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1 Notations and preliminary results

We first define some helpful notations. The support of µ is supp(µ) = {x ∈ X |µ(B(x, r)) >
0 for all r > 0}. The function η, defined for points x ∈ X , can be extended to measurable set A with
µ(A) > 0 as

η(A) =
1

µ(A)

∫
A

ηdµ.

To build a natural connection between the geometric radius and the probability measure, we define

rp(x) = inf{r|µ(B(x, r)) ≥ p}.

rp(x) is the smallest radius so that an open ball centered at x has probability mass at least p. Intuitively,
a greater p leads to a greater rp(x).

We are now ready to define the so-called effective interiors of the two classes. The effective interior
of class 1 is the set of points x with η(x) > 1/2 on which the k-NN classifier is more likely to be
correct (than on its complement):

X+
p,∆ = {x ∈ supp(µ)|η(x) > 1/2, η(B(x, r)) ≥ 1/2 + ∆ for all r ≤ rp(x)}.

To see this, note that for a sample with n points and for r ≤ rp(x), because there are roughly
speaking at most np points in B(x, r), η(B(x, r)) ≥ 1/2 + ∆ suggests that the average of the class
labels of those points in B(x, r) is greater than 1/2 by at least ∆; hence one can easily get a correct
classification using k-NN at point x if p is k/n.

Similarly, the effective interior for class 0 is defined as

X−p,∆ = {x ∈ supp(µ)|η(x) < 1/2, η(B(x, r)) ≤ 1/2−∆ for all r ≤ rp(x)},

and the effective boundary is defined as

∂p,∆ = X\(X+
p,∆ ∪ X

−
p,∆).

This is the region on which the Bayes classifier and the k-NN are very likely to disagree.

Theorem A.1 below generalizes Theorem 5 of Chaudhuri and Dasgupta [1] to the bigNN classifier.
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Theorem A.1. With probability at least 1− δ,

PX(g∗n,k,s(X) 6= g(X)) ≤ µ(∂p,∆) + δ,

where
p =

k

n
· 1

1−
√

(4/k) log(4/δ2/s)

and

∆ = min

(
1

2
,

√
1

k
log

(
4

δ2/s

))
.

This theorem essentially says that the probability that the bigNN classification is different from the
Bayes rule is about the size of the effective boundary which can be calibrated and controlled. The
proof of the theorem starts with the evaluation of the probablity that each classifier on a local machine
disagrees with the Bayes rule [1], and bounds the disagreement probability of the ensemble classifier
using concentration equalities due to the Chernoff bound.

To bound the excess risk, we first consider pointwise conditional risk. The Bayes classifier has
pointwise risk R∗(x) = min(η(x), 1 − η(x)). The pointwise risk for the jth base k-NN classifier
(the bigNN classifier, resp.) is denoted as R(j)

n,k,s(x) (Rn,k,s(x), resp.) Next, we prove a lemma that
give an upper bound for the expected pointwise regret (the expectation is with respect to the training
data) under the (α,L)-smoothness assumption of η.
Lemma 1. Set p = 2k/n and ∆o = Lpα. Pick any x ∈ supp(µ) with ∆(x) ≡ |η(x)− 1/2| > ∆o.
Under the (α,L)-smoothness assumption of η,

EnRn,k,s(x)−R∗(x) ≤ max
{

[8 exp(−k/8)]s/2,

2∆(x)[16 exp(−2k(∆(x)−∆o)
2)]s/2

}
We are ready to prove the convergence rate of the regret for the bigNN classifier.

2 Proof for Theorem A.1

Proof. Pick any xo ∈ X and any 0 ≤ p ≤ 1, 0 ≤ ∆ ≤ 1/2. Let

B(j) = B(xo, ρ(xo, X
(j)
(k+1)(xo))),

where X(j)
(m) is the mth nearest neighbor of xo in the jth subsample. Intuitively, B(j) is the ball that

includes the k nearest neighbors. Let Ŷ (B(j)) denote the mean of the Yi’s for points Xi ∈ B(j).
Then

1(g
(j)
n,k(xo) 6= g(xo)) ≤ 1(xo ∈ ∂p,∆)+

1(ρ(xo, X
(j)
(k+1)(xo)) > rp(xo))+

1(|Ŷ (B(j))− η(B(j))| ≥ ∆). (1)

This is the event that the jth base classifier does not agree with the Bayes classifier. Define the jth
“bad event” as

badj = BADj(xo, X
(j)
1:n, Y

(j)
1:n )

= 1(ρ(xo, X
(j)
(k+1)(xo)) > rp(xo)

or |Ŷ (B(j))− η(B(j))| ≥ ∆).

