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This document provides additional material to the main paper called Generalized Sliced-Wasserstein
Distances.

1 Algorithm Pseudocodes

In Algorithms 1 and 2, we provide pseudocodes for the overall algorithm.

2 Non-negativity and Symmetry of the GSW and max-GSW Distances

We prove that the GSW and max-GSW distances satisfy non-negativity and symmetry, using the
fact that the p-Wasserstein distance is known to be a proper distance function [1]. Let µ and ν be in
Pp(Ω).

2.1 Non-negativity

We use the non-negativity of the p-Wasserstein distance, i.e. Wp(µ, ν) ≥ 0 for any µ, ν in Pp(Ω), to
show that the GSW and max-GSW distances are non-negative as well:

GSWp(Iµ, Iν) =

(∫
Ωθ

W p
p

(
GIµ(., θ),GIν(., θ)

)
dθ

) 1
p

≥
(∫

Ωθ

(0)pdθ

) 1
p

= 0

max-GSWp(Iµ, Iν) = max
θ∈Ωθ

Wp

(
GIµ(·, θ),GIν(·, θ)

)
= Wp

(
GIµ(·, θ∗),GIν(·, θ∗)

)
≥ 0

where θ∗ = arg maxθ∈Ωθ
Wp(GIµ(·, θ),GIν(·, θ)).

2.2 Symmetry

Since the p-Wasserstein distance is symmetric, we have Wp(µ, ν) = Wp(ν, µ).

∗Denotes equal contribution.
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Algorithm 1 GSW Distance

input {xi ∼ Iµ}Ni=1, {yi ∼ Iν}Ni=1, order p,
number of slices L, defining function g

Initialize d = 0
for l = 1 to L do

Sample θl from Ωθ uniformly
Compute x̂i = g(xi, θl) and ŷi = g(yi, θl) for each i
Sort x̂i and ŷj in ascending order s.t. x̂i[n] ≤ x̂i[n+1] and ŷj[n] ≤ ŷj[n+1]

d = d+ 1
L

∑N
n=1 |x̂i[n] − ŷi[n]|p

end for
output d

1
p ≈ GSWp(Iµ, Iν)

Algorithm 2 Max-GSW Distance

input {xi ∼ Iµ}Ni=1, {yj ∼ Iν}Nj=1,
order p, defining function g(x, θ)

Randomly initialize θ ∈ Ωθ
while θ has not converged do

Compute x̂i = g(xi, θl) and ŷi = g(yi, θl) for each i
Sort x̂i and ŷj in ascending order s.t. x̂i[n] ≤ x̂i[n+1] and ŷj[n] ≤ ŷj[n+1]

θ = Proj
Ωθ

(Optim(∇θ( 1
N

∑N
n=1 |x̂i[n] − ŷj [n]|p), θ))

end while
Sort x̂i and ŷi in ascending order
d = 1

N

∑N
n=1 |x̂i[n] − ŷi[n]|p

output d
1
p ≈ max-GSWp(Iµ, Iν)

In particular, we can write for all θ ∈ Ωθ:

Wp(GIµ(·, θ),GIν(·, θ)) = Wp(GIν(·, θ),GIµ(·, θ)) , (1)
max
θ∈Ωθ

Wp(GIµ(·, θ),GIν(·, θ)) = max
θ∈Ωθ

Wp(GIν(·, θ),GIµ(·, θ)) (2)

The symmetry of the GSW and max-GSW distances follows from Equations (1) and (2) respectively.

3 Proof of Proposition 1

Proof. The non-negativity and symmetry are direct consequences of the fact that the Wasserstein
distance is a metric [1]: see the previous sections.

We prove the triangle inequality for GSWp and max-GSWp. Let µ1, µ2 and µ3 in Pp(Ω). Since the
Wasserstein distance satisfies the triangle inequality, we have, for all θ ∈ Ωθ,

Wp(GIµ1
(·, θ),GIµ3

(·, θ)) ≤Wp(GIµ1
(·, θ),GIµ2

(·, θ))
+Wp(GIµ2

(·, θ),GIµ3
(·, θ))
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Therefore, we can write:

GSWp(Iµ1
, Iµ3

) =

(∫
Ωθ

W p
p (GIµ1

(·, θ),GIµ3
(·, θ))dθ

) 1
p

≤
(∫

Ωθ

(
Wp(GIµ1(·, θ),GIµ2(·, θ))

+ Wp(GIµ2(·, θ),GIµ3(·, θ))
)p
dθ

) 1
p

≤
(∫

Ωθ

W p
p (GIµ1(·, θ),GIµ2(·, θ))dθ

) 1
p

+

(∫
Ωθ

W p
p (GIµ2(·, θ),GIµ3(·, θ))dθ

) 1
p

(3)

where inequality (3) follows from the application of the Minkowski inequality in Lp(Ωθ). We
conclude that GSWp satisfies the triangle inequality.

