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Abstract

When optimizing over-parameterized models, such as deep neural networks, a
large set of parameters can achieve zero training error. In such cases, the choice of
the optimization algorithm and its respective hyper-parameters introduces biases
that will lead to convergence to specific minimizers of the objective. Consequently,
this choice can be considered as an implicit regularization for the training of
over-parametrized models. In this work, we push this idea further by studying
the discrete gradient dynamics of the training of a two-layer linear network with
the least-squares loss. Using a time rescaling, we show that, with a vanishing
initialization and a small enough step size, this dynamics sequentially learns the
solutions of a reduced-rank regression with a gradually increasing rank.

1 Introduction

When optimizing over-parameterized models, such as deep neural networks, a large set of parameters
leads to a zero training error. However they lead to different values for the test error and thus have
distinct generalization properties. More specifically, Neyshabur [2017, Part II] argues that the choice
of the optimization algorithm (and its respective hyperparameters) provides an implicit regularization
with respect to its geometry: it biases the training, finding a particular minimizer of the objective.

In this work, we use the same setting as Saxe et al. [2018]: a regression problem with least-squares
loss on a multi-dimensional output. Our prediction is made either by a linear model or by a two-layer
linear neural network [Saxe et al., 2018]. We extend their work which covered the continuous gradient
dynamics, to weaker assumptions as well as analyze the behavior of the discrete gradient updates

We show that with a vanishing initialization and a small enough step-size, the gradient dynamics of a
two-layer linear neural network sequentially learns components that can be ranked according to a
hierarchical structure whereas the gradient dynamics induced by the same regression problem but
with a linear prediction model instead learns these components simultaneously, missing this notion of
hierarchy between components. The path followed by the two-layer formulation actually corresponds
to successively solving the initial regression problem with a growing low rank constraint which is
also know as reduced-rank regression [Izenman, 1975]. Note that this notion of path followed by
the dynamics of a whole network is different from the notion of path introduced by Neyshabur et al.
[2015a] which corresponds to a path followed inside a fixed network, i.e., one corresponds to training
dynamics whereas the other corresponds to the propagation of information inside a network.

To sum-up, in our framework, the path followed by the gradient dynamics of a two-layer linear network
provides an implicit regularization that may lead to potentially better generalization properties. Our
contributions are the following:
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• Under some assumptions (see Assumption 1), we prove that both the discrete and continuous
gradient dynamics sequentially learn the solutions of a gradually less regularized version of
reduced-rank regression (Corollary 2 and 3). Among the close related work, such result on
implicit regularization regarding discrete dynamics is novel. For the continuous case, we
weaken the standard commutativity assumption using perturbation analysis.

• We experimentally verify the reasonableness of our assumption and observe improvements in
terms of generalization (matrix reconstruction in our case) using the gradient dynamics of the
two-layer linear network when compared against the linear model.

1.1 Related Work

The implicit regularization provided by the choice of the optimization algorithm has recently become
an active area of research in machine learning, putting lot of interest on the behavior of gradient
descent on deep over-parametrized models [Neyshabur et al., 2015b, 2017, Zhang et al., 2017].

Several works show that gradient descent on unregularized problems actually finds a minimum norm
solution with respect to a particular norm that drastically depends on the problem of interest. Soudry
et al. [2018] look at a logistic regression problem and show that the predictor does converge to the max-
margin solution. A similar idea has been developed in the context of matrix factorization [Gunasekar
et al., 2017]. Under the assumption that the observation matrices commute, they prove that gradient
descent on this non-convex problem finds the minimum nuclear norm solution of the reconstruction
problem, they also conjecture that this result would still hold without the commutativity assumption.
This conjecture has been later partially solved by Li et al. [2018] under mild assumptions (namely
the restricted isometry property). This work has some similarities with ours, since both focus on a
least-squares regression problem over matrices with a form of matrix factorization that induces a
non convex landscape. Their problem is more general than ours (see Uschmajew and Vandereycken
[2018] for an even more general setting) but they are showing a result of a different kind from ours:
they focus on the properties of the limit solution the continuous dynamics whereas we show some
properties on the whole dynamics (continuous and discrete), proving that it actually visits points
during the optimization that may provide good generalization. Interestingly, both results actually
share common assumptions such as a commutativity assumption (which is less restrictive in our case
since it is always true in some realistic settings such as linear autoencoders), vanishing initialization
and a small enough step size.

Nar and Sastry [2018] also analyzed the gradient descent algorithm on a least-squares linear network
model as a discrete time dynamical system, and derived certain necessary (but not sufficient) properties
of the local optima that the algorithm can converge to with a non-vanishing step size. In this work,
instead of looking at the properties of the limit solutions, we focus on the path followed by the
gradient dynamics and precisely caracterize the weights learned along this path.

Combes et al. [2018] studied the continuous dynamics of some non-linear networks under relatively
strong assumptions such as the linear separability of the data. Conversely, in this work, we do not
make such separability assumption on the data but focus on linear networks.

Finally, Gunasekar et al. [2018] compared the implicit regularization provided by gradient descent
in deep linear convolutional and fully connected networks. They show that the solution found by
gradient descent is the minimum norm for both networks but according to a different norm. In this
work, the fact that gradient descent finds the minimum norm solution is almost straightforward using
standard results on least-squares. But the path followed by the gradient dynamics reveals interesting
properties for generalization. As developed earlier, instead of focusing on the properties of the
solution found by gradient descent, our goal is to study the path followed by the discrete gradient
dynamics in the case of a two-layer linear network.

Prior work [Saxe et al., 2013, 2014, Advani and Saxe, 2017, Saxe et al., 2018, Lampinen and Ganguli,
2019] studied the gradient dynamics of two-layer linear networks and proved a result similar to our
Thm. 2. We consider Saxe et al. [2018] as the closest related work, we re-use their notion of simple
deep linear neural network, that we call two-layer neural networks, and use some elements of their
proofs to extend their results. However, note that their work comes from a different perspective:
through a mathematical analysis of a simple non-linear dynamics, they intend to highlight continuous
dynamics of learning where one observes the sequential emergence of hierarchically structured
notions to explain the regularities in representation of human semantic knowledge. In this work, we
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are also considering a two-layer neural network but with an optimization perspective. We are able to
extend Saxe et al. [2018, Eq. 6 and 7] weakening the commutativity assumption considered in Saxe
et al. [2018] using perturbation analysis. In §4.1, we test to what extent our weaker assumption holds.
Our main contribution is to show a similar result on the discrete gradient dynamics, that is important
in our perspective since we aim to study the dynamics of gradient descent. This result cannot be
trivially extended from the result on the continuous dynamics. We provide details on the difficulties
of the proof in §3.2.

2 A Simple Deep Linear Model

In this work, we are interested in analyzing a least-squares model with multi-dimensional outputs.
Given a finite number n of inputs xi ∈ Rd , 1 ≤ i ≤ n we want to predict a multi-dimensional
outputs yi ∈ Rp , 1 ≤ i ≤ n with a deep linear network [Saxe et al., 2018, Gunasekar et al., 2018],

Deep linear model: ŷd(x) := W>
L · · ·W>

1 x , (1)

whereW1, . . . ,WL are learned through a MSE formulation with the least-squares loss f ,

(W ∗
1 , . . . ,W

∗
L) ∈ arg min

Wl∈Rrl−1×rl

1≤l≤L

1

2n
‖Y −XW1 · · ·WL‖22 =: f(W1, . . . ,WL) , (2)

where r0 = d, rl ∈ N , 1 ≤ l ≤ L− 1 and rL = p,X ∈ Rn×d and Y ∈ Rn×p are such that,

X> := (x1 · · · xn) and Y > := (y1 · · · yn) , (3)

are the design matrices of (xi)1≤i≤n and (yi)1≤i≤n. The deep linear model (1) is a L-layer deep
linear neural network where we see hl := Wl · · ·W1x for 1 ≤ l ≤ L− 1 as the lth hidden layer.
At first, since this deep linear network cannot represent more than a linear transformation, we could
think that there is no reason to use a deeper representation L = 1. However, in terms of learning flow,
we will see in §3 that for L = 2 this model has a completely different dynamics from L = 1.

