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Abstract
In this supplementary material we elaborate on where the scale-space action comes1

from and the architectures used in our paper.2

1 Scale-spaces3

Here we provide some extra information on scale-spaces for the interested reader. For in depth4

literature, we suggest Florack et al. [1994, 1992], Pauwels et al. [1995], Lindeberg [1990, 1997],5

Crowley et al. [2002], Salden et al. [1998], Duits et al. [2004, 2003], Duits and Burgeth [2007],6

Burgeth et al. [2005a,b].7

1.1 1D Gaussian Scale-space8

We are given an initial 1D signal f0 with intrinsic bandlimit, or zero-scale, defined by s0 i.e. ,9

we impose a maximum frequency, such that there is a correspondence with discretized signals.10

Note that
√
s0 is inversely proportional to frequency content of the signal. We wish to downsize11

it isotropically by a factor a, which we call the dilation. For this we introduce the downsizing12

action La[f ](x) = f(a−1x) for a ≤ 1. We model the bandlimit of the initial signal as the result of13

convolving some other signal f with a Gaussian of width s0, so14

f0(x) = [G(·, s0) ∗Rd f ](x). (1)

Now the result of the downscaling action of f0 is as follows15

La[f0](x) = f0(a−1x) =

∫
Rd

G(a−1x− y, s0)f(y) dy =

∫
Rd

G(x− ay, a2s0)f(y) ady (2)

=

∫
Rd

G(x− z, a2s0)f(a−1z) dz = [G(·, a2s0) ∗Rd La[f ]](x). (3)

From the first to second lines we have performed a change of variables z = ay. So we see that the16

effect of downsizing a bandlimited signal by a shifts the bandlimit from s0 to a2s0. Since a ≤ 1, this17

means the blurring Gaussian is narrower and so the frequency content of the signal has been shifted18

higher. The key relation to bear in mind is the shift s0 7→ a2s0.19

For a proper scaling, we want the result of the downscaling to have the same bandlimit as the original20

signal f0. This is because if we are representing the signal on a discrete grid, then we have a physically21

defined maximum frequency content we can store, given by the pixel separation. The solution is to22

convolve the signal La[f0] with a correcting Gaussian of width s0 − a2s0. Note that this is possible,23

since a ≤ 0, so s0 − a2s0 > 0. Alternatively, we want to find a correcting Gaussian to blur before24

downsizing. Say this correcting Gaussian has bandlimit t, then we have25

La[G(·, t) ∗ f0] = La[G(·, t+ s0) ∗ f ] = [G(·, a2(t+ s0)) ∗ La[f ]]. (4)
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But we also want the bandlimit of the downscaled signal to be s0, so we have the relation26

a2(t+ s0) = s0. (5)

Thus a 1D Gaussian scale-space, parameterized by dilation, can be built by setting27

f(t(a, s0), x) = [G(·, t(a, s0)) ∗ f0](x), t(a, s0) :=
s0

a2
− s0 (6)

f(0, x) = f0(x) (7)

1.2 ND Gaussian Scale-space28

We now explore downscaling in N -dimensions. We first of all represent an initial image f0 as29

f0 = G(·,Σ0) ∗Rd f. (8)

We use the Gaussian to represent the fact that f0 should have an intrinsic bandlimit, usually defined30

by the resolution at which it is sampled. Now let’s introduce the affine action:31

LA,z[f ](x) = f(A−1(x− z)). (9)

It simply applies an affine transformation to our signal. Now using a similar logic to in the 1D case,32

if we concatenate the affine action with bandlimiting we get33

LA,z[G(·,Σ0) ∗Rd f0] = G(·, AΣ0A
>) ∗Rd LA,z[f0]. (10)

So we see that resizing a bandlimited signal shifts the bandlimit according to Σ0 7→ AΣ0A
>. Since34

we would like to have the same bandlimit on our signal before and after the resizing (since we can35

only represent the signal at constant resolution), we introduce a second bandlimiting by convolving36

with a Gaussian of width Σ0 −AΣ0A
>. To save space, we write GΣ = G(·,Σ). So37

GΣ0 ∗Rd LA,z[f ] = GΣ0−AΣ0A> ∗Rd LA,z[f0] = LA,z[GA−1Σ0A−>−Σ0
∗Rd f0] (11)

