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A  Proofs

A.1 Theorem 1 and its Corollary

Assumption 1. The environment dynamics is stationary between the expert and agent.

Lemma 1. The equality below holds.

Dkr, [px (5, a,8")||pE(s, a,8")] = DkL [px (s, a)||pe(s, a)] . (D

Proof. We can expand the left side of the equality following Kullback—Leibler divergence definition
and Assumption 1 as
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Theorem 1. The relation between LfD, naive LfO, and inverse dynamics disagreement can be char-
acterized as

Dk (px(als, s')lpe(als, s')) = Dk (px(s, a)|lpe(s, a)) — Dkw (px (s, 8)|lpe(s,s) . (@)

Proof. We can subtract the Kullback-Leibler divergence between the state transition of expert
and agent Dk, (p=(s,8')||pe(s,s’)) from the corresponding discrepancy over joint distribution
Dk (px (s, a,8")|lpe(s; a, ")) as

Dxr, (pr(s,a,8")|lpe(s, a,8")) — D (px (s, 8")|IpE(s, s"))

/
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With Lemma 1, we have

Dkw(px(s,a,8")||pr(s, a,5")) — DkL(px(s,5)l|pr(s, s"))

= Dk (px (s, a)llpE(s,a)) — Dxr(px(s, s")l|pE(s, s")). 4)
With (3), (4)

Dk (px(als, s")lpe(als, s')) = DkL (px (s, a)llpr(s, @) — Dkr (px(s, 8')[Ipe(s, s)) -

We now introduce the following lemma that will be used in the proof for Corollary 1.

Lemma 2. if the dynamics is injective, i.e., distribution T (s'|s, a) that characterizes the dynamics
is a degenerate distribution, and there is only one possible action corresponds to a state transition,
the conditional distribution p,(als,s’) that characterizes the corresponding inverse model under
policy m will also be injective, and will be independent with policy m, thus we have

px(als, s) = pe(als, s"), ®)

where pg(als, s') characterizes the corresponding inverse dynamics model for the expert.



Proof. We will begin with the definition of inverse model as

T(s'ls, a) (al )
fA (s'|s,a)m(a|s)da
Since 7T is injective, which means that 7(s'|s,a) = 0(s' — f(s,a)),f : Sx A = S, fisa

deterministic function that independent with policy , ¢ is Dirac delta function. When f(s,a) = ¢/,
and for given s, s, there is only one a satisfy this equation, we have

(6)

pr(als,s’)

6(0) x m(als)
pr(als, s') ~ Ixn(a=als)
=4(0). (N
When f(s,a) # ¢, it will be
0 x 7r(a| )
prlals;s’) = J4 T (s'|s,a)n(a|s)da
=0. ®)
Finally we can rewrite p,(als, ) as
n_ J60) f(s,a) =+,
putals.s) = {0 J 02 ©)

which is independent with current policy 7, thus we have

50) f(s,0) =+,

pr(als,s") = pg(als,s’) = {0 (10)

Corollary 1. If the dynamics T (s'|s, a) is injective, LfD is equivalent to naive LfO.

Dk (px(s, a)llpe(s, a)) = Dxw (px(s, 5')llpr(s, s)) . (1)

Proof. With Lemma 1, we can substitute the right side of the equality as

DkL(px (s, a)llpe(s; a))
= DKL(pTr(Sv a, SI)HPE(Sv a, 5,))

=E,, |log

=E

(
)
p(s,8)

:Ep

" Log(s,s)
by Lemma 2
=Dk (px(s,8)llpe(s, s)). (12)

A.2 Theorem 2

Theorem 2. Let H (s, a) and HE(s, a) denote the causal entropies over the state-action occupancy
measures of the agent and expert, respectively. When Dk, [pr (s, 8')||pE (s, s')] is minimized, we
have

Dkr, [px(als, s")||pe(als, s")] < —Hx(s,a) + Const. (13)



Proof. We will begin with the gap as the discrepancy between the inverse model of agent and expert

Dk (px(als, s")|lpe(als, s'))

S/
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= —Hr(s,a) —/ pr(s,a)log pg(s,a)dsda
SxA

< —Hx(s,a) + sup (—/ px(s,a)log pg(s, a)dsda)
SxA

P

= —Hr(s,a) + Const. (14)
Note that the second term in the inequality sup,, (+) cannot be optimized w.r.z. the parameterized
policy 7y and thus can be omitted from the objective of maximizing H (s, a). O

