The study of additive property estimation dates back at least half a century [17, 39, 40] and has steadily
grown over the years. For any additive symmetric property f and sequence xn, the simplest and most
widely-used approach uses the empirical (plug-in) estimator f̂E(xn) := f(pµ(xn)) that evaluates f
at the empirical distribution. While the empirical estimator performs well in the large-sample regime,
modern data science applications often concern high-dimensional data, for which more involved meth-
ods have yielded property estimators that are more sample-efficient. For example, for relatively large k
and for f being S̃, C̃m,H , orD, recent research [51, 68, 79, 80, 87, 88] showed that the empirical esti-
mator is optimal up to logarithmic factors, namely nf (P, ε) = Θε(nf (f̂E ,P, ε)/log nf (f̂E ,P, ε)),
where P is ∆≥1/k for S̃, and is ∆X for the other properties.

Below we classify the methods for deriving the corresponding sample-optimal estimators into two
categories: plug-in and approximation, and provide a high-level description. For simplicity of
illustration, we assume that ε ∈ (0, 1].

The plug-in approach essentially estimates the unknown distribution multiset, which suffices for
computing any symmetric properties. Besides the empirical and PML estimators, Efron and Thisted
[33] proposed a linear-programming approach that finds a multiset estimate consistent with the
sample’s profile. This approach was then adapted and analyzed by Valiant and Valiant [79, 82],
yielding plug-in estimators that achieve near-optimal sample complexities for H and S̃, and optimal
sample complexity for D, when ε is relatively large.

The approximation approach modifies non-smooth segments of the probability function to correct
the bias of empirical estimators. A popular modification is to replace those non-smooth segments by
their low-degree polynomial approximations and then estimate the modified function. For several
properties including the above four and power sum Pα(p) :=

∑
x p

α
x , where α is a given parameter,

this approach yields property-dependent estimators [51, 68, 87, 88] that are sample-optimal for all ε.

More recently, Acharya et al. [5] proved the aforementioned results on PML estimator and made it the
first unified, sample-optimal plug-in estimator for S̃, C̃m, H and D and relatively large ε. Following
these advances, Han et al. [43] refined the linear-programming approach and designed a plug-in
estimator that implicitly performs polynomial approximation and is sample-optimal for H , S̃, and
Pα with α < 1, when ε is relatively large.
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3.2 Comparison I: Theorem 1 and related property-estimation work

In terms of the estimator’s theoretical guarantee, Theorem 1 is essentially the same as Valiant and
Valiant [80]. However, for each property, k, and n, [80] solves a different linear program and
constructs a new estimator, which takes polynomial time. On the other hand, both the PML estimator
and its near-linear-time computable variant, once computed, can be used to accurately estimate
exponentially many properties that are 1-Lipschitz on (∆X , R). A similar comparison holds between
the PML method and the approximation approach, while the latter is provably sample-optimal for
only a few properties. In addition, Theorem 1 shows that the PML estimator often achieves the
optimal sample complexity up to a small constant factor, which is a desired estimator attribute shared
by some, but not all approximation-based estimators [51, 68, 87, 88].

In term of the method and proof technique, Theorem 1 is closest to Acharya et al. [5]. On the other
hand, [5] establishes the optimality of PML for only four properties, while our result covers a much
broader property class. In addition, both the above mentioned “small constant factor” attribute, and
the confidence boost from 2/3 to 1− exp(−4

√
n) are unique contributions of this work. The PML

plug-in approach is also close in flavor to the plug-in estimators in Valiant and Valiant [79, 82]
and their refinement in Han et al. [43]. On the other hand, as pointed out previously, these plug-in
estimators are provably sample-optimal for only a few properties. More specifically, for estimating H ,
S̃, and C̃m, the plug-in estimators in [79, 82] achieve sub-optimal sample complexities with regard to
the desired accuracy ε; and the estimation guarantee in [43] is provided in terms of the approximation
errors of Õ(

√
n) polynomials that are not directly related to the optimal sample complexities.

3.3 Rényi entropy estimation

Motivated by the wide applications of Rényi entropy, heuristic estimators were proposed and studied
in the physics literature following [41], and asymptotically consistent estimators were presented and
analyzed in the statistical learning literature [52, 90]. For the special case of 1-Rényi (or Shannon)
entropy, the works of [79, 80] determined the sample complexity to be nf (ε) = Θ(k/(ε log k)).

For general α-Rényi entropy, the best-known results in Acharya et al. [6] state that for integer and non-
integer α values, the corresponding sample complexities nf (ε, δ) are Oα(k1−1/α log(1/δ)/ε2) and
Oα(kmin{1/α,1} log(1/δ)/(ε1/α log k)), respectively. The upper bounds for integer α are achieved
by an estimator that corrects the bias of the empirical plug-in estimator. To achieve the upper
bounds for non-integer α values, one needs to compute some best polynomial approximation of zα,
whose degree and domain both depend on n, and construct a more involved estimator using the
approximation approach [51, 87] mentioned in Section 3.1.

3.4 Comparison II: Theorem 2 to 4 and related Rényi-entropy-estimation work

Our result shows that a single PML estimate suffices to estimate the Rényi entropy of different
orders α. Such adaptiveness to the order parameter is a significant advantage of PML over existing
methods. For example, by Theorem 3 and the union bound, one can use a single APML or PML
to accurately approximate exponentially many non-integer order Rényi entropy values, yet still
maintains an overall confidence of 1− exp(−k0.9). By comparison, the estimation heuristic in [6]
requires different polynomial-based estimators for different α values. In particular, to construct each
estimator, one needs to compute some best polynomial approximation of zα, which is not known to
admit a closed-form formula for α 6∈ Z. Furthermore, even for a single α and with a sample size

√
k

times larger, such estimator is not known to achieve the same level of confidence as PML or APML.

As for the theoretical guarantees, the sample-complexity upper bounds in both Theorem 2 and 3
are better than those mentioned in the previous section. More specifically, for any α ∈ (3/4, 1) and
δ ≥ exp(−k−0.5), Theorem 2 shows that nf (ε, δ) = Oα(k1/α/(ε1/α log k)). Analogously, for any
non-integer α > 1 and δ ≥ exp(−k−0.9), Theorem 3 shows that nf (ε, δ) = Oα(k/(ε1/α log k)).
Both bounds are better than the best currently known by a log(1/δ) factor.
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3.5 (Sorted) distribution estimation

Estimating large-alphabet distributions from their samples is a fundamental statistical learning tenet.
Over the past few decades, distribution estimation has found numerous applications, ranging from
natural language modeling [24] to biological research [9], and has been studied extensively. Under
the classical `1 and KL losses, existing research [14, 53] showed that the corresponding sample
complexities n(ε) are Θ(k/ε2) and Θ(k/ε), respectively. Several recent works have investigated
the analogous formulation under sorted `1 distance, and revealed a lower sample complexity of
n(ε) = Θ(k/(ε2 log k)). Specifically, under certain conditions, Valiant and Valiant [82], Han et al.
[43] derived sample-optimal estimators using linear programming, and Acharya et al. [2], Das. [29]
showed that PML achieves a sub-optimal O(k/(ε2.1 log k)) sample complexity for relatively large ε.

3.6 Comparison III: Theorem 5 and related distribution-estimation work

We compare our results with existing ones from three different perspectives.

Applicable parameter ranges: As shown by [43], for ε� n−1/3, the simple empirical estimator
is already sample-optimal. Hence we consider the parammeter range ε = Ω(n−1/3). For the
results in [2, 29] and [82] to hold, we would need ε to be at least Ω(1/

√
log n). On the other hand,

Theorem 5 shows that PML and APML are sample-optimal for ε larger than n−Θ(1). Here, the gap is
exponentially large. The result in [43] applies to the whole range ε = Ω(n−1/3), which is larger than
the applicable range of our results.

Time complexity: Both the APML and the estimator in [82] are near-linear-time computable in the
sample sizes, while the estimator in [43] would require polynomial time to be computed.

Statistical confidence: The PML and APML achieve the desired accuracy with an error probability
at most exp(−Ω(

√
n)). On the contrary, the estimator in [43] is known to achieve an error probability

that decreases only as O(n−3). The gap is again exponentially large. The estimator in [82] admits a
better error probability bound of exp(−n0.02), which is still far from ours.

3.7 Identity testing

Initiated by the work of [37], identity testing is arguably one of the most important and widely-studied
problem in distribution property testing. Over the past two decades, a sequence of works [4, 12, 30–
32, 37, 71, 78] have addressed the sample complexity of this problem and proposed testers with a
variety of guarantees. In particular, applying a coincidence-based tester, Paninski [71] determined
the sample complexity of uniformity testing up to constant factors; utilizing a variant of the Pearson
chi-squared statistic, Valiant and Valiant [78] resolved the general identity testing problem. For an
overview of related results, we refer interested readers to [16] and [36]. The contribution of this work
is mainly showing that PML, is a unified sample-optimal approach for several related problems, and
as shown in Theorem 6, also provides a near-optimal tester for this important testing problem.
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4 Numerical experiments

A number of different approaches have been taken to computing the PML and its approximations.
Among the existing works, Acharya et al. [1] considered exact algebraic computation, Orlitsky et al.
[65, 66] designed an EM algorithm with MCMC acceleration, Vontobel [85, 86] proposed a Bethe
approximation heuristic, Anevski et al. [8] introduced a sieved PML estimator and a stochastic approx-
imation of the associated EM algorithm, and Pavlichin et al. [72] derived a dynamic programming
approach. Notably and recently, for a sample size n, Charikar et al. [23] constructed an explicit
exp(−O(n2/3 log3 n))-approximate PML whose computation time is near-linear in n.

In this section, we first introduce a variant of the MCMC-EM algorithm in [65, 66, 69] and then
demonstrate the efficacy of PML on a variety of learning tasks through experiments.

4.1 MCMC-EM algorithm variant

To approximate PML, the work [65] proposed an MCMC-EM algorithm, where MCMC and EM stand
for Markov chain Monte Carlo and expectation maximization, respectively. A sketch of the original
MCMC-EM algorithm can be found in [65], and a detailed description is available in Chapter 6
of [69]. The EM part uses a simple iteration procedure to update the distribution estimates. One can
show [69] that it is equivalent to the conventional generalized gradient ascent method. The MCMC
part exploits local properties of the update process and accelerates the EM computation. Below we
present a variant of this algorithm that often runs faster and is more accurate.

Step 1: We separate the large and small multiplicities. Define a threshold parameter τ := 1.5 log2 n
and suppress Xn in pµ(Xn) for simplicity. For symbols x with µx(Xn) ≥ τ , estimate their
probabilities by pµ(x) = µx(Xn)/n and remove them from the sample. Denote the collection of
removed symbols by R and the remaining sample sequence by Xr. In the subsequent steps, we apply
the EM-MCMC algorithm to Xr.

The idea is simple: By the Chernoff-type bound for binomial random variables, with high proba-
bility, the empirical frequency µx(Xn)/n of a large-multiplicity symbol x is very close to its mean
value p(x). Hence for large-multiplicity symbols we can simply use the empirical estimates and
focus on estimating the probabilities of small-multiplicity symbols. This is similar to initializing the
EM algorithm by the empirical distribution and fixing the large probability estimates through the
iterations. However, the approach described here is more efficient.

Step 2: We determine a proper alphabet size for the output distribution of the EM algorithm. If the
true value k is provided, then we simply use k − |R|. Otherwise, we apply the following support size
estimator [5] to Xr:

Ŝ(Xr) :=
∑
j≥1

(1− (−(t− 1))j Pr(L ≥ j)) · ϕj(Xr),

where t = log r and L is an independent binomial random variable with support size d 1
2 log2( rt

2

t−1 )e
and success probability (t+ 1)−1. For any ε larger than an absolute constant, estimator Ŝ achieves
the optimal sample complexity nf (∆≥1/k, ε) in estimating support size, up to constant factors [5].

