
Appendices

A Detailed descriptions of Park environments

We describe the details of each system environment in Park. Formulating the MDP is an important,
problem-specific step for applying RL to systems. Our guiding principle is to provide the RL agent
with all the information and actions available to existing baselines schemes in that environment, such
that the agent could at least express existing human-engineered policies. In most cases, the MDP
formulations are straightforward and self-explanatory. However, some are more subtle (e.g., the Spark
scheduling and TF device placement), and in these cases we adopt the formulations from prior work.
In the following, each description is structured to follow the problem background, MDP abstraction
of the system interaction, the existing system-specific baseline heuristic approach, and how RL is
suitable for the system problem.

Adaptive video streaming. The volume of video streaming has reached almost 60% of all the
Internet traffic [87]. Streaming video over variable-bandwidth networks (e.g., cellular network)
requires the client to adapt the video bitrate to optimize the user experience. In industrial DASH
standard [4], videos are divided into multiple chunks, each of which represents a few seconds of the
overall video playback. Each chunk is encoded at several discrete bitrates, where a higher bitrate
implies a higher resolution and thus a larger chunk size. For this problem, each MDP episode is a
video playback with a particular network trace (i.e., a time series of network throughput). At each step,
the agent observes the past network throughput measurement, the current video buffer size, and the
remaining portion of the video. The action is the bitrate for the next video chunk. The objective is to
maximize the video resolution and minimize the stall (which occurs when download time of a chunk
is larger than the current buffer size) and the reward is structured to be a linear combination of selected
bitrate and the stall when downloading the corresponding chunk. Prior adaptive bitrate approaches
construct heuristic based on the buffer and network observations. For example, a control theoretic
based approach [105] conservatively estimates the network bandwidth and use model predictive
control to choose the optimal bitrate over the near-term horizon. In practice, the network condition is
hard to model and estimate, making a fixed, hard-coded model-based approach insufficient to adapt
to changing network conditions [5, 24, 62].

Spark cluster job scheduling. Efficient utilization of expensive compute clusters matters for en-
terprises: even small improvements in utilization can save millions of dollars at scale [12]. Cluster
schedulers are key to realizing these savings. A good scheduling policy packs work tightly to reduce
fragmentation [98], prioritizes jobs according to high-level metrics such as user-perceived latency [99],
and avoids inefficient configurations [30]. Since hand-tuning scheduling policies is uneconomic
for many organizations, there has been a surge of interest in using RL to generate highly-efficient
scheduling policies automatically [22, 61, 63].

We build our scheduling system on top of the Spark cluster manager [107]. Each Spark job is
represented as a DAG of computation stages, which contains identical tasks that can run in parallel.
The scheduler maps executors (atomic computation units) to the stages of each job. We modify
Spark’s scheduler to consult an external agent at each scheduling event (i.e., each MDP step). A
scheduling event occurs when (1) a stage runs out of tasks (i.e., needs no more executors), (2) a
stage completes, unlocking the tasks of one or more of its children, or (3) a new job arrives in the
system. At each step, the cluster has some available executors and some runnable stages from pending
jobs. Thus, the scheduling agent observes (1) the number of tasks remaining in the stage, (2) the
average task duration, (3) the number of executors currently working on the stage, (4) the number of
available executors, and (5) whether available executors are local to the job. This set of information is
embedded as features on each node of the job DAGs. The scheduling action is two-dimensional—(1)
which node to work on next and (2) how many executors to assign to the node. We structure the
reward at step k as rk = −(tk − tk−1)Jk, where Jk is the number of jobs in the system during the
physical time interval [tk−1, tk). Sum of such rewards penalize the agent in order to minimize the
average job completion time. Park platform supports replaying an one-month industrial workload
trace from Alibaba.

SQL Database query optimization. Queries in relational databases often involve retrieving data
from multiple tables. The standard abstraction for combining data is through a sequential process that
joins entries from two tables based on the provided filters (e.g., actor JOIN country ON actor.country_id

14



= country.id) at each step. The most important factor that affects the query execution time is the order
of joining the tables [51]. While any ordering leads to the same final result, an efficient ordering keeps
the intermediate results small, which minimizes the number of entries to read and process. Finding
the optimal ordering remains an active research area, because (1) the total number of orderings is
exponential in the number of filters and (2) the size of intermediate results depends on hard-to-model
relationship among the filters. There have been a few attempts to learn a query optimizer using
RL [51, 66, 81].