Increasing L may induce a low rank constraint when r := min{rl : 1 ≤ l ≤ L− 1} < min(d, p).
In that case, (2) is equivalent to a reduced-rank regression,

W k,∗ ∈ arg min
W∈Rp×d

rank(W )≤r

1

2n

n∑
i=1

‖Y −XW ‖22 . (4)

These problems have explicit solutions depending onX and Y [Reinsel and Velu, 1998, Thm. 2.2].

Note that, in this work we are interested in the implicit regularization provided in the context of
over-parametrized models, i.e., when r > min(p, d). In that case,

{W1 · · ·WL : Wl ∈ Rr×l−1,rl , 1 ≤ l ≤ L} = Rp×d .

3 Gradient Dynamics as a Regularizer

In this section we would like to study the discrete dynamics of the gradient flow of (2), i.e.,

W
(t+1)
l = W

(t)
l − η∇Wl

f
(
W

(t)
[L]

)
W

(0)
l ∈ Rrl−1×rl , 1 ≤ l ≤ L , (5)

where we use the notationW (t)
[L] := (W

(t)
1 , . . . ,W

(t)
L ). The quantity η is usually called the step-size.

In order to get intuitions on the discrete dynamics we also consider its respective continuous version,

Ẇl(t) = −∇Wl
f
(
W[L](t)

)
Wl(0) ∈ Rrl−1×rl , 1 ≤ l ≤ L , (6)

where for 1 ≤ l ≤ L, Ẇl(t) is the temporal derivative of Wl(t). Note that there is no step-size in
the continuous time dynamics since it actually corresponds to the limit of (5) when η → 0. The
continuous dynamics may be more convenient to study because such differential equations may have
closed form solutions. In §3.1, we will see that under reasonable assumptions it is the case for (6).
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3.1 Continuous dynamics

Linear model: L = 1. We start with the study of the continuous linear model, its gradient is,

∇f(W ) = ΣxW −Σxy, (7)

where Σxy := 1
nX

>Y and Σx := 1
nX

>X . Thus,W (t) is the solution of the differential equation,

Ẇ (t) = Σxy −ΣxW (t) , W (0) = W0 . (8)

Proposition 1. For anyW0 ∈ Rd×p , the solution to the linear differential equation (8) is

W (t) = e−tΣx(W0 −Σ†xΣxy) + Σ†xΣxy , (9)

where Σ†x is the pseudoinverse of Σx.

This standard result on ODE is provided in §B.1. Note that whenW0 → 0 we have

W (t) →
W0→0

(Id − e−tΣx)Σ†xΣxy . (10)

Deep linear network: L ≥ 2. The study of the deep linear model is more challenging since for
L ≥ 2, the landscape of the objective function f is non-convex. The gradient flow of (2) is

∇fWl
(W[L]) = W>

1:l−1(ΣxW−Σxy)W>
l+1:L where Wi:j := Wi · · ·Wj , 1 ≤ l ≤ L , (11)

where we used the convention thatW1,0 = Id andWL+1,L = Ip. Thus (6) becomes

Ẇl(t) = W1:l−1(t)>(Σxy −ΣxW (t))Wl+1:L(t)> , Wl(0) ∈ Rd×p , 1 ≤ l ≤ L . (12)

We obtain a coupled differential equation (12) that is harder to solve than the previous linear
differential equation (8) due, at the same time, to its non-linear components and to the coupling
betweenWl , 1 ≤ l ≤ L. However, in the case L = 2, Saxe et al. [2018] managed to find an explicit
solution to this coupled differential equation under the assumption that “perceptual correlation is
minimal” (Σx = Id).2 In this work we extend Saxe et al. [2018, Eq. 7] (for L = 2) under weaker
assumptions. More precisely, we do not require the covariance matrix Σx to be the identity matrix.
Let (U ,V ,D) be the SVD of Σxy , our assumption is the following:
Assumption 1. There exist two orthogonal matricesU , V such that we have the joint decomposition,

Σx = U(Dx +B)U> and Σxy = UDxyV
> , (13)

whereB is such that ‖B‖2 ≤ ε andDx, Dxy are matrices only with diagonal coefficients. We note
σ1 ≥ · · · ≥ σrxy

> 0 the singular values of Σxy and λ1, . . . , λrx the diagonal entries ofDx.

Since two matrices commute if and only if they are co-diagonalizable [Horn et al., 1985, Thm. 1.3.21],
the quantity ε represent to what extend Σx and ΣxyΣ

>
xy do not commute. Before solving (12) under

Assump. 1, we describe some motivating examples where the quantity ε is small or zero:

• Linear autoencoder: If Y is set to X and L = 2, we recover a linear autoencoder:
x̂(x) = W>

2 W
>
1 x, where h := W>

1 x is the encoded representation of x,

ΣxyΣ
>
xy =

(
1
nX

>X
)2

= Σ2
x . Thus, B = 0 . (14)

Note that this linear autoencoder can also be interpreted as a form of principal component
analysis. Actually, if we initialize withW1 = W>

2 , the gradient dynamics exactly recovers
the PCA ofX , which is closely related to the matrix factorization problem of Gunasekar et al.
[2017]. See §A where this derivation is detailed.
• Deep linear multi-class prediction: In that case, p is the number of classes and yi is a

one-hot encoding of the class with, in practice, p� d. The intuition on why we may expect
‖B‖2 to be small is because rank(Y ) � rank(X) and thus the matrices of interest only
have to almost commute on a small space in comparison to the whole space, thusB would be
close to 0. We verify this intuition by computing ‖B‖2 for several classification datasets in
Table 1.
• Minimal influence of perceptual correlation: Σx ≈ Id. It is the setting discussed by Saxe

et al. [2018]. We compare this assumption for some classification datasets with our Assump. 1
in §4.1.

2By a rescaling of the data, their proof is valid for any matrix Σx proportional to the identity matrix.
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An explicit solution for L = 2. Under Assump. 1 and specifying the initialization, one can solve
the matrix differential equation for ε = 0 and then use perturbation analysis to assess how close the
solution of (8) is to the closed form solution derived for ε = 0. This result is summarized in the
following theorem proved in §B.2.
Theorem 1. WhenL = 2, under Assump. 1, if we initialize withW1(0) = U diag(e−δ1 , . . . , e−δp)Q
and W2(0) = Q−1 diag(e−δ1 , . . . , e−δd)V > where Q is an arbitrary invertible matrix, then the
solution of (12) can be decomposed as the sum of the solution for ε = 0 and a perturbation term,W1(t) = W 0

1 (t) +W ε
1 (t) where W 0

1 (t) := U diag
(√

w1(t), . . . ,
√
wp(t)

)
Q

W2(t) = W 0
1 (t) +W ε

2 (t) where W 0
2 (t) := Q−1 diag

(√
w1(t), . . . ,

√
wd(t)

)
V >

(15)

where we have c > 0 such that ‖W ε
i (t)‖ ≤ ε · ect2 and,

wi(t) =
σie

2σit−2δi

λi(e2σit−2δi − e−2δi) + σi
, 1 ≤ i ≤ rxy , wi(t) =

e−2δi

1 + 2e−δiλit
, rxy < i ≤ rx (16)

where (σi) and (λi) are defined is Assump. 1. Note that rank(Σxy) := rxy ≤ rank(Σx) := rx.

The main difficulty in this result is the perturbation analysis for which we use a consequence of
Grönwall’s inequality [Gronwall, 1919] (Lemma 4). The proof can be sketched in three parts: first
showing the result for ε = 0, then showing that in the case ε > 0, the matricesW1(t)/t andW2(t)/t
are bounded and finally use Lemma 4 to get the perturbation bound.