Step 3: Apply the MCMC-EM algorithm in [65, 69] to ϕ(Xr) with the output alphabet size
determined in the previous step, and denote the resulting distribution estimate by pr. (In the
experiments, we perform the EM iteration for 30 times.) Intuitively, this estimate corresponds to the
conditional distribution given that the next observation is a symbol with small probability.

Step 4: Let Tµ :=
∑
x∈R pµ(x) be the total probability of the large-multiplicity symbols. Treat pr

as a vector and let p′r := (1− Tr) · pr. For every symbol x ∈ R, append pµ(x) to p′r, and return the
resulting vector. Note that this vector corresponds to a valid discrete distribution.
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Algorithm code

The implementation of our algorithm is also available at https://github.com/ucsdyi/PML.

For computational efficiency, the program code for the original MCMC-EM algorithm in [65, 69] is
written in C++, with a file name “MCMCEM.cpp”. The program code for other functions is written
in Python3. Note that to execute the program, one should have a 64-bit Windows/Linux system with
Python3 installed (64-bit version). In addition, we also use functions provided by “NumPy” and
“SciPy”, while the latter is not crucial and can be removed by modifying the code slightly.

Our implementation also makes use of “ctypes”, a built-in foreign language library for Python that
allows us to call C++ functions directly. Note that before calling C++ functions in Python, we need
to compile the corresponding C++ source files into DLLs or shared libraries. We have compiled and
included two such files, one is “MCMCEM.so”, the other is “MCMCEM.dll”.

Functions in “MCMCEM.cpp” can be used separately. To compute a PML estimate, simply call
the function “int PML(int MAXSZ=10000, int maximum_EM=20, int EM_n=100)”, where the first
parameter specifies an upper bound on the support size of the output distribution, the second provides
the maximum number of EM iteration, and the last corresponds to the sample size n. This function
takes as input a local file called “proFile”, which contains the profile vector ϕ(Xn) in the format of
“1 4 7 10 . . . ”. Specifically, the file “proFile” consists of only space-separated non-negative integers,
and the i-th integer represents the value of ϕi(Xn). The output is a vector of length at most MAXSZ,
and is stored in another local file called “PMLFile”. Each line of the file “PMLFile” contains a
non-negative real number, corresponding to a probability estimate.

To perform experiments and save the plots to the directory containing the code, simply execute
the file “Main.py”. To avoid further complication, the code compares our estimator with only
three other estimators: empirical, empirical with a larger n log n sample size, and improved Good-
Turing [64] (for distribution estimation under unsorted `1 distance). The implementation covers all
the distributions described in the next section. One can test any of these distributions by including it
in “D_List” of the “main()” function. The implementation also covers a variety of learning tasks,
such as distribution estimation under sorted and unsorted `1 distances, and property estimation for
Shannon entropy, α-Rényi entropy, support coverage, and support size.

Finally, functions related to distribution and sample generation are available in file “Samples.py”.
Others including the property computation functions, the sorted and unsorted `1 distance functions,
and the previously-described support size estimator, are contained in file “Functions.py”.

4.2 Experiment distributions

In the following experiments, samples are generated according to six distributions with the same
support size k = 5,000.

Three of them have finite support by definition: uniform distribution, two-step distribution with half
the symbols having probability 2/(5k) and the other half have probability 8/(5k), and a three-step
distribution with one third the symbols having probability 3/(13k), another third having probability
9/(13k), and the remaining having probability 27/(13k).

The other three distributions are over {i ∈ Z : i ≥ 1}, and are truncated at i = 5,000 and
re-normalized: geometric distribution with parameter g = 1/k satisfying pi ∝ (1 − g)i, Zipf
distribution with parameter 1/2 satisfying pi ∝ i−1/2, and log-series distribution with parameter
γ = 2/k satisfying pi ∝ (1− γ)i/i.

4.3 Experiment results and details

As shown below, the proposed PML approximation algorithm has exceptional performance.

Distribution estimation under `1 distance

We derive a new distribution estimator under the (unsorted) `1 distance by combining the proposed
PML computation algorithm with the denoising procedure in [81] and a missing mass estimator [64].

First we describe this distribution estimator, which takes a sample Xn from some unknown distribu-
tion p. An optional input is X , the underlying alphabet.
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Step 1: Apply the PML computation algorithm described in Section 4.1 to Xn, and denote the
returned vector, consisting of non-negative real numbers that sum to 1, by V .

Step 2: Employ the following variant of the denoising procedure in [81]. Arbitrarily remove a
total probability mass of log−2 n from entries of the vector V without making any entry negative.
Then for each j ≤ log2 n, augment the vector by n/(j log4 n) entries of probability j/n. For every
multiplicity µ ≥ 1 appearing in the sample, assign to all symbols appearing µ times the following
probability value. If µ ≥ log2 n, simply assign to each of these symbols the empirical estimate µ/n;
otherwise, temporally associate a weight of bin(n, v, µ) :=

(
n
µ

)
(1− v)n−µvµ with each entry v in

V , and assign to each of these symbols the current weighted median of V .

Step 3: If X is available, we can estimate the total probability mass M(Xn) :=
∑
x∈X 1x 6∈Xn of

the unseen symbols (a.k.a., the missing mass) by the following estimator:

M̂(Xn) :=
ϕ1(Xn)∑

j(jϕj(X
n)1j>ϕj+1 + (j + 1)ϕj+1(Xn)1j≤ϕj+1)

.

We equally distribute this probability mass estimate among symbols that do not appear in the sample.

As shown below, the proposed distribution estimator achieves the state-of-the-art performance.

In Figures 2, the horizontal axis reflects the sample size n, ranging from 10,000 to 100,000, and
the vertical axis reflects the (unsorted) `1 distance between the true distribution and the estimates,
averaged over 30 independent trials. We compare our estimator with three others: the improved
Good-Turing estimator [64, 46], the empirical estimator, serving as a baseline, and the empirical
estimator with a larger n log n sample size. Note that log n is roughly 11. As shown in [64], the
improved Good-Turing estimator is provably instance-by-instance near-optimal and substantially
outperforms other estimators such as the Laplace (add-1) estimator, the Braess-Sauer estimator [14],
and the Krichevsky-Trofimov estimator [55]. Hence we do not include those estimators below.

As the following plots show, our proposed estimator outperformed the improved Good-Turing
estimator in all experiments.

Figure 2: Distribution estimation under `1 distance
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Distribution estimation under sorted `1 distance

In Figure 3, the sample size n ranges from 2,000 to 20,000, and the vertical axis reflects the sorted `1
distance between the true distribution and the estimates, averaged over 30 independent trials. We
compare our estimator with that proposed by Valiant and Valiant [82] that utilizes linear programming,
with the empirical estimator, and with the empirical estimator with a larger n log n sample size.

We do not include the estimator in [43] since there is no implementation available, and as pointed out
by the recent work of [84] (page 7), the approach in [43] “is quite unwieldy. It involves significant
parameter tuning and special treatment for the edge cases.” and “Some techniques . . . are quite crude
and likely lose large constant factors both in theory and in practice.”

As shown in Figure 3, with the exception of uniform distribution, where the estimator in Valiant
and Valiant [82] (VV-LP) is the best and PML is the closest second, the PML estimator outperforms
VV-LP for all other tested distributions. As the underlying distribution becomes more skewed, the
improvement of PML over VV-LP grows. For the log-series distribution, the performance of VV-LP
is even worse than the empirical estimator.

Additionally, the plots also demonstrate that PML has a more stable performance than VV-LP.

Figure 3: Distribution estimation under sorted `1 distance

Shannon entropy estimation under absolute error

In Figure 4, the sample size n ranges from 1,000 to 1,000,000, and the vertical axis reflects the
absolute difference between the true entropy values and the estimates, averaged over 30 independent
trials. We compare our estimator with two state-of-the-art estimators, WY in [87], and JVHW in
[51], as well as the empirical estimator, and the empirical estimator with a larger n log n sample
size. Additional entropy estimators such as the Miller-Mallow estimator [18], the best upper bound
(BUB) estimator [70], and the Valiant-Valiant estimator [82] were compared in [87, 51] and found
to perform similarly to or worse than the two estimators that we compared with, therefore we do
not include them here. Also, considering [82], page 50 in [91] notes that “the performance of linear
programming estimator starts to deteriorate when the sample size is very large.”

Note that the alphabet size k is a crucial input to WY, but is not required by either JVHW or our PML
algorithm. In the experiments, we provide WY with the true value of k = 5,000.

As shown in the plots, our estimator performs as well as these state-of-the-art estimators.
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Figure 4: Shannon entropy estimation under absolute error

α-Rényi entropy estimation under absolute error

For a distribution p ∈ ∆X , recall that the α-power sum of p is Pα(p) =
∑
x p(x)α, implying

Hα(p) = (1 − α)−1 log(Pα(p)). To establish the sample-complexity upper bounds mentioned in
Section 3.3 for non-integer α values, Acharya et al. [6] first estimate the Pα(p) using the α-power-sum
estimator proposed in [51], and then substitute the estimate into the previous equation. The authors
of [51] have implemented this two-step Rényi entropy estimation algorithm. In the experiments,
we take a sample of size n, ranging from 10,000 to 100,000, and compare our estimator with this
implementation, referred to as JVHW, the empirical estimator, and the empirical estimator with a
larger n log n sample size. Note that log n ranges from 9.2 to 11.5. According to the results in [6],
the sample complexities for estimating α-Rényi entropy are quite different for α < 1 and α > 1,
hence we consider two cases: α = 0.5 and α = 1.5.

As shown in Figure 5 and 6, our estimator clearly outperformed the one proposed by [6, 51].

We further note that for small sample sizes and several distributions, the estimator in [6, 51] performs
significantly worse than ours. Also, for large sample sizes, the estimators in [6, 51] degenerates to the
simple empirical plug-in estimator. In comparison, our proposed estimator tracks the performance of
the empirical estimator with a larger n log n sample size for nearly all the tested distributions.

Figure 5: 0.5-Rényi entropy estimation under absolute error
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Figure 6: 1.5-Rényi entropy estimation under absolute error

5 Lipschitz-property estimation

5.1 Proof outline of Theorem 1

The proof proceeds as follows. First, fixing n, X , and a symmetric additive property f that is
1-Lipschitz on (∆X , R), we consider a related linear program defined in [83], and lower bound
the worst-case error of any estimators using the linear program’s objective value, say v. Second,
following the construction in [83], we find an explicit estimator f̂? that is linear, i.e., can be expressed
as a linear combination of ϕi’s, and show optimality by upper bounding its worst-case error in terms
of v. Third, we study the concentration of a general linear estimator, and through the McDiarmid’s
inequality [60], relate the tail probability of its estimate to the estimator’s sensitivity to the input
changes. Fourth, we bound the sensitivity of f̂? by the maximum difference between its consecutive
coefficients, and further bound this difference by a function of n, showing that the estimate induced by
f̂? highly concentrates around its expectation. Finally, we invoke the result in [5] that the PML-plug-
in estimator is competitive to all profile-based estimators whose estimates are highly concentrated,
concluding that PML shares the optimality of f̂?, thereby establishing Theorem 1.

5.2 Technical details

Let f be a symmetric additive property that is 1-Lipschitz on (∆X , R). Without loss of generality,
we assume that f(p) = 0 if p(x) = 1 for some x ∈ X .

Lower bound First, fixing n, X , and f , we lower bound the worst-case error of any estimators.