Building the sequence of joins naturally fits in the MDP formulation. At each step, the agent observes
the remaining tables to join as a query graph, where each node represents a table and the edges
represent the join filters. The agent then decides which edge to pick (corresponds to a particular join)
as an action. Park supports rewards from a cost model (a join cost estimate provided by commercial
engines) and the final physical duration. In our implementation, we use Calcite [14] as the query
optimization framework, which can serve as a connector to any database management system (e.g.,
Postgres [83]).

Network congestion control. Congestion control has been a perennial problem in networking for
three decades [47], and governs when hosts should transmit packets. Transmitting packets too
frequently leads to congestion collapse (affecting all users) [72] while over-conservative transmission
schemes under-utilize the available network bandwidth. Good congestion control algorithms achieve
high throughput and low delay while competing fairly for network bandwidth with other flows in the
network. Various congestion control algorithms, including learning-based approaches [27, 48, 104],
optimize for different objectives in this design space. It remains an open research question to design
an end-to-end congestion control scheme that can automatically adapt to high-level objectives under
different network condition [89].

We implement this enviroment using CCP [74], a platform for expressing congestion control algo-
rithms in user-space. At each step, the agent observes the network state, including the throughput
and delay.1 The action is a tuple of pacing rate and congestion window. The pacing rate controls
the inter-packet send time, while the congestion window limits the total number of packets in-flight
(sent but not acknowledged). We set our (configurable) action interval at 10 ms (suitable for typical
Internet delays). Our reward function is adopted from the Copa [8] algorithm: log(throughput) -
log(delay)/2 - log(lost packets). This environment supports different network traces, from
cellular networks to fixed-bandwidth links (emulated by Mahimahi [75]).

Network active queue management. In network routers and switches, active queue management
(AQM) is a fundamental component that controls the queue size [10]. It monitors the queuing
dynamics and decides to drop packets when the queue gets close to full [31]. The goal for AQM is
to achieve high throughput and low delay for the packets passing through the queue. Designing a
strong AQM policy that achieves this high-level objective for a wide range of network condition can
be complex. Standard methods — such as PIE [42], based on PID control [9] — construct a policy for
a low-level goal that maintains the queue size at a certain level. In our setting, the agent observes
the queue size and network throughput measurement; it then sets the packet drop probability. The
action interval is configurable (default interval 10 ms; can also go down to per packet level control).
The reward can be configured as a penalty for the difference between observed and target queue
size, or a weighted combination of network throughput and delay. Similar to the congestion control
environment, we emulate the network dynamics using Mahimahi with a wide range of real-world
network traces.

Tensorflow device placement. Large scale machine learning applications use distributed training
environments, where neural networks are split across multiple GPUs and CPUs [69]. A key challenge
for distributed training is how to split a large model across heterogeneous devices to speed up training.
Determining an optimal device placement is challenging and involves intricate planning, particularly
as neural networks grow in complexity and approach device memory limits [68]. Motivated by these
challenges, several learning based approaches have been proposed [3, 32, 68, 69].

We build our placement system on top of Tensorflow [1]. Each model is represented as a computational
graph of neural network operations. A placement scheme maps nodes to the available devices. We
formulate the MDP as an iterative process of placement improvement steps [3]. At each step, the
agent observes an existing placement graph and tries to improve its runtime by updating the placement

1See Table 2 of [74] for full list.

15



at a particular node. The state observation is the computation graph of a Tensorflow model, with
features attached to each node which include (1) estimated node run time (2) output tensor size (3)
current device placement (4) flag of the “current” node (5) flag if previously placed. The action
places the current node on a device. Since the goal is to learn a policy that can iteratively improve
placements, the reward ri = −(ti − ti−1), where ti is the runtime of the placement at step i. Park
supports optimizing placements for graphs with hundreds of nodes across a configurable number of
devices. To speedup training, Park also provides a simulator for the runtime of a device placement
(based on measurements from prior executions, see Appendix A4 in [3] for details).

Circuits Design. Analog integrated circuits often involve complex non-linear models relating the
transistor sizes and the performance metrics. Common practice for optimizing analog circuits relies
on expensive simulations and tedious manual tuning from human experts [85]. Prior work has applied
Bayesian optimization [59] and evolution strategy [56] as general black-box parameter tuning tools
to optimize the analog circuit design pipeline. [101, 102] recently proposed to use RL to end-to-end
optimize the circuit performance.