This result is more general than the one provided by Saxe et al. [2018] because it requires a weaker
assumption than Σx = Id and ε = 0. In doing so, we obtain a result that takes into account the
influence of correlations of the input samples. Note that Thm. 1 is only valid if the initialization
W1(0)W2(0) has the same singular vectors as Σxy . However, making such assumptions on the ini-
tialization is standard in the literature and, in practice, we can set the initialization of the optimization
algorithm in order to also ensure that property. For instance, in the case of the linear autoencoder,
one can setW1(0) = W2(0) = e−δId.

In the following subsection we will use Thm. 1 to show that the components [U ]i , 1 ≤ i ≤ rxy in
the order defined by the decreasing singular values of Σxy are learned sequentially by the gradient
dynamics.

Sequential learning of components. The sequential learning of the left singular vectors of Σxy

(sorted by the magnitude of its singular values) by the continuous gradient dynamics of deep linear
networks has been highlighted by Saxe et al. [2018]. They note in their Eq. (10) that the ith phase
transition happens approximately after a time Ti defined as (using our notation),

Ti :=
δi
σi

ln(σi) where Σxy =

rxy∑
i=1

σiuiv
>
i . (17)

They argue that as δi → ∞, the time Ti is roughly O(1/σi). The intuition is that a vanishing
initialization increases the gap between the phase transition times Ti and thus tends to separate the
learning of each components. However, a vanishing initialization just formally leads to Ti →∞.

In this work, we introduce a notion of time rescaling in order to formalize this notion of phase
transition and we show that, after this time rescaling, the point visited between two phase transitions
is the solution of a low rank regularized version (4) of the initial problem (2) with the low rank
constraint that loosens sequentially.

The intuition behind time rescaling is that it counterbalances the vanishing initialization in (17): Since
Ti grows as fast as δi we need to multiply the time by δi, in order to grow at the same pace as Ti.

Using this rescaling we can present our theorem, proved in §B.3, which says that a vanishing
initialization tends to force the sequential learning of the component ofX associated with the largest
singular value of Σxy. Note that we need to rescale the time uniformly for each component. That is
why in the following we set δi = δ , 1 ≤ i ≤ max(p, d).
Theorem 2. Let us denote wi(t), the values defined in (16). If wi(0) = e−δ , 1 ≤ i ≤ r, and
ε = e−δ

2 ln(δ) then we have that wi(δt) converge to a step function as δ →∞:
wi(δt) →

δ→∞
σi

λi+σi
1{t = Ti}+ σi

λi
1{t > Ti} . (18)
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where Ti := 1/σi, 1{t ∈ A} = 1 if t ∈ A and 0 otherwise.

Notice how the ith components of W1 and W2 are inactive, i.e., wi(t) is zero, for small t and
is suddenly learned when t reaches the phase transition time Ti := 1/σi. As shown in Prop. 1
and illustrated in Fig. 1, this sequential learning behavior does not occur for the non-factorized
formulation. Gunasekar et al. [2017] observed similar differences between their factorized and not
factorized formulations of matrix regression. Note that, the time rescaling we introduced is t→ δt,
in order to compensate the vanishing initialization, rescaling the time and taking the limit this way
for (8) would lead to a constant function.

Gunasekar et al. [2017] also had to consider a vanishing initialization in order to show that on a
simple matrix factorization problem the continuous dynamics of gradient descent does converge to
the minimum nuclear norm solution. This assumption is necessary in such proofs in order to avoid
to initialize with wrong components. However one cannot consider an initialization with the null
matrix since it is a stationary point of the dynamics, that is why this notion of double limit (vanishing
initialization and t→∞) is used.

From Thm. 2, two corollaries follow directly. The first one regards the nuclear norm of the product
W1(δt)W2(δt). This corollary says that ‖W1(δt)W2(δt)‖∗ is a step function and that each incre-
ment of this integer value corresponds to the learning of a new component ofX . These components
are leaned by order of relevance, i.e., by order of magnitude of their respective eigenvalues and the
learning of a new component can be easily noticed by an incremental gap in the nuclear norm of the
matrix productW1(δt)W2(δt),

Corollary 1. LetW1(t) andW2(t) be the matrices solution of (12) defined in (15). The limit of the
squared euclidean norm ofW1(t)W2(t) when δ →∞ is a step function defined as,

‖W1(δt)W2(δt)‖22 →
δ→∞

rxy∑
i=1

σ2
i

λ2
i
1{Ti < t}+

σ2
i

(λi+σi)2
1{Ti = t} (19)

where Ti := 1/σi and σ1 > · · · > σrxy
> 0 are the positive singular values of Σxy .
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Figure 1: Closed form solution of squared `2 norm
of W (δt) and W1(δt)W2(δt) respectively for a linear
model and a two-layer linear autoencoder, depending
on W (0) = W1(0)W2(0) = e−δId. Note that for an
autoencoder λi = σi and thus the trace norm has integer
values. According to Thm. 2, the integer trace norm
increment represents the learning of a new component.

It is natural to look at the norm of the prod-
uct W1(δt)W2(δt) since in Thm. 2, (wi(t))
are its singular values. However, since the
rank of W1(δt)W2(δt) is discontinuously
increasing after each phase transition, any
norm would jump with respect to the rank
increments. We illustrate these jumps in
Fig. 1 where we plot the closed form of
the squared `2 norms of t 7→ W (δt) and
t 7→ W1(δt)W2(δt) for vanishing initializa-
tions with Σyx = diag(10−1, 10−2, 10−3) and
Σx = Id.

From Thm. 2, we can notice that, between
time Tk and Tk+1, the rank of the limit ma-
trixW1W2 is actually equal to k, meaning that
at each phase transition, the rank of W1W2 is
increased by 1. Moreover, this matrix product
contains the k components ofX corresponding
to the k largest singular values of Σxy. Thus,
we can show that this matrix product is the so-
lution of the k-low rank constrained version (4)
of the initial problem (2),

Corollary 2. LetW1(t) andW2(t) be the matrices solution of (12) defined in (15). We have that,

1
σk
< t < 1

σk+1
⇒ W1(δt)W2(δt) →

δ→∞
W k,∗ , 1 ≤ k ≤ rxy . (20)

whereW k,∗ is the minimum `2 norm solution of the reduced-rank-k regression problem (4) .
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3.2 Discrete dynamics

We are interested in the behavior of optimization methods. Thus, the gradient dynamics of interest
is the discrete one (5). A major contribution of our work is thus contained in this section. The
continuous case studied in § 3.1 provided good intuitions and insights on the behavior of the potential
discrete dynamics that we can use for our analysis.

Why the discrete analysis is challenging. Previous related work [Gunasekar et al., 2017, Saxe
et al., 2018] only provide results on the continuous dynamics. Their proofs use the fact that their
respective continuous dynamics of interest have a closed form solution (e.g., Thm.1). To our
knowledge, no closed form solution is known for the discrete dynamics (5). Thus its analysis requires
a new proof technique. Moreover, using Euler’s integration methods, one can show that both dynamics
are close but only for a vanishing step size depending on a finite horizon. Such dependence on the
horizon is problematic since the time rescaling used in Thm. 2 would make any finite horizon go to
infinity. In this section, we consider realistic conditions on the step-size (namely, it has to be smaller
than the Lipschitz constant and some notion of eigen-gap) without any dependence on the horizon.
Such assumption is relevant since we want to study the dynamics of practical optimization algorithms
(i.e., with a step size as large as possible and without knowing in advance the horizon).

Single layer linear model. In this paragraph, we consider the discrete update for the linear model.
Since L = 1, for notational compactness, we callWt the matrix updated according to (5). Using the
gradient derivation (7), the discrete update scheme for the linear model is,

Wt+1 = Wt − η(ΣxWt −Σxy) = (Id − ηΣx)Wt + ηΣxy .