Let u ∈ (0, 1/2) be a small absolute constant. If there is an estimator f̂ that, when given a length-n
sample from any distribution p ∈ ∆X , will estimate f(p) up to an error of ε with probability at least
1/2 + u. Then for any two distributions p1, p2 ∈ ∆X satisfying |f(p1)− f(p2)| > ε, we can use f̂
to distinguish Xn ∼ p1 from Xn ∼ p2, and will be correct with probability at least 1/2 + u.

On the other hand, for any parameter c1 ∈ (1/100, 1/25] and c2 = 1/2 + 6c1, consider the
corresponding linear program defined in Linear Program 6.7 in [83], and denote by v the objective
value of any of its solutions. Then, Proposition 6.8 in [83] implies that we can find two distributions
p1, p2 ∈ ∆X such that |f(p1)− f(p2)| > v · (1− o(1))−O(n−c1 log n), and no algorithm can use
Poi(n) sample points to distinguish these two distributions with probability at least 1/2 + u.
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The previous reasoning yields that v < (1 + o(1))ε+O(n−c1 log n). By construction, v is a function
of X , n, and f , and essentially serves as a lower bound for ε.

Upper Bound Second, fixing n, X , and f , we construct an explicit estimator based on the previ-
ously mentioned linear program, and show optimality by upper bounding its worst-case error in terms
of v, the linear program’s objective value.

A property estimator f̂ is linear if there exist real coefficients {`i}i≥1 such that the identity f̂(xn) =∑
i≥1 `i · ϕi(xn) holds for all xn. The following lemma (Proposition 6.10 in [83]) bounds the

worst-case error of a linear estimator when its coefficients satisfy certain conditions.

Lemma 2. Given any positive integer m, and real coefficients {βi}i≥0, define ε(y) := f(y)/y −
e−my

∑
i≥0 βi · (my)i/i!. Let β?i := βi−1 · i/m, ∀i ≥ 1, and β?0 := 0. If for some a′, b′, c′ > 0,

1. |ε(y)| ≤ a′ + b′/y,

2. |β?j − β?` | ≤ c′
√
j/m for any j and ` such that |j − `| ≤

√
j logm,

then given a sample Xm from any p ∈ DX , the estimator defined by
∑
i≥1 β

?
i · ϕi will estimate f(p)

with an accuracy of a′ + b′ · k + c′ · logm and a failure probability at most o(1/poly(m)).

Following the construction in [83] (page 124), let z := (z0, z1, . . .) be the vector of coefficients
induced by any solution of the dual program of the previously mentioned linear program. For our
purpose, the way in which these coefficients are derived is largely irrelevant. One can show that
|z`| ≤ v · nc2 ,∀` ≥ 0. Let tn := 2n−c1 log n and α ∈ (0, 1), and define

βi := (1− e−tnαi)f
(

(i+ 1)α

n

)
n

(i+ 1)α
+

i∑
`=0

z`(1− tn)`α`(1− α)i−`
(
i

`

)
.

for any i ≤ n, and βi := βn for i > n. The next lemma shows that we can find proper parameters
a, b, and c to apply Lemma 2 to the above construction. Specifically,

Lemma 3. For any α ∈ [1/100, 1) and some a′′, b′′ ≥ 0 such that a′′ + b′′k ≤ v, if v ≤ log2 n and
c1, c2 satisfy αc2+(3/2−α)c1 ≤ 1/4, the two conditions in Lemma 2 hold for the above construction
with m = n/α, a′ = a′′ + O(n−c1/2 log2 n), b′ = b′′(1 + O(tn)), and c′ = O(n−1/4 log3 n).
Furthermore, for any i ≥ 0, we have |βi| ≤ O(nαc2+(1−α)c1 log3 n).

This lemma differs from the results established in the proof of Proposition 6.19 in [83] only in the
applicable range of α, where the latter assumes that α ∈ [1/2, 1). For completeness, we will present
a proof of Lemma 3 in Appendix A.

By Lemma 2 and 3, if v ≤ log2 n, given a sample Xn/α from any p ∈ ∆X , the linear estimator∑
i≥1 β

?
i ·ϕi will estimate f(p) with an accuracy of a′+b′k+c′ log(n/α) = a′′+O(n−c1/2 log2 n)+

b′′k(1 +O(tn)) +O(n−1/4 log4 n) ≤ v(1 +O(tn)) +O(n−c1/2 log2 n) and a failure probability
at most o(1/poly(n)). Recall that for fixed X , n, and f , the value of v is a constant, thus can be
computed without samples. Furthermore according to the last claim in Proposition 6.19 in [83], for
v > log2 n, the estimator that always returns 0 has an error of at most (1 + o(1))v. Hence with
high probability, the estimator f̂? :=

∑
i≥1(β?i · 1v≤log2 n) · ϕi will estimate f(p) up to an error of

v(1 + o(1)) +O(tn log n), for any possible values of v.

Concentration of linear estimators Third, we slightly diverge from the previous discussion and
study the concentration of general linear estimators.

The sensitivity of a property estimator f̂ : X ∗ → R for a given input size n is

sn(f̂) := max {f(xn)− f(yn) : xn and yn differ in one element} ,

the maximum change in its value when the input sequence is modified at exactly one location. For
any p ∈ ∆X and Xn ∼ p, the following corollary of the McDiarmid’s inequality [60] relates the
two-side tail probability of f̂(Xn) to sn(f̂).
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Lemma 4. For all t ≥ 0, we have Pr
(
|f̂(Xn)− E[f̂(Xn)]| ≥ t

)
≤ 2 exp(−2t2 · (

√
nsn(f̂))−2).

Define `0 := 0. The next lemma bounds the sensitivity of a linear estimator f̂ :=
∑
i≥1 `i · ϕi in

terms of maxi≥1 |`i − `i−1|, the maximum absolute difference between its consecutive coefficients.

Lemma 5. For any n and linear estimator f̂ :=
∑
i≥1 `i ·ϕi, we have sn(f̂) ≤ 2 maxi≥1 |`i−`i−1|.

Proof. Let xn and yn be two arbitrary sequences over X that differ in one element. Let i be the index
where xi 6= yi. Then by definition, the following multiplicity equalities hold: µxi(x

n) = µxi(y
n)+1,

µyi(y
n) = µyi(x

n) + 1, and µx(xn) = µx(yn) for x ∈ X satisfying x 6= xi, yi. For simplicity of
notation, let µ0 := µxi(x

n), µ1 := µyi(y
n), and for any i ≥ 1, let f̂i := `i−1 · ϕi−1 + `i · ϕi.

The first multiplicity equality implies ϕµ0
(xn) = ϕµ0

(yn) + 1 and ϕµ0−1(xn) = ϕµ0−1(yn) − 1.
Therefore, we have f̂µ0

(xn) − f̂µ0
(yn) = `µ0

− `µ0−1. Similarly, the second equality implies
f̂µ1(xn)− f̂µ1(yn) = −`µ1 + `µ1−1. The third equality combines these two results and yields

f̂(xn)− f̂(yn) = `µ0
− `µ0−1 + (−`µ1

+ `µ1−1).

Applying the triangle inequality to the right-hand side completes the proof.

By these two lemmas, we have the following result for the concentration of linear estimators.

Corollary 1. For any t ≥ 0, p ∈ ∆X , and f̂ :=
∑
i≥1 `i · ϕi, if Xn ∼ p, then

Pr
(
|f̂(Xn)− E[f̂(Xn)]| ≥ t

)
≤ 2 min

i≥1
exp(−t2 · (

√
2n(`i − `i−1))−2).

Sensitivity bound Fourth, we bound the sensitivity of f̂? =
∑
i≥1(β?i ·1v≤log2 n)·ϕi. By Lemma 5,

it suffices to consider the absolute difference between consecutive β?i ’s. We assume v ≤ log2 n and
α ∈ [1/100, 1), and analyze two cases below, depending on whether i is greater than 400nc1 or not.

By Lemma 3, for i ≤ 400nc1 , we have |βi| ≤ O(nαc2+(1−α)c1 log3 n). Define β−1 := 0. Then,

|β?i+1 − β?i | =
∣∣∣∣ i+ 1

n/α
βi −

i

n/α
βi−1

∣∣∣∣ ≤ ∣∣∣∣400nc1 + 1

n/α
βi

∣∣∣∣+

∣∣∣∣400nc1

n/α
βi−1

∣∣∣∣ ≤ O (nαc2+(2−α)c1−1 log3 n
)
.

For i > 400nc1 , we only need to consider i < n since β?i+1 = β?i for all i ≥ n. Then,

|β?i+1 − β?i |
(a)

≤

∣∣∣∣∣
i∑

`=0

z`(1− tn)`α`(1− α)i−`
(
i

`

)
(i+ 1)α

n

∣∣∣∣∣+

∣∣∣∣∣
i−1∑
`=0

z`(1− tn)`α`(1− α)i−1−`
(
i− 1

`

)
iα

n

∣∣∣∣∣
+

∣∣∣∣f ( (i+ 1)α

n

)
− f

(
iα

n

)∣∣∣∣+

∣∣∣∣e−tnαif ( (i+ 1)α

n

)∣∣∣∣+

∣∣∣∣e−tnα(i−1)f

(
iα

n

)∣∣∣∣
(b)

≤(nc2 log2 n)

(∣∣∣∣∣
i∑

`=0

(1− tn)`α`(1− α)i−`
(
i

`

)∣∣∣∣∣+

∣∣∣∣∣
i−1∑
`=0

(1− tn)`α`(1− α)i−1−`
(
i− 1

`

)∣∣∣∣∣
)

+

∣∣∣∣f ( (i+ 1)α

n

)
− f

(
iα

n

)∣∣∣∣+

∣∣∣∣e−tnαif ( (i+ 1)α

n

)∣∣∣∣+

∣∣∣∣e−tnα(i−1)f

(
iα

n

)∣∣∣∣
(c)

≤(nc2 log2 n)((1− tnα)i + (1− tnα)i−1) +

∣∣∣∣f ( (i+ 1)α

n

)
− f

(
iα

n

)∣∣∣∣+ 2e−tnα(i−1)/e

(d)

≤2(nc2 log2 n)

(
1− log n

50nc1

)400nc1

+

∣∣∣∣f ( (i+ 1)α

n

)
− f

(
iα

n

)∣∣∣∣+ 2n−2/e

(e)
=2(nc2 log2 n)

((
1− log n

50nc1

) 50nc1
logn

)8 logn

+

∣∣∣∣f ( (i+ 1)α

n

)
− f

(
iα

n

)∣∣∣∣+ 2n−2/e

(f)

≤ 2n−2 +

∣∣∣∣f ( (i+ 1)α

n

)
− f

(
iα

n

)∣∣∣∣ ,
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where (a) follows from the triangle inequality; (b) follows from i ≤ n, v ≤ log2 n, and |z`| ≤ v · nc2
for all ` ≥ 0; (c) follows from the binomial theorem and |f(x)| ≤ x| log x| ≤ 1/e for x ∈ (0, 1]; (d)
follows from α ≥ 1/100, i > 400nc1 , and tn = 2n−c1 log n; (e) follows from simple algebra; and
(f) follows from c2 = 1/2 + 6c1 < 1 and (1− 1/x)x ≤ e−1 for x > 1.