From the first to the second equality, we have exchanged the order of the Gaussian convolution and38

the affine action and altered the bandwidth from Σ0 −AΣ0A
> to A−1Σ0A

−> − Σ0, which comes39

from the relation established in Equation 10. Thus the affine action for an affine scale-pyramid is40

defined as41

LA,z[GA−1Σ0A−>−Σ0
∗Rd f ](x) = [GΣ0

A ∗Rd f ](A−1(x− z)) (12)

where we have defined GΣ0

A = GA−1Σ0A−>−Σ0
.42

For what values of A and z is this action valid? Let’s first focus on A. To maintain the zero-scale of43

Σ0, we had to convolve with a Gaussian of width ∆ = Σ0 −AΣ0A
>. Now we know that covariance44

matrices have to be symmetric ∆ = ∆> and positive definite ∆ � 0. We see already that it is45

symmetric, but it is not necessary positive definite. If the base bandlimit is of the form Σ0 = σ2
0I46

(the original image is isotropically bandlimited), then we can rearrange to47

∆ = Σ0 −AΣ0A
> = (I −AA>)Σ0 � 0 (13)

This expression is only positive definite if I −AA> � 0; that is48

I � AA>. (14)

This condition implies that A> is a contraction because49

v>(I −AA>)v = ‖v‖22 − ‖A>z‖22 ≥ 0 =⇒ ‖v‖22 ≥ ‖A>v‖22, ∀v ∈ RN . (15)

Another way of phrasing this is the that the singular values of A may not exceed unity. Note that50

rotations do not break this constraint. So we see this this model naturally aligns with our notion that51

we can only model image downscalings, and that upscalings are prohibited.52

2



1.3 Other Scale-space variants53

We have presented the Gaussian scale-space in ND, but there also exists a zoo of other scales-spaces.54

The most prominent are: the α-scale-spaces [Pauwels et al., 1995], the discrete Gaussian scale-spaces55

[Lindeberg, 1990], and the binomial scale-spaces [Burt, 1981]. In the following, we give a brief56

introduction to each, exhibited in 1D.57

α-scale-spaces α-scale-spaces Pauwels et al. [1995] are a generalization of the Gaussian space-space58

in the continuous domain. They are easiest to understand by considering their form in Fourier-space.59

We begin by considering the Fourier transform of the Gaussian space-space over the spatial dimension60

f̂(t, ω) = Ĝ(ω, t) · f̂0(ω) (16)

f̂(0, ω) = f̂0(ω), (17)

where f̂ is the Fourier transform of f . We are interested in finding a collection of filters like G, closed61

under convolution. In the Fourier domain this corresponds to finding a collection of filters, like Ĝ62

closed under multiplication. The Fourier transform of the Gauss-Weierstrass kernel is63

G(x, t) =
1

(4πt)1/2
exp

{
−x

2

4t

}
FT⇐⇒ Ĝ(ω, t) = exp

{
−ω2t

}
. (18)

The collection {Ĝ(ω, t)}t>0 is indeed closed under multiplication and forms a semigroup. To form64

the α-scale-spaces we notice that the Fourier kernel65

Ĝα(ω, t) = exp
{
−ω2αt

}
(19)

is also closed under multiplication and defines a semigroup. The range of α is typically taken to66

be (0, 1], to make sure that higher levels in the α-scale-space are blurrier. Notice that for α = 1 we67

return to the standard Gaussian scale-space.68

Binomial Scale-space The binomial scale-space Crowley et al. [2002] is a discrete scale-space in69

both the spatial and scale dimensions. It is generated by convolution in Z with the binomial kernel70

B(x,N) = NCx

/
N∑
x=0

NCx ,
NCx =

N !

(N − x)!N !
, (20)

where N > 0 is the width of the kernel and 0 ≤ x ≤ N is the spatial location of the filter tap. Thus71

the scale-space is72

f(N, x) = [B(·, N) ∗Z f0](x) N > 0. (21)

As N grows B(N, x) rapidly converges to a Gaussian kernel of variance σ2 = N/4. The Binomial73

filters are closed under convolution obeying the semigroup property74

[B(·, N) ∗Z B(·,M)](x) = B(x,N +M − 1). (22)

Discrete Gaussian Scale-space The discrete Gaussian scale-space Lindeberg [1990] is discrete in75

the spatial dimension but continuous in the scale dimension, which makes it popular to work with in76

many practical scale-spaces with non-integer dilation. The scale-space is generated by convolution in77

Z with the discrete Gaussian kernel78

G(x, t) = e−tI|x|(t), Ix(t) =

∞∑
m=0

(
1
2x
)2m+α

m!Γ(m+ α+ 1)
(23)

where the term Ik(t) is a modified Bessel function of the first kind. These can be implemented easily79

using scipy.special.ive. The scale-space is formed in the usual way as80

f(t, x) = [G(·, t) ∗Z f0](x) t > 0 (24)
f(0, x) = f0(x). (25)
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Table 1: A residual network. Input at the top. A horizonal line denotes spatial average pooling of
stride 2, kernel size 2. Shape is displayed as [scale-space levels, height, width, channels out]. The
no-res block denotes a residual block without the skip connection, i.e. y = F(x). Scale pooling
denotes an averaging over all scale dimensions.