Noticing that for 1/λmax(Σx) > η > 0 , Id − ηΣx is invertible, this recursion (see §B.4) leads to,

Wt = (W0 −Σ†xΣxy)(Id − ηΣx)t + Σ†xΣxy . (21)

We obtain a similar result as the solution of the differential equation given in Prop. 1. With a vanishing
initialization we reach a function that does not sequentially learn some components.

Two-layer linear model. The discrete update scheme for the two-layer linear network (2) is,

W
(t+1)
1 = W

(t)
1 − η(ΣxW

(t)−Σxy)(W
(t)
2 )> , W

(t+1)
2 = W

(t)
2 − η(W

(t)
1 )>(ΣxW

(t)−Σxy) .

When ε = 0, by a change of basis and a proper initialization, we can reduce the study of this matrix
equation to r independant dynamics (see §B.5 for more details), for 1 ≤ i ≤ r,

w
(t+1)
i = w

(t)
i + ηw

(t)
i (σi − λiw(t)

i w
(t)
i ) . (22)

Thus we can derive a bound on the iterate w(t)
i leading to the following theorem,

Theorem 3. Under the same assumptions as Thm. 1 and ε = 0, we have

W
(t)
1 = U diag

(√
w

(t)
1 , . . . ,

√
w

(t)
p

)
Q and W

(t)
2 = Q−1 diag

(√
w

(t)
1 , . . . ,

√
w

(t)
d

)
V > .

Moreover, for any 1 ≤ i ≤ rxy , if 1 > w
(0)
i > 0 and 2ησi < 1, then ∀t ≥ 0 , 1 ≤ i ≤ rx we have,

w
(0)
i

(σi − λiw(0)
i )e(−2ησi+4η2σ2

i )t + w
(0)
i λi

≤ w(t)
i ≤

w
(0)
i

(σi − λiw(0)
i )e(−2ησi−η2σ2

i )t + w
(0)
i λi

, (23)

and w(t)
i ≤

w
(0)
i

1+w
(0)
i λiηt

for rxy ≤ i ≤ rx. The differences with the continuous case (16) are in red.

Proof sketch. The solution of the continuous dynamics lets us think directly studying the sequence
w

(t)
i might be quite challenging since the solution of the continuous dynamics wi(t)−1 has a non-

linear and non-convex behavior.

The main insight from this proof is that one can treat the discrete case using the right transformation,
to show that some sequence doee converge linearly.
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Figure 2: Trace norm and reconstruction errors of W (t) for L = 1 and
2 as a function of t.

Dataset ∆xy ∆x

MNIST 2.8× 10−2 .70
CIFAR-10 3.0× 10−2 .68
ImageNet 1.7× 10−1 .70

Table 1: Value of the quantities
∆xy and ∆x defined in (27).

Thm. 2 indicates the quantity wi(t)−1 − λi

σi
is the good candidate to show linear convergence to 0,

wi(t)
−1 − σi

λi
= (wi(0)−1 − σi

λi
)e−2ησit . (24)

What we can expect is thus to show that the sequence (w
(t)
i )−1 − σi

λi
has similar properties. The first

step of the proof is to show that (w
(t)
i ) is an increasing sequence smaller than one. The second step is

then to use (22) to get,

1

w
(t+1)
i

− λi

σi
= 1

w
(t)
i

(
1

1+2(σi−λiw
(t)
i )+η2(σi−λiw

(t)
i )2

)
− λi

σi

Then using that 1− x ≤ 1
1+x ≤ 1− x+ x2 for any 1 ≤ x ≤ 0 we can derive the upper and lower

bounds on the linear convergence rate. See §B.5 for full proof.

In order to get a similar interpretation of Thm. 3 in terms of implicit regularization, we use the
intuitions from Thm. 2. The analogy between continuous and discrete time is that the discrete time
dynamics is doing t time-steps of size η, meaning that we haveW (ηt) ≈Wt, the time rescaling in
continuous time consists in multiplying the time by δ thus we get the analog phase transition time,

ηTi := 1
σi

⇒ Ti := 1
ησi

. (25)

Recall that we assumed that m(0)
i = n

(0)
i = e−δ. Thus, we show that the ith component is learned

around time Ti, and consequently that the components are learned sequentially,

Corollary 3. If η < 1
2σ1

, η < 2σi−σi+1

σ2
i

and η < σi−σi+1

2σ2
i+1

, for 1 ≤ i ≤ rxy−1, then for 1 ≤ i < rx,

w
(δTj)
i →

δ→∞

0 if i > rxy or j < i
σi
λi

if i ≤ rxy and j > i .
(26)

where T0 := 0, Tj := 1
σjη

, 1 ≤ j ≤ rxy and Tj := +∞ if j > rxy .

This result is proved in §B.5. The quantities σi−σi+1

σ2
i

and σi−σi+1

σ2
i+1

can be interpreted as relative eigen-
gaps. Note that they are well defined since we assumed that the eigenspaces were unidimensional.
The intuition behind this condition is that the step-size cannot be larger than the eigen-gaps because
otherwise the discrete optimization algorithm would not be able to distinguish some components.

4 Experiments

4.1 Assump. 1 for Classification Datasets

In this section we verify to what extent Assump. 1 is true on standard classification datasets. For
this, we compute the normalized quantities ∆xy and ∆x representing how much Assump. 1 and the
assumption that Σx ≈ Id are respectively broken. We computeB by computing U , the left singular
vector of Σxy and looking at the non-diagonal coefficients of U>ΣxU ,

∆xy := ‖B‖2
‖Σx‖2 , ∆x := 1

2

∥∥Σ̂x − Îd
∥∥
2
, (27)
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where ‖·‖ is the Frobenius norm, the Σ̂ expressions correspond to X̂ := X/‖X‖ and Îd := Id/‖Id‖.
These normalized quantities are between 0 and 1. The closer to 1, the less the assumption hold and
conversely, the closer to 0, the more the assumption approximately holds. We present the results
on three standard classification datasets, MNIST [LeCun et al., 2010], CIFAR10 [Krizhevsky et al.,
2014] and ImageNet [Deng et al., 2009], a down-sampled version of ImageNet with images of size
64× 64. In Table 1, we can see that the quantities ∆x and ∆xy do not vary much among the datasets
and that the ∆ associated with our our Assump. 1 is two orders of magnitude smaller than the ∆
associated with Saxe et al. [2018]’s assumption indicating the relevance of our assumption.

4.2 Linear Autoencoder

For an auto-encoder, we have, Y = X . We want to compare the reconstruction properties ofW (t)

computed though (21) and of the matrix product W (t)
1 W

(t)
2 where W (t)

1 and W (t)
2 are computed

though (22). In this experiment, we have p = d = 20, n = 1000, r = 5 and we generated synthetic
data. First we generate a fixed matrix B ∈ Rd×r such that, Bkl ∼ U([0, 1]), 1 ≤ k, l ≤ n. Then,
for 1 ≤ i ≤ n, we sample xi ∼ Bzi + εi where zi ∼ N (0,D := diag(4, 2, 1, 1/2, 1/4)) and
εi ∼ 10−3N (0, Id). In Fig. 2, we plot the trace norm of W (t) and W (t)

1 W
(t)
2 as well as their

respective reconstruction errors as a function of t the number of iterations,

‖W (t) −BDB>‖2 . (28)

We can see that the experimental results are very close to the theoretical behavior predicted with the
continuous dynamics in Figure 1. Contrary to the dynamics induced by the linear model formulation
(L = 1), the dynamics induced by the two-layer linear network (L = 2) is very close to a step
function: each step corresponds to the learning to a new component: They are learned sequentially.