A.3 Theorem 1 and its Corollary with Jensen-Shannon Divergence

Lemma 3 (Lemma 1 with JS divergence). The equality below holds.
Dys [pfr(sv a, S/)HPE(S’ a, S/)} = Dys [pﬁ(S, a)'lpE(Sa CL)] . (15)

Proof. We can expand the left side of the equality as
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Theorem 3 (Theorem 1 with JS divergence). Given optimal expert policy 7g, pr(s,a), pe(s,s’)
denote its state-action and state transition occupancy measures accordingly, the optimization gap
between minimizing the discrepancy of these two types of occupancy measures w.r.t. agent policy
shows that

Dys (px(als, s")llpe(als, s') = Dis (px(s, a)llpe(s, @) = Dis (px(s, s')llpe(s, ') + 6 (A7)

where the minor term € will converge to zero when minimizing the ndive LfO objective under JS
divergence D35 (px (s, s")||pE(s,5")).

Proof. We will begin with subtracting the Jensen-Shannon divergence between the state transition
of expert and agent Djs(p~(s,s")||pr(s,s’)) from the corresponding discrepancy over joint distri-
bution D;s(p (s, a)||pr(s,a)) as

Dys(px (s, a)llpe(s, a)) — Dis(px(s, s')lpe(s, ')



= DJS(pﬂ(S7 a, 8/)||pE(S7 a, SI)) - DJS(pW(S7 S/)HpE(S? Sl))

by Lemma 3
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We denotes (18) as T'(s,a, ') and f(s,a,s') = - ’O(’;(jfgig};gizz/) We then expand the discrep-

ancy between the inverse model of expert and agent as
Dys(px(als, s")|pe(als, s"))
2pr(als, s
= ~px(s,a,s)log
~/8><A><S 2 Pw(a|375/) +pE(a|375/)
2ps(als, ')
+ [ Gestsas)log
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When Djs(px(s,s")||pr(s,s’)) — 0, there will be 5;((22/,)) — 1, and g(s,a,s’) — 2. Therefore

I'(s,a,s") — Dys(px(als, s")||pr(als,s’)) — 0. If we denote

e =T(s,a,5") = Dys(pr(als,s')|lpe(als,s’))
=Dis(pr(s,a)llpe(s,a)) —Dis(pxr(s,s')|lpe(s,s") — Dis(px(als,s')||pe(als,s")),

we get € — 0 during the minimization of Djs(px (s, s')||pe(s,s’)). O

Corollary 2 (Corollary 1 with JS divergence). If the dynamics T (s'|s, a) is injective, LfD is equiv-
alent to naive LfO (replacing KL with JS divergence).

Dys (px(s, a)llpe(s, a)) = Dis (px(s, ')l pm(s,s)) . (19)

Proof. With Lemma 3, we can substitute the right side of the equality as

Dys(px(s,a)llpe(s, a))
= DJS(/OW(S7 a, S/)HpE(S, a, Sl))
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A4 Theorem 2 with Jensen-Shannon Divergence

Assumption 2. Given the inverse dynamics model of agent p,(als, s') and expert pg(als, s’). The
following inequality
Dxw(pe(als, s')||px(als, s')) < Dkw(px(als, s")l|pe(als, s') + 4, 2D

where § is a minor term that will converge to 0 and thus can be omitted during the minimization
the inverse dynamics disagreement between p,(als,s’) and pg(a|s,s’), should always holds, or
the reverse Kullback-Leibler divergence of the inverse model between agent and expert should be
bounded by the KL divergence between them.

Note that, this assumption 1is somewhat trivial since when KL divergence
Dk (pr(als, s")||pr(als, s)) is sufficiently minimized, the total variance between p,(als, s’) and
pe(als, s’) is also minimized, thus inverse Dkr,(pg(als, s')||px(als, s”)) will be minimized at the
same time. Apparently, the inequality holds and there will be § — 0.

Theorem 4 (Theorem 2 with JS divergence). Let H,(s,a) and Hg(s,a) denote the causal en-
tropies over the state-action occupancy measures of the agent and expert, respectively. When
DxkL [px (s, ) ||pE(s, 8")] is minimized, we have

Dys [px(als, s)||pe(als, s')] < —Hx(s,a) + Const. (22)

Proof. We will begin with the gap as the discrepancy between the inverse model of agent and expert

Dys [pr(als, s)llpe(als, s')]
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1 1
= 3Dk (pxlals, s")llpp(als, ) + 5D (pr(als, s')llpx(als, 7)) + log2

= Dxw (pr(als, s")lpe(als, s')) + 0 +log 2
by Assumption 2
< —Hr(s,a) + Const, (23)

by Theorem 2

dsdads’

where the first inequality is given by Jensen’s inequality, and as we demonstrated in Assumption 2,
the minor error § will converge to 0 and thus can be omitted from the objective of minimizing

Djs (px(als, s')[|pe(als, s')). O
A.5 Gradient Estimation of Policy Entropy and Mutual Information

Here we provide the policy gradient formula for causal entropy H.,(a|s) and mutual information

Z(s;(s',a)).