It remains to analyze the second term on the right-hand side.∣∣∣∣f ( (i+ 1)α

n

)
− f

(
iα

n

)∣∣∣∣ (a)
=

(i+ 1)α

n

∣∣∣∣f ( (i+ 1)α

n

)
n

(i+ 1)α
− f

(
iα

n

)
n

(i+ 1)α

∣∣∣∣
(b)
=

(i+ 1)α

n

∣∣∣∣f ( (i+ 1)α

n

)
n

(i+ 1)α
− f

(
iα

n

)
n

iα
+ f

(
iα

n

)
n

i(i+ 1)α

∣∣∣∣
(c)

≤ (i+ 1)α

n

∣∣∣∣log
i+ 1

i

∣∣∣∣+
(i+ 1)α

n

∣∣∣∣ iαn
(

log

(
iα

n

))
n

i(i+ 1)α

∣∣∣∣
(d)

≤ (i+ 1)α

n

1

i
+O

(
log n

n

)
(e)

≤ O
(

log n

n

)
,

where (a), (b) and (e) follows from simple algebra; (c) follows from |f(x)/x−f(y)/y| ≤ | log(x/y)|
for all x, y ∈ (0, 1]; (d) follows from log(1 + x) ≤ x for x ≥ 0 and x| log x| ≤ 1/e for x ∈ (0, 1].

Consolidating the above inequalities and applying Lemma 5, we get the sensitivity bound

sn(f?) ≤ O
(
nαc2+(2−α)c1−1 log3 n

)
.

Competitiveness of PML A property estimator f̂ is profile-based if there exists a mapping ĝ such
that f̂(xn) = ĝ(ϕ(xn)) for all xn ∈ X ∗. The following lemma [2, 5, 29] states that the PML
estimator is competitive to other profile-based estimators.
Lemma 6. For any positive real numbers ε and δ, additive symmetric property f , and profile-based
estimator f̂ , the PML-plug-in estimator f(pϕ) satisfies

nf (f(pϕ), 2ε, δ · exp(3
√
n)) ≤ nf (f̂ , ε, δ).

For any β-approximate PML, a similar result holds with δ · exp(3
√
n) replaced by δ · exp(3

√
n)/β.

The factor exp(3
√
n) directly comes from the well-known result of Hardy and Ramanujan [49] on

integer partitions, since there is a bijective mapping from profiles of size n to partitions of integer n.

Final analysis Finally, we combine the above results and establish Theorem 1.

Denote by τ(n) the previous upper bound on sn(f?). Let p be a distribution in ∆X and Xn ∼ p.
Let γ be an absolute constant in (0, 1/4). Then by Lemma 4,

Pr
(
|f̂?(Xn)− E[f̂?(Xn)]| ≥ 2n1−γτ(n)

)
≤ 2 exp(−8n1−2γ).

Let ε > 0 be an error parameter. Assume there exists an estimator f̂ that, when given a length-αn
sample from any distribution p′ ∈ ∆X , estimates f(p′) up to an absolute error ε with probability
at least 2/3. Then according to the results in the upper- and lower-bound sections, with probability
at most o(1/poly(n)), the estimate f̂?(Xn) will differ from f(p) by more than v(1 + o(1)) +
O(n−c1/2 log2 n) ≤ ε(1+o(1))+O(n−c1/2 log2 n). In addition, by the equality

∑
i≥1 i·ϕi(Xn) =

n and Lemma 3, we surely have |f̂?(Xn)| ≤ |
∑
i≥1(i/m)βi−1 · ϕi(Xn)| ≤ maxi≥0 |βi| ≤

O(nαc2+(1−α)c1 log3 n). Multiplying this bound by o(1/poly(n)) yields a quantity that is negligible
comparing to O(n−c1/2 log2 n). Therefore, the absolute bias |E[f̂?(Xn)]− f(p)| is at most ε(1 +
o(1)) +O(n−c1/2 log2 n). The triangle inequality combines this with the tail bound above:

Pr
(
|f̂(Xn)− f(p)| ≥ ε (1 + o(1)) +O(n−c1/2 log2 n) + 2n1−γτ(n)

)
≤ 2 exp

(
−8n1−2γ

)
.

Let α = 1/4. For PML and APML estimators, set (γ, c1) to be (1/4, 1/31) and (0.166, 1/91), re-
spectively. Combined, the last inequality and Lemma 6 imply Theorem 1. There is a simple trade-off
between α and c1 induced by our proof technique. Specifically, if we increase the value of c1 to
achieve a better lower bound on ε, the value of α may need to be reduced accordingly, which enlarges
the sample complexity gap between our estimators and the optimal one. For example, reducing α to
1/12 and 1/22, we can improve c1 to 1/25 and 1/20, respectively, for both PML and APML.
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6 α-Rényi entropy estimation

For any p ∈ ∆X and non-negative α 6= 1, the α-Rényi entropy [74] of p is

Hα(p) :=
1

1− α
logPα(p) =

1

1− α
log

(∑
x

p(x)α

)
.

For X of finite size k and any p ∈ ∆X , it is well-known that Hα(p) ∈ [0, log k].

6.1 Proof of Theorem 2: α ∈ (3/4, 1)

For α ∈ (3/4, 1), the following theorem characterizes the performance of the PML-plug-in estimator.

For any distribution p ∈ ∆X , error parameter ε ∈ (0, 1), and sampling parameter n, draw a sample
Xn ∼ p and denote its profile by ϕ. Then for sufficiently large k,

Theorem 2. For an α ∈ (3/4, 1), if n = Ωα(k1/α/(ε1/α log k)),

Pr (|Hα(pϕ)−Hα(p)| ≥ ε) ≤ exp(−
√
n).

We establish both this theorem and an analogous result for APML in the remaining section. Let n
be a sampling parameter and p ∈ ∆X be an unknown distribution. For some α-dependent positive
constants cα,1 and cα,2 to be determined later, let τ := cα,1 log n and d := cα,2 log n be threshold
and degree parameters, respectively. Let N,N ′ be independent Poisson random variables with mean
n. Consider Poisson sampling with two samples drawn from p, first of size N and the second N ′.
Suppressing the sample representations, for each x ∈ X , we denote by µx and µ′x the multiplicities
of symbol x in the first and second samples, respectively. Denote by q(z) :=

∑d
m=0 amz

m be the
degree-d min-max polynomial approximation of za over [0, 1]. We consider the following variant of
the polynomial-based estimator proposed in [6].

P̂α :=
∑
x

(
d∑

m=0

am(2τ)α−mµ
m
x

nα

)
1µx≤4τ · 1µ′x≤τ +

∑
x

(µx
n

)α
1µ′x>τ .

The smaller the value of µ′x is, the smaller we expect the value of p(x) to be. In view of this, we
denote the first and second components of P̂α by P̂ (s)

α and P̂ (`)
α , and refer to them as small- and

large-probability estimators, respectively. Note that our estimator differs from that in [6] only by the
additional 1µx≤4τ term, which for sufficiently large cα,1, only modifies E[P̂

(s)
α ] by at most n−2α.

Note that µ′ naturally induces a partition over X . For symbols x with µx ≤ 4τ , we denote by

P
(s)
a,µ′(p) :=

∑
x:µx≤4τ

p(x)α

the small-probability power sum. Analogously, for symbols x with µx > 4τ , we denote by

P
(`)
a,µ′(p) :=

∑
x:µx>4τ

p(x)α

the large-probability power sum. These are random properties with non-trivial variances and are hard
to be analyzed. To address this, we apply an “expectation trick” and denote by P (s)

a (p) := E[P
(s)
a,µ′(p)]

and P (`)
a (p) := E[P

(`)
a,µ′(p)] their expected values, both of which are additive symmetric properties.

Let ε be a given error parameter and n = Ωα(k1/α/(ε1/α log k)) be a sampling parameter. First we
consider the small probability estimator. By the results in [6], for sufficiently large cα,1, the bias of
P̂

(s)
α in estimating P (s)

α (p) satisfies

|E[P̂ (s)
α ]− P (s)

α (p)| ≤ Oα(1) · Pα(p)

(
k

n log n

)α
+ n−α ≤ εPα(p),

where we have used n−α = Oα(εk−1(log k)α) ≤ εPα(p). To show concentration, we bound the
sensitivity of estimator P̂ (s)

α . For m ≥ 0, we can bound the coefficients of q(x) as follows.

|am| = Oα((
√

2 + 1)d) = Oα(ncα,2).

19



Therefore by definition, changing one point in the sample changes the value of P̂ (s)
α by at most

2

(
d∑

m=0

|am|(2τ)α−m(4τ)m

nα

)
≤

d∑
m=0

|am|(2τ)α2m+1

nα
= Oα

(
n2cα,2−α(log n)α

)
.

Let λ ∈ (0, 1/4) be an arbitrary absolute constant. For sufficiently small cα,2, the right-hand side is
at most Oα

(
nλ−α

)
. The McDiarmid’s inequality together with the concentration of Poisson random

variables implies that for all ε ≥ 0,

Pr
(
|P̂ (s)
α − E[P̂ (s)

α ]| ≥ εPα(p)
)
≤ 2 exp(−Ωα(ε2P 2

α(p)n2α−1−2λ)).

Note that n = Ωα(k1/α/(ε1/α log k)) and Pα(p) ≥ 1, which follows from the fact that zα is a
concave function over [0, 1] for α ∈ (0, 1). Hence we obtain

Pr
(
|P̂ (s)
α − E[P̂ (s)

α ]| ≥ εPα(p)
)
≤ 3 exp

(
−Ωα

(
ε2n2α−1−2λ

))
.

For α > 3/4, we can set λ = (4α − 3)/8. Direct calculation shows that for sufficiently large k,
the right-hand side is no more than exp(−8

√
n). Analogously, we can show that for α > 5/6, the

probability bound can be improved to exp(−Θ(n2/3)).

Second, we consider the large probability estimator. To begin with, we set n = Θα(k1/3). By the
results in [6], for sufficiently large cα,1, the bias of P̂ (`)

α in estimating P (`)
α (p) satisfies

|E[P̂ (`)
α ]− P (`)

α (p)| ≤ Oα
(
Pα(p)

τ

)
+

1

nα
,

which, for sufficiently large k, is at most εPα(p). Under the same conditions, the variance of P̂ (`)
α is

at most

Var(P̂ (`)
α ) ≤ Oα

(∑
x

p(x)2α

τ

)
+

1

n2α
≤ (εPα(p))2

3
.

Then, the Chebyshev’s inequality yields

Pr
(
|E[P̂ (`)

α ]− P̂ (`)
α | ≥ εPα(p)

)
≤ 1

3
.

The triangle inequality combines this tail bound with the above bias bound and implies

Pr
(
|P (`)
α (p)− P̂ (`)

α | ≥ 2εPα(p)
)
≤ 1

3
.

Therefore, utilizing the median trick and α < 1, we can construct another estimator P̂ (`,1)
α that takes

a sample of size n = Ωα(k1/α/(ε1/α log k)), and satisfies

Pr
(
|P (`)
α (p)− P̂ (`,1)

α | ≥ 2εPα(p)
)
≤ 2 exp(−Ωα(n/k1/3))) ≤ 2 exp(−Θ(n2/3)).

Recall that Pα(p) = P
(s)
α (p) + P

(`)
α (p). By the union bound and the triangle inequality, under

Poisson sampling with parameter n = Θα(k1/α/(ε1/α log k)),

Pr
(
|Pα(p)− (P̂ (s)

α + P̂ (`,1)
α )| ≥ 4εPα(p)

)
≤ exp(−8

√
n).