Layer type Shape
res[k, 3, 3] [S, 992, 992, N ]
res[k, 3, 3] [S, 496, 496, 2N ]
res[1, 3, 3] [S, 248, 248, 4N ]
res[k, 3, 3] [S, 248, 248, 4N ]
res[1, 3, 3] [S, 124, 124, 8N ]
res[1, 3, 3] [S, 124, 124, 8N ]
res[1, 3, 3] [S, 124, 124, 8N ]
res[k, 3, 3] [S, 124, 124, 8N ]
no-res[k, 3, 3] [S, 124, 124, 8N ]
scale-pool [1, 124, 124, 8N ]
corr[1,1,1], [1, 124, 124, 19]
bilinear upsample [1, 992, 992, 19]

2 Architectures In The Experiments81

In the experiments, we use a DenseNet Huang et al. [2017] and a ResNet He et al. [2016]. The82

architectures are as follows. For the scale equivariant versions, we use 4 scales of a discrete Gaussian83

scale-space Lindeberg [1990].84

ResNet The residual network consists of a concatenation of residual blocks. A single residual block85

implements the following86

y = x+ F(x) (26)

where on the RHS we refer to x as the skip connection and F(x) as the residual connection. If x has87

fewer channels than F(x), then we pad the missing dimensions with zeros. Each residual connection88

uses a concatenation of two scale-equivariant correlation interleaved with batch normalization (BN)89

and a ReLU (ReLU) nonlinearity. These are composed as follows (input left, output right)90

corr[1, 3, 3] - BN - ReLU - corr[k, 3, 3] - BN. (27)

where corr[k, h, w] refers to a scale correlation with kernel size [k, h, w] and where k is the number91

of scale channels, h is the spatial height of the filter, and w is its spatial width. We denote the entire92

residual block as res[k, h, w].93

The model we use is given in Table 1. It follows the practice of Yu et al. [2017], who use a bilinear94

upsampling at the end of the network, since segmentations do not tend to contain high frequency95

details. In our experiments we use the models shown in Table 296

DenseNet The Dense network Huang et al. [2017] consists of a concatenation of 3 dense blocks.97

Each dense block is composed of layers of the form98

yN+1 = H ([y1, y2, ..., yN ]) (28)

where [y1, y2, ..., yN ] is the concatenation of all the previous layers’ outputs. Each layer H is the99

composition (input left, output right)100

BN - ReLU - corr[k, 3, 3] (29)

Table 2: We match model settings with their names from the paper. Settings are displayed as [k, S,N ]
or [kernels scale dim., num scales, number of channels].

Model Settings
S-ResNet, multiscale interaction [2, 4, 16]
S-ResNet no interaction [1, 4, 16]
ResNet, matched channels [1, 1, 16]
ResNet, matched parameters [1, 1, 18]
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Table 3: A DenseNet. Input at the top. For shape, we show the number of scales, the height, the
width, and the number of channels. S denotes the number of scales used per layer.

Layer type Shape
dense12[1, 3, 3] ×3 [S, 96, 96, 39]
transition[3, 3, 3] [S, 48, 48, 19]
dense24[1, 3, 3] ×3 [S, 48, 48, 94]
transition[3, 3, 3] [S, 24, 24, 47]
dense48[1, 3, 3] ×3 [S, 24, 24, 213]
Global average pooling [1, 1, 213]
Linear layer [1, 1, 2]

where corr[k, 3, 3] was described in the previous section. We use the notation denseC [k, h, w]×N to101

denote a dense block with N layers and C output channels per layer. The number of channel outputs102

remains constant per layer within a dense block. Between dense blocks, we insert transition layer103

which have the form104

dense[1, 1, 1]×1 - pool - dense[k, h, w]×1. (30)

Here we use a 1× 1 convolution to halve the number of output channels, and then perform a spatial105

average pooling with kernel size 2 and stride 2, followed by a second dense layer. We denote these as106

transition[k, h, w]. We also use long skip connection between transistion layers. The network we use107

is shown in Table 3.108
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