5 Discussion

There is a growing body of empirical and theoretical evidence that the implicit regularization induced
by gradient methods is key in the training of deep neural networks. Yet, as noted by Zhang et al.
[2017], even for linear models, our understanding of the origin of generalization is limited. In this
work, we focus on a simple non-convex objective that is parametrized by a two-layer linear network.
In the case of linear regression we show that the discrete gradient dynamics also visits points that are
implicitly regularized solutions of the initial optimization problem. In that sense, in the context of
machine learning, applying gradient descent on the overparametrized model of interest, provides a
form of implicit regularization: it sequentially learns the hierarchical components of our problem
which could help for generalization. Our setting does not pretend to solve generalization in deep
neural networks; many majors components of the standard neural network training are omitted
such as the non-linearities, large values of L and the stochasticity in the learning procedure (SGD).
Nevertheless, it provides useful insights about the source of generalization in deep learning.

Acknowledgments.

This research was partially supported by the Canada CIFAR AI Chair Program, the Canada Excellence
Research Chair in “Data Science for Realtime Decision-making”, by the NSERC Discovery Grant
RGPIN-2017-06936, by a graduate Borealis AI fellowship and by a Google Focused Research award.

References
M. S. Advani and A. M. Saxe. High-dimensional dynamics of generalization error in neural networks.

arXiv preprint arXiv:1710.03667, 2017.

N. Berglund. Perturbation theory of dynamical systems. arXiv preprint math/0111178, 2001.

E. A. Coddington and N. Levinson. Theory of Ordinary Differential Equations. Tata McGraw-Hill
Education, 1955.

R. T. d. Combes, M. Pezeshki, S. Shabanian, A. Courville, and Y. Bengio. On the learning dynamics
of deep neural networks. arXiv preprint arXiv:1809.06848, 2018.

9



J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical
image database. In CVPR, 2009.

T. H. Gronwall. Note on the derivatives with respect to a parameter of the solutions of a system of
differential equations. Annals of Mathematics, 1919.

S. Gunasekar, B. E. Woodworth, S. Bhojanapalli, B. Neyshabur, and N. Srebro. Implicit regularization
in matrix factorization. In NIPS, 2017.

S. Gunasekar, J. Lee, D. Soudry, and N. Srebro. Implicit bias of gradient descent on linear convolu-
tional networks. arXiv preprint arXiv:1806.00468, 2018.

R. A. Horn, R. A. Horn, and C. R. Johnson. Matrix Analysis. Cambridge University Press, 1985.

A. J. Izenman. Reduced-rank regression for the multivariate linear model. Journal of Multivariate
Analysis, 1975.

A. Krizhevsky, V. Nair, and G. Hinton. The CIFAR-10 dataset. online: http://www. cs. toronto.
edu/kriz/cifar. html, 2014.

A. K. Lampinen and S. Ganguli. An analytic theory of generalization dynamics and transfer learning
in deep linear networks. In ICLR, 2019.

Y. LeCun, C. Cortes, and C. Burges. MNIST handwritten digit database. AT&T Labs [Online].
Available: http://yann. lecun. com/exdb/mnist, 2010.

Y. Li, T. Ma, and H. Zhang. Algorithmic regularization in over-parameterized matrix sensing and
neural networks with quadratic activations. In Conference On Learning Theory, pages 2–47, 2018.

K. Nar and S. Sastry. Step size matters in deep learning. In NeurIPS, 2018.

B. Neyshabur. Implicit Regularization in Deep Learning. PhD thesis, TTIC, 2017.

B. Neyshabur, R. R. Salakhutdinov, and N. Srebro. Path-SGD: Path-normalized optimization in deep
neural networks. In NIPS, 2015a.

B. Neyshabur, R. Tomioka, and N. Srebro. In search of the real inductive bias: On the role of implicit
regularization in deep learning. In ICLR, 2015b.

B. Neyshabur, R. Tomioka, R. Salakhutdinov, and N. Srebro. Geometry of optimization and implicit
regularization in deep learning. arXiv preprint arXiv:1705.03071, 2017.

G. C. Reinsel and R. Velu. Multivariate Reduced-Rank Regression: Theory and Applications. Springer
Science & Business Media, 1998.

A. M. Saxe, J. L. McClellans, and S. Ganguli. Learning hierarchical categories in deep neural
networks. In Proceedings of the Annual Meeting of the Cognitive Science Society, 2013.

A. M. Saxe, J. L. McClelland, and S. Ganguli. Exact solutions to the nonlinear dynamics of learning
in deep linear neural networks. In ICLR, 2014.

A. M. Saxe, J. L. McClelland, and S. Ganguli. A mathematical theory of semantic development in
deep neural networks. arXiv preprint arXiv:1810.10531, 2018.

D. Soudry, E. Hoffer, and N. Srebro. The implicit bias of gradient descent on separable data. In ICLR,
2018.

A. Uschmajew and B. Vandereycken. On critical points of quadratic low-rank matrix optimization
problems. Tech. report (submitted), July 2018.

C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning requires
rethinking generalization. 2017.

10



A Deep Linear Autoencoder Recovers PCA.

Let us recall that the two-layer linear autoencoder can be formulated as,

(W ∗
2 ,W

∗
1 ) ∈ arg min

W2∈Rr×p

W1∈Rd×r

1

2n
‖X −XW1W2‖22 . (29)

Thus, the gradients of the objective are,

∇fW2(W2,W1) = W>
1 (ΣxW1W2 −Σx) and ∇fW1(W2,W1) = (ΣxW1W2 −Σx)W>

2 .

Thus, ifW (0)
2 = (W

(0)
1 )> and if [W

(0)
1 W

(0)
2 ,Σx] = 0, we have that,

∇fM (W
(0)
2 ,W

(0)
1 ) = (W

(0)
1 )>(ΣxW

(0)
1 W

(0)
2 −Σx) (30)

= ((ΣxW
(0)
1 W

(0)
2 −Σx)(W

(0)
2 )>)> (31)

= ∇fN (W
(0)
2 ,W

(0)
1 )> . (32)

Thus, for the discrete case, by a recurrence we have that, W (t)
1 = (W

(t)
2 )> , t ≥ 0 and for the

continuous case, invoking the Cauchy-Lipschitz theorem, we have that W1(t) = W2(t)> , t ≥ 0.
Consequently, the limit solution is such that

W ∗
1 ∈ arg min

W1∈Rd×r

1

2n
‖X −XW1W

>
1 ‖22 , (33)

which is a formulation of the PCA.

B Proof of Theorems and Propositions

B.1 Proof of Prop. 1

Proposition’ 1. For anyW0 ∈ Rd×p , the solution to the linear differential equation (8) is,

W (t) = e−tΣx(W0 −Σ†xΣxy) + Σ†xΣxy , (34)

where Σ†x is the pseudoinverse of Σx.

We can differentiate (34) and check if it verifies (8). In order to do that, we just need to notice that
ΣxΣ

†
xΣxy = Σxy. To see that we compute the SVD ofX> = U>DV whereD is a rectangular

matrix with only diagonal coefficients such that,

DD> = diag(λ1, . . . , λr, 0, . . . , 0) . (35)

Thus, we have Σx = U> diag(λ1, . . . , λr, 0, . . . , 0)U and
Σ†x = U> diag(1/λ1, . . . , 1/λr, 0, . . . , 0)U . Leading to,

ΣxΣ
†
xΣxy = U>DV Y = Σxy .

Consequently, the matrix valued functionW (t) defined in (34) verifies (8). Now we just need to use
Cauchy-Lipschitz theorem [Coddington and Levinson, 1955] (a.k.a. Picard–Lindelöf theorem) to say
that this solution is the unique solution of the ODE (8).