Park supports transistor-level analog circuit design [85], where the circuit schematic is fixed and the
agent decides the component parameters. For each schematic, the agent observes a circuit graph
where each node contains the component ID, type (e.g., NMOS or PMOS) and static parameters (e.g.,
Vth0). The corresponding action is also a graph in which each node must specify the transistor size,
capacitance and resistance. Then, the underlying HSPICE circuit simulator [95] returns a configurable
combination of bandwidth, power and gain as a reward. We refer the readers to [102] for more details.

CDN memory caching. In today’s Internet, the majority of content is served by Content Delivery
Networks (CDNs) [77]. CDNs enable fast content delivery by caching content in servers near the
users. To reduce the content retrieval cost from a data center, CDNs aim to maximize the fraction of
bytes served locally from the cache, known as the byte hit ratio (BHR) [40]. The admission control
problem of CDN caching fits naturally to the MDP setting. At each step when an uncached object
arrives in the CDN, the agent observes the object size, the time since the previous visit (if available)
and the remaining CDN cache size. The agent then takes an action to admit or drop the uncached
object. To maximize BHR, the reward at each step is the total byte hits since the last action (i.e.,
counting the size of cached objects served). Coupled with the admission policy is an eviction policy
that decides which cached object to remove in order to make room for a newly admitted object. By
default, our environment uses a fixed least-recently-used policy for object eviction. The environment
also supports training an eviction agent together with the admission agent (e.g., via multi-agent RL).
Our setup includes a real world trace with 500 million requests collected from a public CDN serving
top-ten US websites [15].

Multi-dim database indexing. Many analytic queries to a database involve filter predicates (e.g.,
for query “SELECT COUNT(*) FROM TransactionTable WHERE state = CA AND day1 ≤ time ≤ day2”,
the filters are over state and time). Key to efficiently answering such range queries is the database
index — the layout in which the underlying data is organized (e.g., sorted by a particular dimension).
Many databases choose to index over multiple dimensions because analytics queries typically involve
filters over multiple attributes [46, 106]. A good index is able to quickly return the query result by
minimizing the number of points it scans. We found empirically that a well-chosen index can achieve
query performance three orders of magnitude faster than one that is randomly selected. In practice,
choosing a good index depends on the underlying data distribution and query workload at runtime;
therefore, many current approaches rely on routine manual tuning by database administrators.

We consider the problem of selecting a multi-dimensional index from an RL perspective. We target
grid-based indexes, where the agent is responsible for determining the size of the cells in the grid.
We found that this type of index is competitive with traditional data structures, while offering more
learnable parameters. At each step of our MDP formulation, the database receives a new set queries
to run, and the agent has the opportunity to modify the grid layout. The observation consists of both
the dataset (i.e., list of records in the database) and queries (i.e., a list of range boundaries for each
attribute) that have arrived since the previous action. The environment then (1) samples a workload
from a distribution that changes (slowly) over time, (2) uses it to evaluate the agent-generated index
on a real column-oriented datastore, and (3) reports the query throughput (i.e., queries per second) as
the agent’s reward. Our environment uses a real dataset collected from Open Street Maps [80] with
105 million records, along with queries sampled from a set of relevant business analytic questions. In

16



this setup, there are more than 7 trillion possible grid layouts that the agent must encode in its action
space.

Account region assignment. Social network websites reduce access latency by storing data on
servers near their users. For each user-uploaded piece of content, the service providers must decide
which region to serve the content from. These decisions have a multitude of tradeoffs: storing a piece
of content in many regions incurs increased storage cost (e.g., from a cloud service provider), and
storing a piece of content in the “wrong” region can substantially increase access latency, diminishing
the end user’s experience [6].

To faithfully simulate this effect, our environment includes a real trace of one million posts created
on a medium-sized social network over eight months from eight globally distributed regions. Park
supports two variants of the assignment task. First, the agent chooses a region assignment when a
new piece of content is initially created. At each content creation step, the observation includes the
language, outgoing links, and posting user (anonymized) ID. The action is one of the eight regions to
store the content. The reward is based on the fraction of accesses from within the assigned region.
This variant can be viewed as a contextual multi-armed bandit problem [57]. The second variant is
similar to the first one, except that the agent has the opportunity to migrate any content to any region
at the end of each 24 hour time period. The action space spans all possible mappings between the
users and the regions. In this case, the agent must balance the cost of a migration against the potential
decrease in access latency.