Let θ∗ = arg maxθ∈Ωθ
Wp(GIµ1

(·, θ),GIµ3
(·, θ)); then,

max-GSWp(Iµ1 , Iµ3) = max
θ∈Ωθ

Wp(GIµ1(·, θ),GIµ3(·, θ))

= Wp(GIµ1
(·, θ∗),GIµ3

(·, θ∗))
≤Wp(GIµ1

(·, θ∗),GIµ2
(·, θ∗))

+Wp(GIµ2(·, θ∗),GIµ3(·, θ∗))
≤ max
θ∈Ωθ

Wp(GIµ1(·, θ),GIµ2(·, θ))

+ max
θ∈Ωθ

Wp(GIµ2(·, θ),GIµ3(·, θ))

≤ max-GSWp(Iµ1
, Iµ2

) + max-GSWp(Iµ2
, Iµ3

)

So max-GSWp also satisfies the triangle inequality.

Since Wp(µ, µ) = 0 for any µ, we have GSWp(Iµ, Iν) = 0 and max-GSWp(Iµ, Iν) = 0. Now,
GSWp(Iµ, Iν) = 0 or max-GSWp(Iµ, Iν) = 0 is equivalent to GIµ(·, θ) = GIν(·, θ) for almost all
θ ∈ Ωθ. Therefore, GSW and max-GSW are distances if and only if GIµ(·, θ) = GIν(·, θ) implies
µ = ν, i.e. the GRT is injective.

4 Implementation Details

The PyTorch [2] implementation of our paper is available here2. Here we clarify some of the
implementation details used in our paper. First, the ‘critic iteration’ for the adversarial training,
and the projection maximization for the max-GSW distances, were set to be equal to 50. For all
optimizations, we used ADAM [3] optimizer with learning rate lr = 0.001 and PyTorch’s default
momentum parameters.

2https://github.com/.../GSW/
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We used 3× 3 convolutional filters in both encoder and decoder architectures. Encoder architecture:

x ∈ R28×28 → Conv16 → LeakyReLU0.2

→ Conv16 → LeakyReLU0.2

→ AvgPool2
→ Conv32 → LeakyReLU0.2

→ Conv32 → LeakyReLU0.2

→ AvgPool2
→ Conv64 → LeakyReLU0.2

→ Conv64 → LeakyReLU0.2

→ AvgPool2 → Flatten

→ FC128 → LeakyReLU0.2

→ FC2

Decoder architecture:

z ∈ R2 → FC128 → LeakyReLU0.2

→ FC1024 → LeakyReLU0.2

→ Reshape(4× 4× 64)→ Upsample2

→ Conv64 → LeakyReLU0.2

→ Conv64 → LeakyReLU0.2

→ Upsample2

→ Conv32 → LeakyReLU0.2

→ Conv32 → LeakyReLU0.2

→ Upsample2

→ Conv16 → LeakyReLU0.2

→ Conv1

5 Generative Modeling via Auto-Encoders

We now demonstrate the application of the GSW and max-GSW distances in generative modeling.
We specifically use the recently proposed Sliced-Wasserstein Auto-Encoder (SWAE) [4] framework,
which penalizes the distribution of the encoded data in the latent space of the auto-encoder to follow
a prior samplable distribution, pZ . More precisely, let {xn ∼ pX}Nn=1 be i.i.d. samples from pX ,
φ(x, γφ) : X → Z and ψ(z, γψ) : Z → X be the parametric encoder and decoder (e.g., CNNs) with
parameters γφ and γψ , respectively. Then SWAE’s objective function [4] is defined as:

min
γφ,γψ

Ex[c(x, ψ(φ(x, γφ), γψ))] + λSW (pφ(x,γφ), pZ) (4)

where λ is the regularizer coefficient for matching the encoded distribution to pZ . Here, we substitute
the SW distance in Equation (4) with GSW and max-GSW distances. Specifically, we encode the
MNIST dataset [5] into the encoder’s latent space and enforce the distribution of the embedded data
to follow a specific prior distribution, e.g. the Swiss Roll distribution as shown in Figure 1, while we
simultaneously enforce the encoded features to be decodable to the original input images. Since the
latent dimensionality is small in this case, we can apply the polynomial defining functions, without
needing to apply the neural network-based one.

We ran the optimization in Equation (4) with GSW distances, which we denote as GSWAE, with
linear, polynomial degree 3, and polynomial degree 5 and their max versions. The results are shown
in Figure 2.

4



Figure 1: The SWAE architecture. The embedded data in the latent space is enforced to follow a prior
samplable distribution pZ .
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Figure 2: Results on GSWAE, with linear (i.e., SWAE), polynomial degree 3 and polynomial degree
5 defining functions and the corresponding max-GSWAE results (The results are shown after 10
epochs on MNIST).
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