B.2 proof of Thm. 1

Commutative case, ε = 0: We use ideas from [Saxe et al., 2018] and combine it with Assum. 1
for ε = 0. Note that ε = 0 if and only if Σx and Σxy commute. thus, we have that,

Σxy = UDxyV
> and Σx = UDxU

> . (36)

Let us consider a generalization of the linear transformation proposed by Saxe et al. [2018, Eq.
S6,S7],

W̄1 = U>W1Q1 , W̄l = Q−1l−1WlQl, 2 ≤ l ≤ L− 1 , and WL = Q−1L−1WLV , (37)
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whereQl , 1 ≤ l ≤ L− 1 are arbitrary invertible matrices. Then, notingQ0 := U andQL := V ,
we get the following dynamics,

dW̄l(t)

dt
= Q−1l−1W1:l−1(t)>(Σxy−ΣxW (t))Wl+1:L(t)>Ql , 1 ≤ l ≤ L . (38)

Thus using (36), the fact that U>U = Id and that for any invertible matrix Q, we have
(Q−1)> = (Q>)−1, we get that,

dW̄l(t)

dt
= W̄1:l−1(t)>

(
Dxy −DxW̄ (t)

)
W̄l+1:L(t)> , Wl(0) = W

(0)
l 1 ≤ l ≤ L . (39)

Using the same argument as [Saxe et al., 2018], if W̄l(t) , 1 ≤ l ≤ L only have diagonal coefficients
then their derivative also only have diagonal coefficients. Thus, if we initialize W (0)

l , 1 ≤ l ≤ L,
only with diagonal coefficients we have a decoupled solution for each diagonal coefficient. This
argument can be formalized using Cauchy-Lipschitz theorem: (39) has a unique solution which is the
one we will exhibit in the following.

Recall that we noted r0 = d and rL = p and that Wl ∈ Rr×l−1,rl . Let us note,
r = min{rl : 0 ≤ l ≤ L − 1} and wl,i(t), 1 ≤ i ≤ r the respective diagonal coefficients of
Wl(t) for 1 ≤ l ≤ L. Note that for i ≥ r one could define diagonal coefficients for some of the
matrices Wl but their gradient will be equal to 0, thus non-trivial dynamics only occur for i ≤ r.
They follow the equation,

ẇl,i(t) = w−l,i(t)(σi − λiwi(t)) , wl,i(0) ∈ R , 1 ≤ l ≤ L , 1 ≤ i ≤ r , (40)

where the notation w−l,i(t) stands for the product of the wk,i(t) , 1 ≤ k ≤ L omitting wl,i(t), i.e.,

w−l,i(t) :=

L∏
k=1
k 6=l

wk,i(t) , (41)

and wi(t) stands for the product of the wk,i(t) , 1 ≤ k ≤ L. The difference with [Saxe et al., 2018]
is that, since they only consider the case Σx = Id they have λi = 1, they also only consider the case
L = 2. The use of Assumption 1 allowed us to work in a more general case.

We will assume that if wl,i(t) = wk,i(t) , 1 ≤ l, k ≤ L, to find an analytic solution and then
show that if wl,i(0) = wk,i(0) , 1 ≤ k, l ≤ L then this analytic solution verifies (40) and thus, by
Cauchy-Lipschitz theorem, is the unique solution of the non-linear differential equation.

Thus, considering wi(t) := w1,i(t) · · ·wL,i(t), and assuming that wl,i(t) = wk,i(t) , 1 ≤ l, k ≤ L,
we get that, for 1 ≤ i ≤ r,

ẇi(t) =

L∑
l=1

w1,i(t) · · ·wl−1,i(t)ẇl,i(t)wl+1,i(t) · · ·wL,i(t) (42)

= Lwi(t)
2−2/L(σi − λiwi(t)) , wi(0) ∈ R . (43)

Lemma 1. If wi(0) ∈ (0, σi

λi
), then the differential equations has a unique solution that is increasing

and wi(t) ∈ (0, σi

λi
) , ∀t ∈ R.

Proof. If at a time t ∈ R, we have wi(t) = 0 and thus ẇi(t). Noticing that then the constant function
wi(t) = 0 t ∈ R is a solution of (1), by Cauchy-Lipschitz it is the only one. We can use the same
argument to say that if there exists a time t ∈ R, such we have wi(t) = 0 then wi(t) = 0 ∀t ∈ R.
Thus by continuity of wi(t) we have that if wi(0) ∈ (0, σi

λi
) then, wi(t) ∈ (0, σi

λi
) , ∀t ∈ R .

Case L = 2: in that case we have two situations, σi > 0 and σi = 0 , λi > 0 (the case σi = λi = 0
give a constant functions).
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For σi > 0 we have that,

t =

∫ t

0

dwi(t)

2wi(t)(σi − λiwi(t))
(44)

=
1

2σi

∫ t

0

dwi(t

wi(t)
+

λidwi(t

σi − λiwi(t)
(45)

=
1

2σi
ln
wi(t)(σi − λiwi(0))

wi(0)(σi − λiwi(t))
. (46)

Leading to,

wi(t) =
wi(0)σie

2σit

wi(0)λi(e2σit − 1) + σi
. (47)

In order to get a solution for w2,i(t) and w1,i(t), we will use Cauchy-Lipschitz theorem [Coddington
and Levinson, 1955]. The idea is that if we find a solution of (40), it is the only one. Let us set,
mi(0) = ni(0) = e−δi , then we can set,

w2,i(t) = w1,i(t) =

√
σie2σit−2δi

λi(e2σit−2δi − e−2δi) + σi
, (48)

and verify that we have,

ẇ2,i(t) = w1,i(t)(σi − λiw1,i(t)w2,i(t)) , mi(0) = e−δi (49)

ẇ1,i(t) = w2,i(t)(σi − λiw1,i(t)w2,i(t)) , ni(0) = e−δi 1 ≤ i ≤ r . (50)

Thus, this is the unique solution of (40).

For σi = 0 , λi > 0 we have that,

t =

∫ t

0

ẇi(t)

−2λiwi(t)2
dt =

1

2λi

(
1

wi(t)
− 1

wi(0)

)
. (51)

Thus,

wi(t) =
wi(0)

1 + 2wi(0)λit
. (52)

Thus, if we initialize with mi(0) = ni(0) = e−δi we get,

w1,i(t) = w2,i(t) =
e−δi√

1 + 2e−δiλit
. (53)

Non commutative case ε > 0. Now, we will consider Assumption 1 with ε > 0 and L = 2.

First let us proove two lemmas usefull for later,

Lemma 2. The matrix valued functionW (t) converge toX†Y and thus is bounded for t > 0.

Proof. Since (6) is a gradient dynamics, it only moves in the span of the gradient of f (the explicit
expressions of ∇f is derived in (7) for L = 1 and (11) for a general L). We use this property to
characterize the solution found by these dynamics. We can study each column of the predictors
W := W1 · · ·WL. If we look at the columns of∇WL

f , they are included inX>, thus it means that
if we initialize the columns of W (0)

L in that span, then the columns of W will belong to that span
during the whole learning process,

[W ]i ∈ span(∇WL
f) ⊂ span(X>), 1 ≤ i ≤ n , (54)

whereW isW (t). Thus, if the dynamics (6) converge, then they converge to a matrix with the ith
column vector being in the intersection,

span(X>) ∩ {u : Xu = [Y ]i} = {X†[Y ]i} . (55)

Finally, we haveXW (t)→ Y by definition of the gradient dynamics,

d‖Y −XW1(t)W2(t)‖2

dt
= −‖∇W1f(W1(t),W2(t))‖2−‖∇W2f(W1(t),W2(t))‖2 < 0 (56)
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Lemma 3. We have that ‖W1(t)‖2 = O(t) and ‖W2(t)‖2 = O(t).

Proof. We have that,

d‖W1(t)‖2

dt
= 〈W1(t), (Σxy −ΣxW (t))W2(t)>〉 = Tr((Σxy −ΣxW (t))W (t)>) . (57)

SinceW (t) is bounded then ‖W1(t)‖2 = O(t). The same way we have ‖W2(t)‖2 = O(t)

After the same change of basis as in the commutative case The matrices W̄l(t) follow the differencial
equations

dW̄1(t)

dt
=
(
Dxy − (Dx +B)W̄ (t)

)
W̄2(t)>,

dW̄2(t)

dt
= W̄1(t)>

(
Dxy − (Dx +B)W̄ (t)

)
(58)

In order to perform pertrubation analysis we will use a consequence of Grönwall’s inequality [Gron-
wall, 1919].