Server load balancing. In this simulated environment, an RL agent balances jobs over multiple
heterogeneous servers to minimize the average job completion time. Jobs have a varying size that
we pick from a Pareto distribution [36] with shape 1.5 and scale 100. The job arrival process is
Poisson with an inter-arrival rate of 55. The number of servers and their service rates are configurable,
resulting in different amounts of system load. For example, the default setting has 10 servers with
processing rates ranging linearly from 0.15 to 1.05. In this setting, the load is 90%. The problem of
minimizing average job completion time on servers with heterogeneous processing rates does not
have a closed-form solution [39]; a widely-used heuristic is to join the shortest queue [25]. However,
understanding the workload pattern can give a better policy; for example, one strategy is to dedicate
some servers for small jobs to allow them finish quickly even if many large jobs arrive [29]. In this
environment, upon each job arrival, the observed state is a vector (j, s1, s2, ..., sk), where j is the
incoming job size and sk is the size of queue k. The action a ∈ {1, 2, ..., k} schedules the incoming
job to a specific queue. The reward ri =

∑
n [min(ti, cn)− ti−1], where ti is the time at step i and

cn is the completion time of active job n.

Switch scheduling. Switch scheduling poses a matching problem that transfers packets from the
incoming ports to the outgoing ports [60, 67, 88]. This abstracted model is ubiquitous in many real
world systems, such as datacenter routers [35] and traffic junctions [44]. At each step, the scheduling
agent observes a matrix of queue lengths, with element (i, j) indicating the packet queue from input
port i to output port j. The matching action is bijective — no two incoming packets shall pass through
the same output ports. Notice that in a switch with n input/output ports, the action space is the
n! possible bijection matchings.2 After each scheduling round, one packet is transferred per each
input/output port pair. The goal is to maximize switch throughput while minimizing packet delay.
The optimal scheduling policy for this problem is unknown and is conjectured to depend on the
underlying traffic pattern [88]. For example, the max weight matching policy empirically performs
well only under high load [60]. Adapting the scheduling policy under dynamics load to optimize an
arbitrary combination of throughput and delay is challenging.

B Experiment setup

This section details the experiment setup for benchmarking existing RL algorithms in Park. We show
the result of the benchmarks in Figure 4.

B.1 RL algorithms

We follow the standard implementations of existing RL algorithms in OpenAI baselines [26]. We
performed a coarse grid search for finding a good set of hyperparameters. Specifically, A2C [71]

2Typical routers can have 144 ports [37].

17



uses separated policy and value network and it has training batch of size 64. For discrete-action
environments, A2C explores using an entropy term in policy loss [71, 103], with the entropy factor
linearly decay from 1 to 0.01 in 10,000 iterations. For continuous-action environments, the policy
network outputs the mean of a Gaussian distribution. The variance is controlled by an external factor
that decays according to the same schedule as the discrete case. In Policy Gradient (PG) [94], we
rollout 16 parallel trajectory and we use a simple time-based baseline averaging the return across the
trajectories. DQN [70] employs a replay memory with size 50,000 and updates the target Q network
every 100 steps. DDPG [55] uses a small replay memory with 2048 objects and updates the target
networks every 1000 steps.

For feed forward networks, we use simple fully connected architecture with two hidden layers of
16 and 32 neurons. For recurrent neural networks, we use LSTM with 4 hidden layers. We use
graph convolution neural networks (GCNs) [50] to encode the states that involve a graph structure.
In particular, we modify the message passing kernel in Spark scheduling and Tensorflow device
placement problems. The kernel is ev ← g

[∑
u∈ξ(v) f(eu)

]
+ ev , where e is the feature vector on

each node, f and g are non-linear transformatio implemented by feed forward networks, ξ(·) denotes
the child nodes. When updating the neural network parameters, we use Adam [23] as the optimizer.
The non-linear activation function is Leaky-ReLU [73]. We do not observe significant performance
change when changing the hyperparameter settings.

B.2 Environment configuration and comparing baselines

Adaptive video streaming. We train and test the A2C agent on the simulated version of the video
streaming environment since the interaction with real environment is slow. However, the learned
policy can generalize to a real video environment if the underlying network conditions are similar [62].
We compare the learned A2C policy against two standard schemes. The “buffer-based” heuristic
switches the bitrates purely based on the current playback buffer size [43]. “robustMPC” uses a model
predictive control framework to decide the bitrate based on a combination of the current buffer size
and a conservative estimate of the future network throughput [105]. We use the default parameters in
the baseline algorithm from their original paper [105].