Since both N and N ′ are Poisson random variables with mean n, we must have N +N ′ ∼ Poi(2n),
implying that Pr(N + N ′ = 2n) = e−2n(2n)2n/(2n)!. A variant of the well-known Stirling’s
formula states that m! ≥ emm+1/2e−m for all positive integers m. We obtain Pr(N +N ′ = 2n) ≥
e−2n(2n)2n · (e(2n)2n+1/2e−2n)−1 ≥ 1/(e

√
2n) > 1/(4n). Hence, under fixed sampling with a

sample size of 2n, the estimator P̂ (1)
α := (P̂

(s)
α + P̂

(`,1)
α ) satisfies

Pr
(
|Pα(p)− P̂ (1)

α | ≥ 4εPα(p)
)
≤ 4n exp(−8

√
n).
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Replacing n with n/2 and ε with ε/4, the sufficiency of profiles [6] implies the existence of a
profile-based estimator P̂ ?α such that for any p ∈ ∆X ,

Pr
Xn∼p

(
|Pα(p)− P̂ ?α(Xn)| ≥ εPα(p)

)
≤ 2n exp(−4

√
2n) < exp(−4

√
n).

Let δ denote the quantity on the right-hand side. For any xn with profile ϕ satisfying both p(ϕ) > δ,
we must have |P̂ ?α(xn) − Pα(p)| ≤ εPα(p). By definition, we also have pϕ(ϕ) ≥ p(ϕ) > δ and
hence |P̂ ?α(xn) − Pα(pϕ)| ≤ εPα(pϕ). For any ε ∈ (0, 1/2), simple algebra combines the two
property inequalities and yields

|Pα(p)− Pα(pϕ)| ≤ 2εPα(p).

On the other hand, for a sample Xn ∼ p with profile ϕ′, the probability that we have p(ϕ′) ≤ δ is at
most δ times the cardinality of the set Φn := {ϕ(xn) : xn ∈ Xn}. The latter quantity corresponds
to the number of integer partitions of n, which, by the well-known result of Hardy and Ramanujan
[49], is at most exp(3

√
n). Hence, the probability that p(ϕ′) ≤ δ is upper bounded by exp(−

√
n).

To conclude, we have shown that

Pr (|Pα(p)− Pα(pϕ)| ≥ 2εPα(p)) ≤ exp(−
√
n).

In terms of Rényi entropy values, applying the inequality ez − 1 ≥ 1− e−z ≥ z/2 for all z ≥ 0, we
establish that for α > 3/4 and n = Ωα(k/(ε1/α log k)),

Pr (|Hα(p)−Hα(pϕ)| ≥ ε) = Pr
(
Pα(pϕ)e−(α−1)ε ≤ Pα(p) ≤ Pα(pϕ)e(α−1)ε

)
≤ exp(−

√
n).

6.2 Proof of Theorem 3: Non-integer α > 1

The proof of the following theorem is essentially the same as that shown in the previous section.
However, for completeness, we still include a full-length proof.

For any distribution p ∈ ∆X , error parameter ε ∈ (0, 1), absolute constant λ ∈ (0, 0.1), and sampling
parameter n, draw a sample Xn ∼ p and denote its profile by ϕ. Then for sufficiently large k,

Theorem 3. For a non-integer α > 1, if n = Ωα(k/(ε1/α log k)),

Pr (|Hα(pϕ)−Hα(p)| ≥ ε) ≤ exp(−n1−λ).

We establish this theorem in the remaining section. Let n be a sampling parameter and p ∈ ∆X be
an unknown distribution. For some α-dependent positive constants cα,1 and cα,2 to be determined
later, let τ := cα,1 log n and d := cα,2 log n be threshold and degree parameters, respectively. Let
N,N ′ be independent Poisson random variables with mean n. Consider Poisson sampling with two
samples drawn from p, first of size N and the second N ′. Suppressing the sample representations, for
each x ∈ X , we denote by µx and µ′x the multiplicities of symbol x in the first and second samples,
respectively. Denote by q(z) :=

∑d
m=0 amz

m be the degree-d min-max polynomial approximation
of za over [0, 1]. We consider the following variant of the estimator proposed in [6].

P̂α :=
∑
x

(
d∑

m=0

am(2τ)α−mµ
m
x

nα

)
1µx≤4τ · 1µ′x≤τ +

∑
x

(µx
n

)α
1µ′x>τ .

The smaller the value of µ′x is, the smaller we expect the value of p(x) to be. In view of this, we
denote the first and second components of P̂α by P̂ (s)

α and P̂ (`)
α , and refer to them as small- and

large-probability estimators, respectively. Note that our estimator differs from that in [6] only by the
additional 1µy≤4τ term, which for sufficiently large cα,1, only modifies E[P̂

(s)
α ] by at most n−2α.

Note that µ′ naturally induces a partition over X . For symbols x with µx ≤ 4τ , we denote by

P
(s)
a,µ′(p) :=

∑
x:µx≤4τ

p(x)α

the small-probability power sum. Analogously, for symbols x with µx > 4τ , we denote by

P
(`)
a,µ′(p) :=

∑
x:µx>4τ

p(x)α
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the large-probability power sum. These are random properties with non-trivial variances and are hard
to be analyzed. To address this, we apply an “expectation trick” and denote by P (s)

a (p) := E[P
(s)
a,µ′(p)]

and P (`)
a (p) := E[P

(`)
a,µ′(p)] their expected values, both of which are additive symmetric properties.

Let ε be a given error parameter and n = Ωα(k/(ε1/α log k)) be a sampling parameter. First we
consider the small probability estimator. By the results in [6], for sufficiently large cα,1, the bias of
P̂

(s)
α in estimating P (s)

α (p) satisfies

|E[P̂ (s)
α ]− P (s)

α (p)| ≤ Oα(1) · Pα(p)

(
k

n log n

)α
+ n−α ≤ εPα(p),

where we have used n−α = Oα(εk−α(log k)α) ≤ εPα(p). To show concentration, we bound the
sensitivity of estimator P̂ (s)

α . For m ≥ 0, we can bound the coefficients of q(x) as follows.

|am| ≤ Oα((
√

2 + 1)d) = Oα(ncα,2).

Therefore by definition, changing one point in the sample changes the value of P̂ (s)
α by at most

2

(
d∑

m=0

|am|(2τ)α−m(4τ)m

nα

)
≤

d∑
m=0

|am|(2τ)α2m+1

nα
≤ Oα

(
n2cα,2−α(log n)α

)
.

Let λ ∈ (0, 1/4) be an arbitrary absolute constant. For sufficiently small cα,2, the right-hand side is
at most Oα

(
nλ−α

)
. The McDiarmid’s inequality together with the concentration of Poisson random

variables implies that for all ε ≥ 0,

Pr
(
|P̂ (s)
α − E[P̂ (s)

α ]| ≥ εPα(p)
)
≤ 2 exp(−Ωα(ε2P 2

α(p)n2α−1−2λ)).

Note that n = Ωα(k/(ε1/α log k)) and Pα(p) ≥ k1−α. Hence we obtain

Pr
(
|P̂ (s)
α − E[P̂ (s)

α ]| ≥ εPα(p)
)
≤ 3 exp

(
−Ωα(ε2k2−2αn2α−1−2λ)

)
.

By simple algebra, for sufficiently large k, the right-hand side is at most exp(−n1−3λ).

Second, we consider the large probability estimator. To begin with, we set n = Θα(kλ). By the
results in [6], for sufficiently large cα,1, the bias of P̂ (`)

α in estimating P (`)
α (p) satisfies

|E[P̂ (`)
α ]− P (`)

α (p)| ≤ Oα
(
Pα(p)

τ

)
+

1

n4α
,

which, for sufficiently large k, is at most εPα(p). Under the same conditions, the variance of P̂ (`)
α is

at most

Var(P̂ (`)
α ) ≤ Oα

(∑
x

p(x)2α

τ

)
+

1

n8α
≤ (εPα(p))2

3
.

Then, the Chebyshev’s inequality yields

Pr
(
|E[P̂ (`)

α ]− P̂ (`)
α | ≥ εPα(p)

)
≤ 1

3
.

The triangle inequality combines this tail bound with the above bias bound and implies

Pr
(
|P (`)
α (p)− P̂ (`)

α | ≥ 2εPα(p)
)
≤ 1

3
.

Therefore, utilizing the median trick, we can construct another estimator P̂ (`,1)
α that takes a sample of

size n = Ωα(k/(ε1/α log k)), and for sufficiently large k, satisfies

Pr
(
|P (`)
α (p)− P̂ (`,1)

α | ≥ 2εPα(p)
)
≤ 2 exp(−Ωα(n/kλ)) ≤ exp(−n1−2λ).
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Recall that Pα(p) = P
(s)
α (p) + P

(`)
α (p). By the union bound and the triangle inequality, under

Poisson sampling with parameter n = Ωα(k/(ε1/α log k)),

Pr
(
|Pα(p)− (P̂ (s)

α + P̂ (`,1)
α )| ≥ 4εPα(p)

)
≤ exp(−n1−3λ).

Since both N and N ′ are Poisson random variables with mean n, we must have N +N ′ ∼ Poi(2n),
implying that Pr(N + N ′ = 2n) = e−2n(2n)2n/(2n)!. A variant of the well-known Stirling’s
formula states that m! ≥ emm+1/2e−m for all positive integers m. We obtain Pr(N +N ′ = 2n) ≥
e−2n(2n)2n · (e(2n)2n+1/2e−2n)−1 ≥ 1/(e

√
2n) > 1/(4n). Hence, under fixed sampling with a

sample size of 2n, the estimator P̂ (1)
α := (P̂

(s)
α + P̂

(`,1)
α ) satisfies

Pr
(
|Pα(p)− P̂ (1)

α | ≥ 4εPα(p)
)
≤ 4n exp(−n1−3λ).

Replacing ε with ε/4 and λ with λ/5, the sufficiency of profiles implies the existence of a profile-
based estimator P̂ ?α such that for sufficiently large k and any p ∈ ∆X ,

Pr
Xn∼p

(
|Pα(p)− P̂ ?α(Xn)| ≥ εPα(p)

)
≤ 4n exp(−n1−3λ/5) < exp(−n1−4λ/5).

Let δ denote the quantity on the right-hand side. For any xn with profile ϕ satisfying both p(ϕ) > δ,
we must have |P̂ ?α(xn) − Pα(p)| ≤ εPα(p). By definition, we also have pϕ(ϕ) ≥ p(ϕ) > δ and
hence |P̂ ?α(xn) − Pα(pϕ)| ≤ εPα(pϕ). For any ε ∈ (0, 1/2), simple algebra combines the two
property inequalities and yields

|Pα(p)− Pα(pϕ)| ≤ 2εPα(p).

On the other hand, for a sample Xn ∼ p with profile ϕ′, the probability that we have p(ϕ′) ≤ δ is at
most δ times the cardinality of the set Φn := {ϕ(xn) : xn ∈ Xn}. The latter quantity corresponds to
the number of integer partitions of n, which, by the well-known result of Hardy and Ramanujan [49],
is at most exp(3

√
n). Hence, the probability that p(ϕ′) ≤ δ is upper bounded by exp(−n1−λ). To

conclude, we have shown that

Pr (|Pα(p)− Pα(pϕ)| ≥ 2εPα(p)) ≤ exp(−n1−λ).

In terms of Rényi entropy values, applying the inequality ez − 1 ≥ 1− e−z ≥ z/2 for all z ≥ 0, we
establish that for n = Ωα(k/(ε1/α log k)),

Pr (|Hα(p)−Hα(pϕ)| ≥ ε) = Pr
(
Pα(pϕ)e−(α−1)ε ≤ Pα(p) ≤ Pα(pϕ)e(α−1)ε

)
≤ exp(−n1−λ).

6.3 Proof of Theorem 4: Integer α > 1

For an integer α > 1, the following theorem characterizes the performance of the PML-plug-in
estimator. For any p ∈ ∆X , ε ∈ (0, 1), and a sample Xn ∼ p with profile ϕ,

Theorem 4. If n = Ωα(k1−1/α(ε2| log ε|)−(1+α)) and Hα(p) ≤ (log n)/4,

Pr(|Hα(pϕ)−Hα(p)| ≥ ε) ≤ 1/3.