Lemma 4. Let β be a non negative function and α a non decreasing function. Let u be a function
defined on an interval I = [a,∞) such that

u(t) ≤ α(t) +

∫ t

a

β(s)u(s)ds , ∀t ∈ I . (59)

then we have that

u(t) ≤ α(t) exp

(∫ t

a

β(s)ds

)
, ∀t ∈ I . (60)

Proof. The proof can be found for instance in [Berglund, 2001, Lemma 3.1.6]

Thus, let us consider W̄1(t) and W̄2(t) the solutions of (58) as well as W̄ 0
1 (t) and W̄ 0

2 (t) the
solutions of the very same differential equation but withB = 0. For notational simplicity we will
omit the bar on the matricesW in the following. We have that,

W1(t)−W 0
1 (t) =

∫ t

0

[−BW (s)W2(s)+(Dxy−DxW (s))W2(s)>−(Dxy−DxW
0(s))W 0

2 (s)>]ds

Leading to

‖W1(t)−W 0
1 (t)‖ ≤

∫ t

0

‖Dx‖‖W1(s)W2(s)W2(s)> −W 0
1 (s)W 0

2 (s)W 0
2 (s)>‖ds

+

∫ t

0

‖Dxy‖‖W2(s)−W 0
2 (t)‖ds+ ‖BW (t)W2(t)‖

In order to upper bound the first integral we will consider the function F (A,B) := ABB>. This
function is Lipschitz on any compact because this function is infinitely differentiable. Thus we have
that (omiting the t in the notation),

‖W1W2W
>
2 −W 0

1W
0
2 (W 0

2 )>‖ = t3/2‖W1√
t
W2√
t
W2√
t

> − W 0
1√
t

W 0
2√
t

(
W 0

2√
t

)>‖ (61)

= t3/2‖F (
W1√
t
,
W2√
t

)− F (
W 0

1√
t
,
W 0

2√
t

)‖

≤ t3/2L(‖W2√
t
− W 0

2√
t
‖+ ‖W1√

t
− W 0

1√
t
‖)

≤ tL(‖W2 −W 0
2 ‖+ ‖W1 −W 0

1 ‖)

Using the fact that W1(t)√
t
,
W 0

1 (t)√
t
,
W 0

2 (t)√
t

and W2(t)√
t
, t ≥ 0 live in a compact set (Lemma 3) and that

F is Lipschitz on any compact. Thus, using that ‖S‖ = O(ε), we have

‖W1(t)−W 0
1 (t)‖ ≤ O(ε) +O(1)

∫ t

0

s(‖W2(s)−W 0
2 (s)‖+ ‖W1(s)−W1(s)0‖)ds
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The same way we can prove that,

‖W2(t)−W 0
2 (t)‖ ≤ O(ε) +O(1)

∫ t

0

s(‖W2(t)−W 0
2 (t)‖+ ‖W1(t)−W 0

1 (t)‖)dt

And consequently we can sum these two inequalities and apply Grönwall’s inequality with the
quantities u(t) = ‖W1(t)−W 0

1 (t)‖+ ‖W2(t)−W 0
2 (t)‖, α(t) = O(ε) and β(s) = O(s) to get,

‖W1(t)−W 0
1 (t)‖+ ‖W2(t)−W 0

2 (t)‖ ≤ ε · eO(t2) (62)

B.3 Proof of Thm. 2

Theorem’ 2. Let us denotes wi(t), the values defined in (16). If mi(0) = e−δ , 1 ≤ i ≤ r, then we
have,

wi(δt) →
δ→∞


0 if t < 1/σi√

σi

λi+σi
if t = 1/σi√

σi

λi
otherwise .

Proof. Using (16) we get that,

wi(δt) =

√
σie2δ(σit−1)

λi(e2δ(σit−1) − e−2δ) + σi
. (63)

Then we can conclude saying that for any i and t ≥ 0,

e2δ(σit−1) →
δ→∞


0 if t < 1/σi
1 if t = 1/σi

+∞ otherwise ,
(64)

and that when δ →∞,

‖W 0
i (δt)−W ε

i (δt)‖ ≤ ε · ect
2

= eδ
2(ct2−ln(δ)) → 0 (65)

B.4 Proof of Eq. 21

Let us recall (21),
Wt = (W0 −Σ†xΣxy)(Id − ηΣx)t + Σ†xΣxy . (21)

Thus we have that,

Wt = W0(Id − ηΣx)t + ηΣxy

t−1∑
s=0

(Id − ηΣx)s (66)

= W0(Id − ηΣx)t + Σ†xΣxy −Σ†xΣxy(Id − ηΣx)t

= (W0 −Σ†xΣxy)(Id − ηΣx)t + Σ†xΣxy . (67)

B.5 Proof of Thm. 3

Case ε = 0. If we defineW (t) := W
(t)
1 W

(t)
2 , the discrete update scheme for the two-layer linear

neural network (2) is, {
W

(t+1)
1 = W

(t)
1 − η(ΣxW

(t)−Σxy)(W
(t)
2 )>

W
(t+1)
2 = W

(t)
2 − η(W

(t)
1 )>(ΣxW

(t)−Σxy) .
(68)

Using the same transformation (37) as in §B.2 we get that,{
W̄

(t+1)
1 = W̄

(t)
1 − η(DW̄ (t)− S)(W̄

(t)
2 )>

W̄
(t+1)
2 = W̄

(t)
2 − η(W̄

(t)
1 )>(DW̄ (t)− S) .

(69)
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where D and S only have diagonal coefficients. Thus, by an immediate recurrence we can show
that if W̄ (0)

1 and W̄ (0)
2 only have diagonal coefficients then W̄ (t)

1 and W̄ (t)
2 for t ∈ N only have

diagonal coefficients.

let us note, r = min(p, d) and m(t)
1 , . . . ,m

(t)
r and n(t)1 , . . . , n

(t)
r the respective diagonal coefficients

of W̄ (t)
1 and W̄ (t)

2 , they follow the equation,

m
(t+1)
i = m

(t)
i +ηn

(t)
i (σi−λin(t)i m

(t)
i ) and n

(t+1)
i = n

(t)
i +ηm

(t)
i (σi−λin(t)i m

(t)
i ) , 1 ≤ i ≤ r .

(70)

In order to prove Thm. 3, we will prove several properties on the sequences (m
(t)
i )t≥0

and (n
(t)
i )t≥0 , 1 ≤ i ≤ d. First let us introduce the sequence (a

(t)
i )t≥0 defined as

a
(t)
i := m

(t)
i n

(t)
i , t ≥ 0.

Lemma 5. If m(0)
i = n

(0)
i then,

m
(t)
i = n

(t)
i =

√
a
(t)
i ∀t ∈ N . (71)

Proof. By a straightforward recurrence we have that if at time t, m(t)
i = n

(t)
i then by (70), we have

m
(t+1)
i = n

(t+1)
i .

Thus, we will now focus on the sequence (a
(t)
i )t≥0, by (70), we have that

a
(t+1)
i = a

(t)
i +2ηa

(t)
i (σi−λia(t)i )+η2a

(t)
i (σi−λia(t)i )2 = a

(t)
i +ηa

(t)
i (σi−λia(t)i )(2+η(σi−λia(t)i )) .

(72)

Similarly as for the continuous case, there is two different behavior σi > 0 ad σi = 0 , λi > 0. In
the following we assume that η > 0.

For σi > 0 we can derive the following results,

Lemma 6. For any 1 ≤ i ≤ rxy, if 0 < a
(0)
i < σi

λi
and 2ησi < 1, then, the sequence (a

(t)
i ) is

increasing and
0 < a

(t)
i <

σi
λi
, ∀t ≥ 0 . (73)

Proof. By assumption (73) is true for t = 0.

Let us assume that (73) is true for a time-step t and let us prove that it is still true at time-step t+ 1.