Spark cluster job scheduling. The benchmark experiment is on a cluster of 50 executors with a
batch of 20 Spark jobs from the TPC-H dataset [96]. During training in simulation, we sample 20
jobs uniformly at random from all available jobs. We test on a real cluster with the same setup and
unseen job combinations. The “fair” scheduler gives each job an equal fair share of the executors
and round-robins over tasks from runnable stages to drain all branches concurrently. The “optimal
weighted fair” scheduler is carefully-tuned to give each job Tαi /

∑
i T

α
i of the total executors, where

Ti is the total work of each job i and α is a tuning factor. Notice that α = 0 reduces to a simple
fair scheme and α = 1 reduces to a weighted fair scheme based on job size. We sweep through
α ∈ {−2,−1.9, ..., 2} for the optimal factor.

SQL Database query optimization. We train and test a DQN agent on a cost model implemented
in the open source query optimization framework, Calcite. This provides an estimate of the number
of records that would have to be processed when we choose an edge in the query graph (apply a Join),
and how long it would take to process them based on the hardware characteristics of the system. The
cost model is based on the non-linear cost model (‘CM2’) described by [51], where the non-linearity
models the random access memory constraints of a physical system. The training set, and test set,
are generated from 113 queries in the Join Order Benchmark [53], with a 50% train-test split. We
use the following baselines from traditional database research to compare against the RL approach.
(1) Exhaustive Search: For a given cost model, we can find the optimal policy using a dynamic
programming algorithm (Exhaustive Search) and all our results are presented relative to this (−1.00
means the plan was as good as Exhaustive Search plan). (2) Left Deep Search: Is a popular baseline
in practice since it finds the the optimal plan in a smaller search space (only considering join plans
that form a left deep tree [51]) making it computationally much faster than Exhaustive Search.

Network congestion control. We train and test the A2C agent in the centralized control setting
(a single TCP connection) on a simple single-hop topology. We used a 48Mbps fixed-bandwidth
bottleneck link with 50ms round-trip latency and a drop-tail buffer of 400 packets (2 bandwidth-delay
products of maximum size packets) in each direction. For comparison, we run TCP Vegas [18]. Vegas
attempts to maintain a small number of packets (by default, around 3) in the bottleneck queue, which

18



results in an optimal outcome (minimal delay and packet loss, maximal throughput) for a single-hop
topology without any competing traffic. “Confined search space” means we confine the action space
of A2C agent to be only within 0.2 and 2× of the average action output from Vegas.

Network active queue management. We train and test the agent on a 10Mbps fixed-bandwidth
bottleneck link with 100ms round-trip latency where there are 5 competing TCP flows. The agent
examines the state and takes an action every 50ms. We configure the reward to be the current distance
from the target queuing delay (20ms). As a comparison, we run “PIE” [42], a classic PID control
scheme, with the same target queuing delay.

Tensorflow device placement. We consider device placement optimization for a neural machine
translation (NMT) model [11] over two devices (GPUs). This is a popular language translation model
that has an LSTM-based encoder-decoder and attention architecture to translate a source sequence
to a target sequence. The training is done over a reliable simulator [3] to quickly obtain run-time
estimates given a placement configuration. In the “Single GPU” heuristic, all ops are co-located on
the same device, which is optimal for models that can fit in a single device and which do not have
significant parallelism in their structure. Scotch [82] is a graph partitioning based heuristic that takes
as input both the computational cost of each node and the communication cost along each edge. It
then outputs a placement that minimizes total communication cost, while load balancing computation
across the devices to within a specified tolerance. The human expert places each LSTM layer on
a different device as recommended by Wu et al. [11]. PG-LSTM [69] embeds the graph model as
a sequence of node features, and uses an LSTM to output the corresponding placement for each
node in the sequence. The PG-GCN [3] on the other hand, uses a graph neural network [20, 38] for
embedding the model, and represents the policy as performing iterative placement improvements
rather than outputting a placement for all the nodes in one shot.