Proposition 1. The policy gradient of causal entropy H(al|s) is given by
VoEr, [~ logma(als)] = Eg [Vg log 7y (a|s)QH(s, a)] ,

" (24)
where Q7 (5,a) = E,, [—logm(als)|so = §,a0 = a].



Proof. Define p(s) =), p(s, a) as the state occupancy measure. Then we have

VoEr, [-logme(als)] = —Vy Zpﬁg(s, a)log g (als)

= —Z (Vopry(s,a)) log mo(als) me )Zﬂe(ﬂﬂs)ve log g (als)
= —Z Vopr,(s,a))logmg(als) Zpﬂs ZV@W@ als)

=0
== (Vopr,(s,a))logm(als). (25)

This is exactly the policy gradient for RL with fixed cost function ¢(s, a) = logmy(als). And the
resulting policy gradient (24) is given by the standard policy gradient with cost ¢(s, a). O

Proposition 2. The policy gradient of mutual information Z(s; (s',a)) is given by

VoZr, (s; (s',a)) = Eg [Vologme(als)Q' (s,a)], 6)

Proof. Note that Z,.(s; (s',a)) = Hr(s) — Hr(s|s’, a). The same as the proof for Proposition 1, we
have

VoIr,(s;(s',a)) =—Vy me )logmg(s) — Vg Z Py (8,a,8") logmg(s|s’, a)
=— Z Vopr,(s))logmg(s) — Z (Vopr,(s,a,8")) logme(s|s’,a).  (27)

We can thus see Z,(s; (s’,a)) as a fixed cumulative cost sum of a MDP, thus the resulting policy
gradient will be (26). O



B Specifications

B.1 Hyperparameters

Tab. 1 lists the parameters for BCO [8], DeepMimic [5], GAIL [3], GAIfO [9] and proposed method
used in the comparative evaluation.

Table 1: Hyperparameters for Evaluated Algorithms

Parameter ‘ Value
Shared
Optimizer Adam [4]
Learning rate R
Batch size 512
Discount (v) 0.99
Architecture of policy, value and discriminator networks | (300, 400)
Nonlinearity Tanh
BCO
Inverse model training epoches 50
DeepMimic
Reward type Joint angle ¢; and Joint velocity ¢,
Reward design re = wpexp(=2(3, 1 — gll2))
+ wy exp(=0.1(3; 1|47 — 7 |2))
Reward weight (wp,w,) (0.8,0.2)
GAIL
Weight of policy entropy 0.01
Ours
Weight of policy entropy (\p) 0.01
Weight of state entropy (As) 0.1
Pretrained MI estimator steps 10000
Update MI estimator steps 50
Architecture of MI estimator network (512,512)

B.2 Gridworld Environment and Inverse Dynamics Disagreement

We will first demonstrate how our Gridworld environments are motivated by illustrating the relation
between inverse dynamics disagreement and possible functional-equivalent action choices. Then we
will provide the detailed specifications of our Gridworld environment.

The intuition behind the design of these experiments is that the complexity of the dynamics shows
positive correlation with inverse dynamics disagreement. Under the deterministic dynamics, the
complexity will be mainly dominated by the numbers of action choices (or size of state space, but we
override it as we adopt a fixed size maze). Consider a MDP with two state sg, s; and a set of actions

{aé(i), aéll), aézl), -+-} that can let the agent transform from sy to s;. To approximately compute
inverse dynamics disagreement, we denote w(als = sg) ~ Categorical(p; = ps = -+- = pg) isa

uniformed initialized policy on a discrete action space with size k, wy(a|s = sg) is a §-parameterized
expert policy. Without loss of generality, we assume 6 has a prior of normal distribution 6 ~
N(0%,1%). Therefore, we can approximately compute inverse dynamics disagreement as follows.