Due to the lower bounds in [6], for all possible values of α, the sample complexity of the PML
plug-in estimator has the optimal dependency in k. The remaining section is devoted to proving the
above theorem. Note that estimating the Rényi entropy Hα(p) to an additive error is equivalent to
estimating the power sum Pα(p) to a corresponding multiplicative error. Given this fact, we consider
the estimator P̂α in [6] that maps each sequence xn ∈ X ∗ to

P̂α(xn) :=
∑
x

µx(xn)α

nα
,

where for any real number z, the expression zα denotes the falling factorial of z to the power α. For
a sample Xn ∼ p, we have E[P̂α(Xn)] = Pα(p). The following lemma [63, 6] states that P̂α(Xn)
often estimates Pα(p) to a small multiplicative error when n is large.
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Lemma 7. Under the above conditions, for any ε, n > 0,

Pr
(
|P̂α(Xn)− Pα(p)| ≥ εPα(p)

)
= Oα(ε−2n−1(Pα(p))−1/α).

For sufficiently large n = Ωα(k(α−1)/α), this inequality together with Pα(p) ≤ k1−α implies that

Pr

(
|P̂α(Xn)− Pα(p)| ≥ 1

2
· Pα(p)

)
≤ 1

4
.

The following corollary is a consequence of the above lemma, the sufficiency of profiles, and the
standard median trick.
Corollary 2. Under the above conditions, there is an estimator P̂ ?α such that for any ε, n > 0,

Pr
(
|P̂ ?α(Xn)− Pα(p)| ≥ εPα(p)

)
≤ 2 exp

(
−Ωα(ε2n(Pα(p))1/α)

)
.

In addition, the estimator P̂ ?α is profile-based.

For simplicity, suppress Xn in pµ(Xn). Since the profile probability p(ϕ) is invariant to symbol
permutation, for our purpose, we can assume that pµ(y) ≤ pµ(z) iff pϕ(x) ≤ pϕ(y), for all x, y ∈ X .
Under this assumption, the following lemma [67, 8] relates pϕ to pµ.
Lemma 8. For a distribution p and sample Xn ∼ p with profile ϕ,

Pr

(
max
x
|pϕ(x)− pµ(x)| > 2 log n

n1/4

)
= O

(
1

n

)
.

Consider ε ∈ (0, 1/2) and xn satisfying |P̂ ?α(xn)− Pα(p)| ≤ εPα(p). If we further have Pα(p) ≥
2(n1/4(4 log n)−1)1−α and maxy |pϕ(y)− pµ(y)| ≤ 2(log n)n−1/4, then,

Pα(p)

2

(a)

≤ P̂α(xn)
(b)

≤ Pα(pµ)
(c)

≤ 21+αPα(pϕ),

where (a) follows from the above assumptions; (b) follows from AB ≤ AB for any A,B ≥ 0; and
(c) follows from the reasoning below.

• Let S denote the the collection of symbols x such that pµ(x) ≤ 4(log n)n−1/4. Then a
convexity argument yields

∑
x∈S (pµ(x))

α ≤ (n1/4(4 log n)−1)1−α.

• Using (a), (b), and Pα(p) ≥ 4(n1/4(4 log n)−1)1−α, we immediately obtain Pα(pµ) ≥
2(n1/4(4 log n)−1)1−α and thus 2

∑
x∈S (pµ(x))

α ≤ Pα(pµ) ≤ 2
∑
x 6∈S (pµ(x))

α.

• For any symbol x 6∈ S, we have pµ(x) > 4(log n)n−1/4. This together with the assumption
that maxx |pϕ(x)− pµ(x)| ≤ 2(log n)n−1/4 implies pµ(x) ≤ 2pϕ(x).

• Therefore, the inequality
∑
x 6∈S (pµ(x))

α ≤ 2α
∑
x 6∈S(pϕ(x))α ≤ 2αPα(pϕ) holds.

• Consequently, we establish Pα(pµ(x)) ≤ 2
∑
x 6∈S (pµ(x))

α ≤ 21+αPα(pϕ).

By the inequality Pα(p)/2 ≤ 21+αPα(pϕ) and Corollary 2, if |P̂ ?α(xn)− Pα(pϕ)| ≥ εPα(pϕ),

pϕ(ϕ) ≤ 2 exp
(
−Ωα(ε2n(Pα(pϕ))1/α)

)
≤ 2 exp

(
−Ωα(ε2n(Pα(p))1/α)

)
.

Let δp denote the quantity on the right-hand side. If we further have p(ϕ) > δp, then by definition,
pϕ(ϕ) ≥ p(ϕ) > δp. Hence for any xn with profile ϕ satisfying both p(ϕ) > δp and |P̂ ?α(xn) −
Pα(p)| ≤ εPα(p), we must have |P̂ ?α(xn)− Pα(pϕ)| ≤ εPα(pϕ). Simple algebra combines the last
two inequalities and yields

|Pα(p)− Pα(pϕ)| ≤ 4εPα(p).

On the other hand, for a sample Xn ∼ p with profile ϕ′, the probability that we have both p(ϕ′) ≤ δp
and |P̂ ?α(Xn)− Pα(p)| ≤ εPα(p) is at most δp times the cardinality of the set Φnα,ε(p) := {ϕ(xn) :
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xn ∈ Xn and |P̂ ?α(xn)− Pα(p)| ≤ εPα(p)}. Below we complete this argument by finding a tight
upper bound on |Φnα,ε(p)| in terms of its parameters.

For any sequence xn such that ϕ(xn) ∈ Φnα,ε(p), let Nϕ(xn) denote the number of prevalences
ϕj(x

n) that are non-zero. Then by definition, we obtain

Nϕ(xn)∑
j=0

jα

nα
≤
∑
j

jα

nα
· ϕj(xn) = P̂ ?α(xn) ≤ 3

2
Pα(p).

Using the standard falling-factorial identity ((j + 1)1+α − j1+α)/(1 + α) = jα, we can further
simplify the expression on the left-hand side:

Nϕ(xn)∑
j=0

jα

nα
=

(Nϕ(xn) + 1)1+α

(1 + α)nα
.

This together with the inequality above yields Nϕ(xn) ≤ Tnα (p) := (3(1 + α)nα · Pα(p)/2)1/(1+α).
Further note that each prevalence in ϕ(xn) = (ϕ1(xn), . . . , ϕn(xn)) can only take values in dnc :=
{0, 1, . . . , n}. Therefore, |Φnα,ε(p)| is at most the number of Tnα (p)-sparse vectors over dncn, which
admits the following upper bound(

n

Tnα (p)

)
|dnc|T

n
α (p) ≤ (n+ 1)2Tnα (p).

Therefore, for δp · |Φnα,ε(p)| to be small, it suffices to have

Ωα(ε2n(Pα(p))1/α)� 2Tnα (p) log(n+ 1) = 2(3(1 + α)nα · Pα(p)/2)1/(1+α) log(n+ 1),

which in turn simplifies to

ε2n1/(1+α)(Pα(p))1/(α(1+α)) � Θα(log n).

Following this and Pα(p) ≥ 4(n1/4(4 log n)−1)1−α, we obtain the following lower bound on n.

n� Θα((ε2| log ε|)−(1+α)(Pα(p))−1/α).

In this case, the probability bound δp · |Φnα,ε(p)| is no larger than 1/6.

Finally, let C denote the collection of sequences xn with profile ϕ that do not satisfy |P̂ ?α(xn) −
Pα(p)| ≤ εPα(p) or maxx |pϕ(x) − µx(xn)/n| ≤ 2(log n)n−1/4. By Corollary 2, Lemma 9, and
the union bound,

Pr
Xn∼p

(Xn ∈ C) ≤ 2 exp
(
−Ωα(ε2n(Pα(p))1/α)

)
+O

(
1

n

)
.

For n satisfying the lower-bound inequality above, the right-hand side is again no larger than 1/6.
This completes the proof of the theorem.

7 Sorted distribution estimation

7.1 Sorted `1 distance and Wasserstein duality

For convenience, we first restate the theorem.
Theorem 5. If n = Ω(n(ε)) = Ω

(
k/(ε2 log k)

)
and ε ≥ n−c,

Pr(`<
1(pϕ, p) ≥ ε) ≤ exp(−Ω(n1/11)).

In this section, we relate the estimation of sorted distributions to that of distribution properties through
a dual definition of the 1-Wasserstein distance.

Recall that we let {p} denote the multiset of probability values of a distribution p ∈ ∆X . The sorted
`1 distance between two distributions p, q ∈ ∆X is

`<
1(p, q) := min

q′∈∆X :{q′}={q}
‖p− q′‖1 ,
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which is invariant under domain-symbol permutations on either p or q.

For two distributions ω, ν over the unit interval [0, 1], let Γ′ω,ν be the collection of distributions over
[0, 1]× [0, 1] with marginals ω and ν on the first and second factors respectively. The 1-Wasserstein
distance, also known as the earth-mover distance, between ω and ν is

W1(ω, ν) := inf
γ∈Γ′ω,ν

E
(X,Y )∼γ

|X − Y | .

Equivalently, let L1 denote the collection of real functions that are 1-Lipschitz on [0, 1]. Through
duality, one can also define the 1-Wasserstein distance [54] as

W1(ω, ν) = sup
f∈L1

(
E

X∼ω
f(X)− E

Y∼ν
f(Y )

)
.

For any p ∈ ∆X , let u{p} denote the distribution induced by the uniform measure on {p}. For any
distributions p, q ∈ ∆X , one can verify [81, 38, 43] that

`<
1(p, q) = k · W1(u{p}, u{q}) ≤ R(p, q).

Combining this with the dual definition ofW1, we obtain

`<
1(p, q) = k · sup

f∈L1

(
E

X∼u{p}
f(X)− E

Y∼u{q}
f(Y )

)
= sup
f∈L1

(∑
x

f(p(x))−
∑
x

f(q(x))

)
.

7.2 Proof of Theorem 5

For a real function f ∈ L1, we denote by f(p) :=
∑
x f(p(x)) the corresponding additive symmetric

property. The previous reasoning also shows that for any p, q ∈ ∆X ,

R(p, q) ≥ `<
1(p, q) ≥ |f(p)− f(q)|.

Therefore, property f is 1-Lipschitz on (∆X , R).

Set n := supf∈L1
nf (ε). The results in [43] imply that if ε > n−0.3,

n = Θ

(
k

ε2 log k

)
.

Clearly, we only need to consider ε ≤ 2, implying k = O(n log n). Let α, γ be absolute constants in
[1/100, 1/6) and ε > 0 be an error parameter.

By the proof of Theorem 1 in Section 5.2, for any distribution p ∈ ∆X and Xn/α ∼ p, with
probability at least 1− 2 exp

(
−4n1−2γ

)
, the PML (or APML) plug-in estimator will satisfy

|f(p)− f(pϕ(Xn/α))| < ε (2 + o(1)) +O(n−c1/2 log2 n) + 4n1−γτ(n),

where c1 ∈ (1/100, 1/32], c2 = 1/2 + 6c1, and τ(n) = O
(
nαc2+(2−α)c1−1 log3 n

)
. Additionally,

in the previous section, we have proved that

`<
1(p, q) = sup

f∈L1

(f(p)− f(q)) = sup
f∈L1

|f(p)− f(q)|.

Though it seems that the above inequality and equation imply the optimality of PML (since f is
chosen arbitrarily), such direct implication actually does not hold. The reason is a little bit subtle: The
inequality on |f(p)− f(pϕ(Xn/α))| holds for any fixed function f and p ∈ ∆X , while the function
that achieves the corresponding supremum in

sup
f∈L1

∣∣f(p)− f(pϕ(Xn/α))
∣∣ = `<

1

(
p, pϕ(Xn/α)

)
depends on both p and Xn/α, and hence is a random function. To address this discrepancy, we
provide a more involved argument below.