Circuits Design. The benchmark trains and tests on a fixed three-stage transimpedance amplifier
analog circuit. “BO” is a simple Bayesian optimization approach to tune the model parameter.
“MACE” is a prior work based on acquisition function ensemble [58]. “ES” stands for evolutional
strategy approach [86]. “NG-RL” is the short of non-grach Reinforcement Learning in which we do
not involve graph informantion in the optimzation loop. “GCN-RL” is the Reinforcement Learning
with graph convolutional neural networks. From the results, we can observe that “GCN-RL” could
consistently achieve higher Figure of Merits (FoM) value than other methods. Comparing to “NG-
RL”, “GCN-RL” has higher FoM value and also faster convergence speed, which indicates the critical
role of the graph information.

CDN memory caching. We train and test A2C on several synthetic traces (10000 requests long)
produced by an open-source trace generator [16]. We consider a small cache size of 1024KB for
the experiment. The LRU heuristic always admits requests, with stale objects evicted based on the
last recently used (LRU) policy. Offline optimal uses dynamic programming to compute the best
sequence of actions, with the knowledge of future object arrivals.

Multi-dim database indexing. We train and test on a real in-memory column-store, using a dataset
from Open Street Maps [80], comprised of 105 million points, each with 6 attributes. The dataset
is unchanged across all steps. The query workload shifts continuously between different query
distributions, completing a full shift to a new distribution every 20 steps. At each step, the agent
observes the previous workload and produces a parametrization of the grid index that is tested on
the next workload. We use a batch size of 1, and the environment is terminal at every state (i.e., the
discount factor γ is 0).

We heavily restrict the state and action space to make this environment tractable. The agent does not
observe the underlying data, since the dataset does not change; it observes only the query workload.
Each workload consists of 10 queries, each with two 6-dimensional points to specify the query
rectangle, producing a 120-dimensional observation space. Each query coordinate is scaled to [0, 1],
relative to the range of the corresponding attribute in the OSM dataset. If an attribute is not present in
the range filter, the query coordinates for that dimension are 0 and 1. For the agent’s action, we fix an
ordering of dimensions that we have found to work well empirically; the agent is responsible solely
for determining the number of columns along each dimension in the grid, which is a 4-dimensional
action space. The baseline is a fixed layout that is run on the same workloads as the agent, tuned
roughly by hand to produce low running times on the entire sequence of workloads. The baseline
layout uses the same dimension ordering that was fixed for the agent and is not re-optimized for each
new workload.

19



Account region assignment. The setup for this experiment follows the first variant of the assignment
task outlined in Appendix A, in which the agent has to assign newly created accounts to one of eight
regions. Local heuristic is a simple baseline that assigns an account directly to the region it was
created in. The Thompson sampling [21] approach uses a random forest model comprising of 100
trees. We train and test DQN over the real trace of one million posts included with Park.

Server load balancing. In this experiment we consider the setup as described in Appendix A, with
10 heterogenous servers. The A2C [71] learning approach is elaborated in Appendix B.1; ‘grad clip’
refers to gradient clipping, in which we normalize the policy gradient by its l2 norm when the l2
norm is over 10. The greedy heuristic assigns each incoming job to that queue having the lowest
queue size to processing rate ratio.

Switch scheduling. We consider scheduling in a crossbar switch (Appendix A) with 3 input ports
and 3 output ports. Time is discretized for simplicity. Traffic between each port pair (i, j) is generated
according to a Bernoulli process, with rate given by the (i, j)-th entry of a random bistochastic traffic
matrix. The load of the system (i.e., the row and column sums of the traffic matrix) is set to 90%.
MWM, or Max-Weight-Matching [88], is a well-known scheduling policy that forwards packets at
each time-step according to the maximum weighted matching on the bipartite graph between the set
of input and output ports. The weight of each edge (i, j) on the bipartite graph is set equal to the size
of the virtual-output queue (VOQ) j at input port i [88]. For a parameter α > 0, MWM-α refers to
an analogous policy where the weight of edge (i, j) on the bipartite graph is set equal to the size of
VOQ j at input port i raised to the power α.

20


	Introduction
	Sequential Decision Making Problems in Computer Systems
	RL for Systems Characteristics and Challenges
	State-action Space
	Decision Process
	Simulation-Reality Gap
	Understandability over Existing Heuristics

	The Park Platform
	Benchmark Experiments
	Conclusion
	Detailed descriptions of Park environments
	Experiment setup
	RL algorithms
	Environment configuration and comparing baselines