Inverse Dynamics Disagreement
~ Egnr(or,10) [DxL (m(als = s0)p(s = s0)||mg(als = s0)p(s = s0))], (28)



where p(s = s¢) is the distribution of state. Since there is only two states available, p(s = s¢) = 1.
Fig. 1a in the main paper are plotted with (28). As we can see, inverse dynamics disagreement does
show a growing trend as the number of possible action choices increases.

To this end, we design several simple Gridworld environments (see Fig. 1) to help understand how
inverse dynamics disagreement affects the imitation learning algorithms. The red block is the start-
ing point of the agent, while the agent is encouraged to move toward the target green block. All the
black and dark grey block are permitted to move through, while the grey block represents wall. The
action that the agent may conduct including four basic ones: moving left, moving right, moving up,
moving down when the number of possible action choices is one. If the number of possible action
choices is larger than one (e.g. n choices), there will be n — 1 functional equivalent choices added to
each original moving action, i.e., now there will be n action choices for moving left/right/up/down.
For the reward strategy, once the agent successfully reaches the green target block, it will receive a
reward of 100, and the game will immediately come to an end. When the agent takes an original
moving action, it will receive a penalty of —1, but when the agent chooses an action choice that is
other than the original one, it will receive a penalty of —5. All the numerical evaluation results are
under this strategy.

img/gridworld_sup.pdf

Figure 1: Gridworld environment.

B.3 Other Environments

Tab. 2 lists the specifications about the benchmark environments and number of state transition pairs
(state-action pairs for GAIL) in demonstration for each environment.

Table 2: Specifications for Evaluated Environments

Environment S A Max-Step Demonstration Size
CartPole R*  {0,1} 200 5000
Pendulum R* R! 1000 50000

DoublePendulum R!! R! 1000 50000
Hopper R R3 1000 50000
Halfcheetah R'7 RS 1000 50000
Ant R R 1000 50000

C Additional Empirical Results

C.1 Quantitative Results of Toy Example

Tab. 3 lists the quantitative results of the toy Gridworld experiments.



Table 3: Quantitative Results of GAIL, GAIfO and our method in Gridworld Environment.

Num. of Action 1 2 4 11

GAIL [3] 86.0+£3.0 70.4£6.4 68.7£58 69+4.0
GAIfO [9] 86.8+1.3 55.7+11.9 4834+9.3 28.3£6.2
Ours 87.3+1.8 65.0£3.3 56.0+5.0 49.0+£8.6

C.2 Comparative Evaluations

On the differences on results compared with [9] For the baseline results of GAIfO [9], we notice
that there are some differences between the results reported in [9] and our paper (Tab. 2 and Fig.
2 in the main paper). We hypothesis that the reason is twofold. First, different physics engine.
Referring to the footnote 2 in page 5 of [10], the experiments in [9] are conducted with PyBullet [2]
physics engine, while we use MuJoCo [7] instead since it is the default physics engine in OpenAl
Gym [1] benchmark. Second, different expert demonstrations. As [9] does not provide the expert
demonstrations used for imitation learning, we collect the demonstrations for all the baselines and
our method by training an expert with PPO [6], which may lead to different imitation learning
results.

C.3 Quantitative Results of Ablation Study
Tab. 4 and Tab. 5 list the quantitative results of the ablations analysis (sensitivity to policy entropy

and mutual information), while the corresponding learning curves can be found in Fig. 2a and Fig. 2b
respectively.

Table 4: Quantitative results about A, on HalfCheetah task.

hyperparameters Averaged return

Ap = 0.0, A, = 0.01 4882.8 £40.1
Ap = 0.0005, \s = 0.01  5526.2 £+ 95.6
Ap = 0.001, A = 0.01 5343.2 £88.5
Ap =0.01, A, = 0.01 5404.8 £103.7

Table 5: Quantitative results about A\ on HalfCheetah task.

hyperparameters Averaged return

Ap = 0.001, As = 0.0 4658.0 £90.2
Ap =0.001, Ay =0.001  5189.7 £77.2
Ap = 0.001, Ay = 0.01 5343.2 £88.5
Ap =0.001, A = 0.1 5540.5 £ 100.3

To further illustrate how our method can benefit from the two components (policy entropy and MI
terms), here we also provide the results of performing a grid search on A, and A in Fig. 3. All the
numerical results are evaluated under the same criteria as other experiments.

The results read that, adding MI term can always promote the imitation performances, and the
improvement can be more significant as the value of A\ increases. And the promotions it obtains are
robust to the changes of A,. On the other hand, imitation performance can also benefit from adding
policy entropy, while different A\, may lead to different improvements over the GAIfO baseline (the
left-bottom block, with Ay = A, = 0).
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