Let f be a function in L1. Without loss of generality, we also assume that f(0) = 0. Let η ∈ (0, 1)
be a threshold parameter to be determined later. An η-truncation of f is a function

fη(z) := f(z)1z≤η + f(η)1z>η.
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One can easily verify that fη ∈ L1. Next, we find a finite subset of L1 so that the η-truncation of any
f ∈ L1 is close to at least one of the functions in this subset.

For a parameter s > 3 to be chosen later. Partition the interval [0, η] into s disjoint sub-intervals
of equal length, and define the sequence of end points as zj := η · j/s, j ∈ dsc where dsc :=
{0, 1, . . . , s}. Then, for each j ∈ dsc, we find the integer j′ such that |fη(zj) − zj′ | is minimized
and denote it by j∗. Since fη is 1-Lipschitz, we must have |j∗| ∈ djc. Finally, we connect the points
Zj := (zj , zj∗) sequentially. This curve is continuous and corresponds to a particular η-truncation
f̃η ∈ L1, which we refer to as the discretized η-truncation of f . Intuitively, we have constructed an
(s+ 1)× (s+ 1) grid and “discretized” function f by finding its closest approximation in L1 whose
curve only consists of edges and diagonals of the grid cells. By construction,

max
z∈[0,1]

|fη(z)− f̃η(z)| ≤ η/s.

Therefore, for any p ∈ ∆X , the corresponding properties of fη and f̃η satisfy

|fη(p)− f̃η(p)| ≤ k · η/s.

Note that |j∗| ∈ djc for all j ∈ dsc, and f̃η(z) = zs∗ for z ≥ η. While there are infinitely many
η-truncations, the cardinality of the discretized η-truncations of functions in L1 is at most

s∏
j=0

(2j + 1) = (s+ 1)

s−1∏
j=0

(2j + 1)(2s− 2j + 1) ≤ (s+ 1)
2s+1

= e(2s+1) log(s+1) ≤ e3s log s.

Consider any p ∈ ∆X and Xn/α ∼ p with a profile ϕ. Consolidate the previous results, and apply
the union bound and triangle inequality. With probability at least 1− 2 exp

(
3s log s− 4n1−2γ

)
, the

PML plug-in estimator will satisfy

|fη(p)− fη(pϕ)| ≤ |fη(p)− f̃η(p)|+ |f̃η(p)− f̃η(pϕ)|+ |f̃η(pϕ)− fη(pϕ)|
≤ 2k · η/s+ ε (2 + o(1)) +O(n−c1/2 log2 n) + 4n1−γτ(n),

for all functions f in L1.

Next we consider the “second part” of a function f ∈ L1, namely,

f̄η(z) := f(z)− fη(z) = (f(z)− f(η))1z>η.

Again, we can verify that f̄γ ∈ L1. To establish the corresponding guarantees, we make use of the
following result. Since the profile probability p(ϕ) is invariant to symbol permutation, for our purpose,
we can assume that p(y) ≤ p(z) iff pϕ(x) ≤ pϕ(y), for all x, y ∈ X . Under this assumption, the
next lemma, which follows from the consistency results in [67, 8], relates pϕ to p. Let γ′ ∈ (0, 1/4)
be an absolute constant to be determined later. Then,
Lemma 9. For any distribution p and sample Xm ∼ p with profile ϕ,

Pr
(

max
x
|pϕ(x)− p(x)| > mγ′−1/4

)
= O

(
m1/4 exp(−Ω(m1/2+2γ′))

)
.

Simply following the proofs in [67, 8], we obtain: Changing 1/4 to any (fixed) number greater than
1/6, the above lemma also holds for APML with m1/2+2γ′ replaced by m2/3+2γ′ .

Set m = n/α in this lemma. With probability at least 1−O
(

(n/α)1/4 exp(−Ω((n/α)1/2+2γ′))
)

,

|f̄η(p)− f̄η(pϕ)| = |
∑
x

f̄η(p(x))− f̄η(pϕ(x))|

≤
∑

x:p(x)>η or pϕ(x)>η

|f̄η(p(x))− f̄η(pϕ(x))|

≤
∑

x:p(x)>η or pϕ(x)>η

|p(x)− pϕ(x)|

≤ (2/η)(n/α)γ
′−1/4,

for all functions f in L1.
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Consolidate the previous results. By the triangle inequality and the union bound, with probability at
least 1− 2 exp

(
3s log s− 4n1−2γ

)
−O

(
(n/α)1/4 exp(−Ω((n/α)1/2+2γ′))

)
,

|f(p)− f(pϕ)| ≤ |fη(p)− fη(pϕ)|+ |f̄η(p)− f̄η(pϕ)|

≤ 2kη/s+ ε (2 + o(1)) +O(n−c1/2 log2 n) + 4n1−γτ(n) + (2/η)(n/α)γ
′−1/4,

for all functions f in L1. Now we can conclude that `<
1 (p, pϕ) is also at most the error bound on the

right-hand side. The reason is straightforward: Since with high probability, the above guarantee holds
for all functions in L1, it must also hold for the function that achieves the supremum in

sup
f∈L1

|f(p)− f(pϕ)| = `<
1 (p, pϕ) .

It remains to make sure that all the quantities in the error bound except ε (2 + o(1)) vanish with n, and
the probability bound converges to 1 as n increases. Recall that k = O(n log n), c1 ∈ (1/100, 1/25],
c2 = 1/2 + 6c1, and τ(n) = O

(
nαc2+(2−α)c1−1 log3 n

)
.

By direct computation, we can choose α = 1/100, c1 = 1/26, γ′ = 1/200, γ = (5/2+5α)c1 +α/2,
s = nγ

′+3/4+c1 , and η = nγ
′−1/4+c1/2. Note that this is just one possible set of parameters. Given

this choice, we have
`<
1 (p, pϕ) ≤ ε (2 + o(1)) +O(n−c1/2 log3 n),

with probability at least 1− exp(−Ω(n1/2)). Additionally, the equation

sup
f∈L1

|f(p)− f(pϕ)| = `<
1 (p, pϕ)

clearly yields that n(ε) ≥ supf∈L1
nf (ε). Hence for ε ≥ O(n−c1/2 log4 n),

n(pϕ, (2 + o(1))ε) ≤ 100n(ε).

8 Uniformity testing

8.1 PML-based tester

Let ε be an arbitrary accuracy parameter and X be a finite set. Let pu denote the uniform distribution
overX . Given sample access to an unknown distribution p ∈ ∆X , the uniformity testing distinguishes
between the null hypothesis

H0 : p = pu

and the alternative hypothesis
H1 : ‖p− pu‖1 ≥ ε.

After a sequence of research works [37, 13, 71, 3, 19, 78, 31, 4, 30, 32], it is shown that to achieve a
k−Θ(1) bound on the error probability, this task requires a worst-case sample size of order

√
k log k/ε2.

The uniformity tester TPML(Xn) in Figure 7 is purely based on PML, and takes as input parameters
k and ε, and a sample Xn ∼ p.

Input: parameters k, ε, and a sample Xn ∼ p with profile ϕ.
1. If maxxµx(Xn) ≥ 3 max{1, n/k} log k, return 1;

2. Elif ‖pϕ − pu‖2 ≥ 3ε/(4
√
k), return 1;

3. Else return 0.

Figure 7: Uniformity tester TPML

In the rest of this section, we establish the following theorem.

Theorem 6. If ε = Ω̃(k−1/4) and n = Ω̃(
√
k/ε2), then the tester TPML(X

n) will be correct with
probability at least 1− k−2. The tester also distinguishes between p = pu and ‖p− pu‖2 ≥ ε/

√
k.
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8.2 Proof of Theorem 6

Assume that ε ≥ (log k)/k1/4. For a sample Xn ∼ pu, the multiplicity of each symbol x follows
a binomial distribution bin(n, k−1) with mean n/k. The following lemma [25] bounds the tail
probability of a binomial random variable.
Lemma 10. For a binomial random variable Y with mean M and any t ≥ 1,

Pr(Y ≥ (1 + t)M) ≤ exp(−t(2/t+ 2/3)−1M).

Applying the above lemma to Y = µx(Xn) and t = 3 max{k/n, 1} log k immediately yields
that Pr(µx(Xn) ≥ (1 + t)n/k) ≤ k−3. By symmetry and the union bound, we then have
Pr (maxx µx(Xn) ≥ (1 + t)n/k) ≤ k−2. In the subsequent discussion, we denote by ΦnX the
profile set {ϕ(xn) : xn ∈ Xn and maxx µx(xn) < (1 + t)n/k}.
Consider the problem of estimating the `2-distance between an unknown distribution and the uniform
distribution pu, for which we have the following result [36].

Lemma 11. There is a profile-based estimator ˆ̀
2 such that for any ε0 ≤ k−1/2, n = Ω(k−1/2/ε2

0),
p ∈ ∆X satisfying P2(p) = O(k−1), and Xn ∼ p,

• if ‖p− pu‖2 > ε0, then ˆ̀
2(Xn) ≥ 0.9ε0,

• if ‖p− pu‖2 < ε0/2, then ˆ̀
2(Xn) ≤ 0.6ε0,

with probability at least 2/3.

Set ε0 = ε/
√
k in the above lemma. Then, by the sufficiency of profiles and the standard median

trick, there exists another profile-based estimator ˆ̀?
2 that under the same conditions, provides the

estimation guarantees stated above, with probability at least 1 − δ for δ := 2 exp(−Ω(nε2/
√
k)).

Scaling ε0 by positive absolute constant factors yields: If ‖p− pu‖2 > 0.67ε0, then ˆ̀
2(Xn) ≤ 0.6ε0

with probability at most δ; if ‖p− pu‖2 < 0.75ε0, then ˆ̀
2(Xn) ≥ 0.9ε0 with probability at most δ.

Let ϕ′ be a profile. If we further have p(ϕ′) > δ, then by definition, pϕ′(ϕ′) ≥ p(ϕ′) > δ. Hence for
any xn with profile ϕ′, if ‖p− pu‖2 > ε0, we must have both ˆ̀

2(xn) ≥ 0.9ε0 and ‖pϕ′ − pu‖2 ≥
0.75ε0; if ‖p− pu‖2 < ε0/2, we must have both ˆ̀

2(xn) ≤ 0.6ε0 and ‖pϕ′ − pu‖2 ≤ 0.67ε0.

On the other hand, for a sample Xn ∼ p with profile ϕ, the probability that we have both p(ϕ) ≤ δ
and ϕ ∈ ΦnX is at most δ times the cardinality of the set ΦnX . By definition, if ϕ ∈ ΦnX , then ϕi = 0
for i ≥ (1 + t)n/k. In addition, each ϕi can only take values in dkc = {0, 1, . . . , k}, implying
that |ΦnX | ≤ |dkc|(1+t)n/k ≤ exp(6 max{n/k, 1} log2 k). Therefore, we obtain the following upper
bound on the probability of interest: δ · |ΦnX | ≤ 2 exp(−Ω(nε2/

√
k) + 6 max{n/k, 1} log2 k).

In order to make the probability bound vanish, we need to consider two cases: n ≤ k and n > k. If
n ≤ k, it suffices to have n � (log2 k)

√
k/ε2; If n > k, it suffices to have ε � (log k)/k1/4. In

both cases, the probability bound is at most exp(− log2 k).