Using the recursive definition (72) of a(t)i we get for t ≥ 0,

a
(t+1)
i = a

(t)
i + ηa

(t)
i (σi − λia(t)i )(2 + η(σi − λia(t)i )) (74)

> a
(t)
i > 0 . (75)

For the upper bound we need to notice that a
(t+1)
i = fi(a

(t)
i ) where

fi : x 7→ x + ηx(σi − λix)(2 + η(σi − λix)) where η > 0. Since we assumed that
2ησi < 1, we have that,

fi(x) < x+ ηx(σi − λix)(2 + σi−λix
2σi

) , ∀x ∈ (0, 1) (76)

< x+
x(1− λi

σi
x)( 5

2 −
λi

2σi
x)

2
=: gi(x) , ∀x ∈ (0, 1) . (77)

(78)

Then we just need to show that g(x) < λi

σi
, ∀x ∈ (0, λi

σi
).

4g′(x) = 9− 12λi

σi
x+ 3

λ2
i

σ2
i
x2 > 0 , ∀x ∈ (0, λi

σi
) . (79)

Thus g is non-decreasing on (0, 1) and consequently, g(x) < g(λi

σi
) = λi

σi
, ∀x ∈ (0, 1).
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Finally, we get that,

a
(t+1)
i = fi(a

(t)
i ) < g(a

(t)
i ) < g(λi

σi
) =

λi
σi
. (80)

With this lemma we can proof Thm. 3. Let us first recall this theorem.

Theorem’ 3. For any 1 ≤ i ≤ rxy, if σi

λi
> a

(0)
i > 0 and 2ησi < 1, then ∀t ≥ 0 , 1 ≤ i ≤ r we

have,

a
(t)
i ≤

a
(0)
i

(σi − λia(0)i )e(−2ησi−η2σ2
i )t + a

(0)
i λi

(81)

and a
(t)
i ≥

a
(0)
i

(σi − λia(0)i )e(−2ησi+4η2σ2
i )t + a

(0)
i λi

, (82)

and for rxy ≤ i ≤ rx,

a
(t)
i ≤

a
(0)
i

1 + a
(0)
i λiηt

.

Proof. In this proof for notational compactness we will remove the index i.

We first prove (81), we work with 1/a(t+1) − λ
σ , Using (72) we get,

1/a(t+1) − λ

σ
=

1

a(t)

(
1

1 + 2ησ(1− λ
σa

(t)) + η2σ2(1− λ
σa

(t))2

)
− λ

σ
(83)

≥ 1

a(t)

(
1

1 + (2ησ + η2σ2)(1− λ
σa

(t))

)
− λ

σ
(84)

≥ 1

a(t)
− λ

σ
− 2ησ + η2σ2

a(t)
(1− λ

σ
a(t)) , (85)

where we used that 1
1+x ≥ 1− x , ∀x ≥ 0. Thus we have,

1/a(t) − λ

σ
≥ (

1

a(t−1)
− λ

σ
)(1− 2ησ − η2σ2) (86)

≥ (
1

a(0)
− λ

σ
)(1− 2ησ − η2σ2)t (87)

≥ (
1

a(0)
− λ

σ
)e(−2ησ−η

2σ2)t . (88)

Thus Leads to,

a(t) ≤ σa(0)

(σ − λa(0))et(−2ησ−η2σ2) + a(0)λ
. (89)

To prove (81) we will once again work with 1/a(t+1) − λ
σ . Using (72) we get

1/a(t+1) − λ

σ
=

1

a(t)

(
1

1 + 2σ(1− λ
σa

(t)) + σ2(1− λ
σa

(t))2

)
− λ

σ
(90)

≤ 1

a(t)

(
1

1 + 2σ(1− λ
σa

(t))

)
− λ

σ
(91)

≤ 1

a(t)
− λ

σ
− 2ησ

a(t)
(1− λ

σa
(t)) +

4η2σ2

a(t)
(1− λ

σa
(t))2 , (92)
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where we used that 1
1+x ≤ 1− x+ x2 , ∀x ≥ 0. Thus we have,

1/a(t) − λ

σ
≤ (

1

a(t)
− λ

σ
)(1− 2ση + 4η2σ2) (93)

≤ (
1

a(0)
− λ

σ
)(1− 2ση + 4η2σ2)t (94)

≤ (
1

a(0)
− λ

σ
)e(−2ση+4η2σ2)t . (95)

This leads to,

a(t) ≥ σa(0)

(σ − λa(0))et(−2σ+4η2σ2) + λa(0)
. (96)

Now for σ = 0 and λ > 0 we have that,

a
(t+1)
i = a

(t)
i (1− 2ληa

(t)
i + λ2η2(a

(t)
i )2) . (97)

Thus, considering (a
(t)
i )−1 we get

1/a
(t+1)
i = 1/a

(t)
i (1− 2ληa

(t)
i + λ2η2(a

(t)
i )2)−1 (98)

≥ 1/a
(t)
i (1 + 2ληa

(t)
i − λ

2η2(a
(t)
i )2) (99)

= 1/a
(t)
i + 2λη − λ2η2a(t)i . (100)

Thus, if we assume that 1/a
(0)
i ≥ λη we have that (1/a

(t)
i ) is a increasing sequence and that,

1/a
(t)
i ≥ 1/a

(t−1)
i + λη ≥ 1/a

(0)
i + ληt , (101)

leading to,

a
(t)
i ≤

a
(0)
i

1 + a
(0)
i ληt

. (102)

Case ε > 0. If we are able to show that all the sequencesW (t)
1 andW (t)

2 are bounded

From this theorem we can deduce the following corollary,

Proof of Corollary 3 Let us recall Corollary 3.

Corollary’ 3. If η < 1
2σ1

, η < 2σi−σi+1

σ2
i

and η < σi−σi+1

2σ2
i+1

, ∀i 1 ≤ i ≤ rxy−1 then for 1 ≤ i < rx,

a
(δTj)
i → →

δ→∞

0 if i > rxy or j < i
σi
λi

if i ≤ rxy and j > i ,

where Tj := 1
σjη

, 1 ≤ j ≤ rxy and Tj = +∞ if j > rxy and T0 = 0.

Proof. First let us notice that since σ1 > . . . > σrxy
> 0, the assumption η < 1/(2σ1) implies

η < 1/(2σi) , 1 ≤ i ≤ d.

Let i ≤ rxy . Let us first prove that if j < i, then a(Tj)
i →

δ→∞
0.

Using (81) and recalling that in Thm. 3, we assume that a(0)i = e−2δ , we have for 1 ≤ j < i,

0 < a
(δTj)
i ≤ a(δTi−1)

i <
σi

(σie2δ − λi)eδ(−2σi/σi−1−ησ2
i /σi−1) + σi

→
δ→∞

0 . (103)

We have (2 + ησi)σi/σi−1 < 2, because we assumed that η < 2σi−σi+1

σ2
i

, ∀i 1 ≤ i ≤ d. Note that

for i = rxy we have a(δTi+1)
i = 0 , ∀δ > 0.
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Let us now prove that if j > i, then a(δTj)
i →

δ→∞
σi

λi
.

Using (82) and recalling that in Thm. 3, we assume that a(0)i = e−2δ , we have for j > i ≥ 1,

λi
σi

> a
(δTj)
i ≥ a(δTi+1)

i >
σi

(σie2δ − λi)eδ(−2σi/σi+1+4ησ2
i /σi+1) + σi

→
δ→∞

σi
λi
. (104)

where we have that (e2δ − 1)eδ(−2σi/σj+4ησ2
i /σj) → 0 because

1− σi/σi+1 + 2ησ2
i /σi+1 < 0⇔ η < (σi − σi+1)/(2σ2

i ) .

Now for i ≥ rxy + 1 we just need to use, (83) to get,

a
(t)
i ≤

a
(0)
i

1 + ληa
(0)
i t

→
δ→∞

0 . (105)
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