Next, consider estimating the power sum P2(p), which is at least k−1/2 for p ∈ ∆X . By Corollary 2,
there is a profile-based estimator P̂ ?2 such that PrXn∼p(|P̂ ?2 (Xn) − P2(p)| ≥ (ε/8) · P2(p)) ≤
2 exp(−Ω(nε2/

√
k)) = δ. Following the same derivations as above and in Section 6.3 with Φnα,ε(p)

replaced by ΦnX , we establish that

Pr (|P2(pϕ)− P2(p)| > P2(p)/2 and ϕ ∈ ΦnX ) ≤ δ · |ΦnX | ≤ exp(− log2 k).

Now we are ready to characterize the performance of the tester TPML(Xn). For clarity, we divide our
analysis into two parts based on which hypothesis is true.

• Case 1: The null hypothesis H0 is true, i.e., p = pu.
– Step 1: By Lemma 10 and its implications, given p = pu, the probability of failure at

this step is at most PrXn∼pu(∃x ∈ X s.t. µx(Xn) ≥ (1 + t)n/k) ≤ k−2.
– Step 2: Note that P2(p) = k−1 and ‖p− pu‖2 = 0, and recall that ϕ = ϕ(Xn). The

tester accepts H1 in this step iff ϕ ∈ ΦnX and ‖pϕ − pu‖2 ≥ 0.75ε0. By Lemma 11
and the subsequent arguments, this happens with probability at most exp(− log2 k).
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– Step 3: The tester always accepts H0 in this step. Hence by the union bound, if the
null hypothesis H0 is true, then the tester succeeds with probability at least 1− k−2.

• Case 2: The alternative hypothesis H1 is true, i.e., ‖p− pu‖1 ≥ ε.

– Step 1 to 2: The tester accepts H1 if the conditions in either Step 1 or Step 2 are
satisfied, and hence incurs no error.

– Step 3: According to the value of P2(p), we further divide our analysis into two parts:

∗ If P2(p) ≥ 10k−1, then ‖pϕ − pu‖2 < 0.75ε/
√
k implies that P2(pϕ) < 1.6k−1

and |P2(pϕ) − P2(p)| > P2(p)/2. Hence, the tester accepts H0 only if both
|P2(pϕ)−P2(p)| > P2(p)/2 and ϕ ∈ ΦnX happen, whose probability, by the above
disscusion, is at most exp(− log2 k).

∗ If P2(p) < 10k−1, then all the conditions in Lemma 11 are satisfied. In addition,
by the Cauchy-Schwarz inequality, we have ‖p− pu‖2 ≥ ‖p− pu‖1 · k−1/2 ≥
ε · k−1/2. The tester accepts H0 iff both ‖pϕ − pu‖2 < 0.75ε · k−1/2 and ϕ ∈ ΦnX
hold, which happen, by Lemma 11 and the subsequent arguments, with probability
at most exp(− log2 k).

This completes the proof of the theorem.

Conclusion

We studied three fundamental problems in statistical learning: distribution estimation, property
estimation, and property testing. We established the profile maximum likelihood (PML) as the first
universally sample-optimal approach for several important learning tasks: distribution estimation
under the sorted `1 distance, additive property estimation, Rényi entropy estimation, and identity
testing. Several future directions are promising. We believe that neither the factor of 4 in the sample
size in Theorem 1, nor the lower bounds on ε in Theorem 1, 5, and 6 are necessary. In other words,
the PML approach is universally sample-optimal for these tasks in all ranges of parameters. It is
also of interest to extend the PML’s optimality to estimating symmetric properties not covered by
Theorem 1 to 4, such as generalized distance to uniformity [10, 44], the `1 distance between the
unknown distribution and the closest uniform distribution over an arbitrary subset of X .

Another important direction is competitive (or instance-optimal) property estimation. It should
be noted that all the referenced works including this paper are of the worst-case nature, namely,
designing estimators with near-optimal worst-case performances. On the contrary, practical and
natural distributions often possess simple structures, and are rarely the worst possible. To address this
discrepancy, the recent work [45, 48] took a competitive approach and constructed estimators whose
performances are adaptive to the simplicity of the underlying distributions. Specifically, for any
property in a broad class and every distribution in ∆X , the expected error of the proposed estimator
with a sample of size n/ log n is at most that of the empirical estimator with a sample of size n, pluses
a distribution-free vanishing function of n. These results not only cover S̃, C̃m, H , and D, for which
the log n-factor is optimal up to constants, but also apply to any non-symmetric additive property∑
x fx(px) where fx is 1-Lipschitz for all x ∈ X , such as the `1-distance to a given distribution.

It would be of interest to study the optimality of the PML approach under this formulation as well.
Readers interested in estimating non-symmetric properties may also find the paper [47] helpful.

A Proof of Lemma 3

The proof closely follows that of Proposition 6.19 in [83] (page 131–136), which we refer to as the
proposition’s proof. Note that in the work [83], the definitions of k and n are swapped, i.e., k stands
for the sample size, and n denotes the alphabet size. For consistency, we still keep our notation.

Recall that we set tn := 2n−c1 log n and α ∈ (0, 1), and define

βi := (1− e−tnαi)f
(

(i+ 1)α

n

)
n

(i+ 1)α
+

i∑
`=0

z`(1− tn)`α`(1− α)i−`
(
i

`

)
.
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for any i ≤ n, and βi := βn for i > n. Let w(i) denote the first quantity on the right-hand side, and
w := (w(0), w(1), . . .) be the corresponding vector. Similarly, let z̃α(i) denote the second quantity
on the right-hand side, and z̃α be the corresponding vector. Assume that v ≤ log2 n.

First part of the proposition’s proof remains unchanged, which corresponds to the content from
page 131 to the second last paragraph on page 132, showing that

√
α ‖z̃α‖2 = O(nαc2+(1−α)c1 · log3 n).

The assumption that α ∈ [1/100, 1) implies
√
α ≥ 1/10, and hence we have |z̃α(i)| ≤ ‖z̃α‖2 =

O(nαc2+(1−α)c1 · log3 n). Recall that for lemma 2 to hold, the coefficients βi must satisfy the
following two conditions,

1. |ε(y)| ≤ a′ + b′/y,

2. |β?j − β?` | ≤ c′
√
j/n for any j and ` such that |j − `| ≤

√
j log n,

where ε(y) := f(y)/y − e−ny
∑
i≥0 βi · (ny)i/i!, and β?i := βi−1 · i/n, ∀i ≥ 1, and β?0 := 0.

We first consider the second condition and find a proper parameter c′.

Our objective is to find c′ > 0 such that c′ >
√
n/j |β?j − β?` |. By the triangle inequality,√

n

j
|β?j − β?` | ≤

√
n

j

∣∣∣∣ jn z̃α(j − 1)− `

n
z̃α(`− 1)

∣∣∣∣+

√
n

j

∣∣∣∣ jnw(j − 1)− `

n
w(`− 1)

∣∣∣∣
We bound the two quantities on the right-hand side separately and consider two cases for each.
If both j and ` are at most 400nc1 , then√
n

j

∣∣∣∣ jn z̃α(j − 1)− `

n
z̃α(`− 1)

∣∣∣∣ ≤ O(nc1/2−1/2) ·max
i
|zα(i)| ≤ O(nαc2+(3/2−α)c1−1/2 log3 n).

Recall that |z`| ≤ v · nc2 ,∀` ≥ 0. If one of j and ` is larger than 400nc1 , say j > 400nc1 , then√
n

j

∣∣∣∣ jn z̃α(j − 1)

∣∣∣∣ ≤
√
j

n

j−1∑
`=0

|z`|(1− tn)`α`(1− α)j−1−`
(
j − 1

`

)

≤
√
jnc2−1/2(log2 n)

j−1∑
`=0

(1− tn)`α`(1− α)j−1−`
(
j − 1

`

)
=
√
jnc2−1/2(log2 n)(1− tnα)j−1

≤
√
jnc2−1/2(log2 n)(1− log n/(50nc1))400nc1

≤
√
jnc2−1/2(log2 n)n−8.

For j < 2n2, the last quantity is at most n−1. For j > 2n2, we have ` > n2 and hence√
n

j

∣∣∣∣ jn z̃α(j − 1)− `

n
z̃α(`− 1)

∣∣∣∣ =

√
n

j
|j − `| z̃α(n− 1) ≤

√
n(log n)n−1 = (log n)n−1/2.

Similarly, we can bound the other quantity, i.e.,√
n

j

∣∣∣∣ jnw(j − 1)− `

n
w(`− 1)

∣∣∣∣ =

√
n

α2j

∣∣∣∣(1− e−tnα(j−1))f

(
jα

n

)
− (1− e−tnα(`−1))f

(
`α

n

)∣∣∣∣ .
Since f (the property) is 1-Lipschitz on (∆X , R) and f(p) = 0 if p(x) = 1 for some x ∈ X , one
can verify that |f(x)| ≤ x| log x| ≤ e−1 and |f(x)/x− f(y)/y| ≤ | log(x/y)| for x, y ∈ [0, 1] (the
corresponding real function). We consider two cases and bound the quantity of interest. If j ≥

√
n,√

n

α2j

∣∣∣∣(1− e−tnα(j−1))f

(
jα

n

)∣∣∣∣ ≤√ n

α2j

∣∣∣∣f (jαn
)∣∣∣∣ ≤√ n

α2j

jα

n
log

(
jα

n

)
≤ O(n−1/4 log n).
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The same bound also applies to the other term where j is replaced by `. If j >
√
n, then e−tnα(j−1) ≤

exp (−2α(log n)n1/2−c1) = O(n−2). Analogously, the same upper bound holds for the other term
e−tnα(`−1). Hence, we ignore these two terms and consider only√

n

α2j

∣∣∣∣f (jαn
)
− f

(
`α

n

)∣∣∣∣ ≤
√
j

n

∣∣∣∣ njαf
(
jα

n

)
− n

`α
f

(
`α

n

)∣∣∣∣+

√
j

n

∣∣∣∣ njα − n

`α

∣∣∣∣ f (`αn
)

≤
√
j

n

∣∣∣∣log
j

`

∣∣∣∣+

√
j

n

∣∣∣∣ njα − n

`α

∣∣∣∣ f (`αn
)

≤
√
j

n

|j − `|
j

+

√
jn

α

|j − `|
j`

f

(
`α

n

)
≤
√
j

n

|j − `|
j

+

√
j

n

|j − `|
j

∣∣∣∣log

(
`α

n

)∣∣∣∣
≤ log n√

n
+

log n

n

∣∣∣∣log

(
`α

n

)∣∣∣∣
= O(n−1/2 log n).

By the assumption that αc2 + (3/2 − α)c1 ≤ 1/4, we have O(nαc2+(3/2−α)c1−1/2 log3 n) =
O(n−1/4 log3 n). Hence, we can set the latter quantity to be c′. The above derivations also show that

|w(i)| =
∣∣∣∣(1− e−tnαi)f ( (i+ 1)α

n

)
n

(i+ 1)α

∣∣∣∣ ≤ ∣∣∣∣log

(
(i+ 1)α

n

)∣∣∣∣ = O(log n).

Together with βi = w(i) + z̃α(i) and |z̃α(i)| = O(nαc2+(1−α)c1 · log3 n), this inequality implies

|βi| ≤ O(nαc2+(1−α)c1 log3 n).

It remains to analyze the first condition of Lemma 2 and find proper values for a′ and b′. For this
part, the corresponding proof in [83] also holds for α ∈ [1/100, 1/2] (page 134 to the second last
paragraph on page 135), hence no change is needed. One thing to note is that 1/α and 1/

√
α are

both O(1). For some a′′, b′′ ≥ 0 such that a′′ + b′′k ≤ v, we can set a′ = a′′ +O(n−c1/2 log2 n)
and b′ = b′′(1 +O(n−c1 log n)). The proof of Lemma 3 is complete.
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