Now for the main event of interest here, we have

1(g∗n,s,k(xo) 6= g(xo)) ≤ 1(xo ∈ ∂p,∆) + 1(more than bs/2c BAD occur)

To see this, suppose xo 6∈ ∂p,∆. Then without loss of generality, xo lies in X+
p,∆, on which

η(B(xo, r)) > 1/2 + ∆ for all r < rp(xo). Next, suppose further that less than or equal to
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bs/2c BAD events occurs, which means that more than bs/2c “good” events (the complements of the
BAD events) occur, that is, for more than bs/2c subsets, it holds

ρ(xo, X
(j)
(k+1)(xo)) ≤ rp(xo),

and
|Ŷ (B(j))− η(B(j))| < ∆.

The first inequality above means that

η(B(j)) > 1/2 + ∆.

These suggest that Ŷ (B(j)) > 1/2. Recall that η(xo) > 1/2 since xo lies in X+
p,∆. We can conclude

that on the jth “good” event the jth base k-NN classifier has made the same decision as the Bayes
classifier. If more than half of the base k-NN classifiers agree with the Bayes classifier, then the
bigNN classifier also agrees with the Bayes classifier.

Note that BADj’s are independent and identically distributed Bernoulli random variables. Denote
q = EN (BADj) where the expectation is taken with respect to the distribution of the training data.
EN (BADj) can be bounded using Lemmas 8 and 9 of Chaudhuri and Dasgupta [1]: for γ = 1−(k/np)

q = EN (BADj) ≤ exp(−kγ2/2) + 2 exp(−2k∆2) = δ4/s/4.

Using concentration equalities due to the Chernoff bound [cf. Theorem 1.1, 2], we have

PN (

s∑
j=1

BADj > s/2) ≤ exp(−sD(0.5‖q))

= exp{−s[0.5 log(0.5/q) + 0.5 log(0.5/(1− q))]}

=

[
0.25

q(1− q)

]−0.5s

= [4q(1− q)]0.5s

≤ (4q)0.5s ≤ δ2

where D(x||y) = x log(x/y) + (1− x) log((1− x)/(1− y)).

Taking expectation over Xo, we have

EXoEN1(more than bs/2c BAD occur)

= ENEXo1(more than bs/2c BAD occur) ≤ δ2

Markov’s inequality leads to that

PN (EXo1(more than bs/2c BAD occur) ≥ δ) ≤ δ,

that is, with probability at least 1− δ,

EXo1(more than bs/2c BAD occur) < δ.

In conclusion, with probability at least 1− δ,

PX(g∗n,k,s(X) 6= g(X))

= EXo{1(Xo ∈ ∂p,∆)

+ 1(more than bs/2c BAD occur)} ≤ µ(∂p,∆) + δ

3 Proof for Lemma 1

Proof. Assume without loss of generality that η(x) > 1/2. The (α,L)-smooth assumption of η
implies

|η(B(x, r))− η(x)| ≤ Lµ(Bo(x, r))α,
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for all x ∈ X , r > 0. Next, for all 0 ≤ r ≤ rp(x), we have

η(B(x, r)) ≥ η(x)− Lpα = η(x)−∆o =
1

2
+ (∆(x)−∆o).

Hence x ∈ X+
p,(∆(x)−∆o) and x 6∈ ∂p,(∆(x)−∆o).

Apply the same argument as in (1), we have that

R
(j)
n,k,s(x)−R∗(x) = |2η(x)− 1|1(g

(j)
n,k,s(x) 6= g(x))

= 2∆(x)1(g
(j)
n,k,s(x) 6= g(x)) ≤ 2∆(x)BADj

where the jth bad event BADj is defined as

1[ρ(x,X
(j)
(k+1)(x)) > rp(x) or |Ŷ (B(j))− η(B(j))| ≥ ∆(x)−∆o],

and B(j) = B(x, ρ(x,X
(j)
(k+1)(x))).

The probability of a bad event is bounded by invoking Lemma 9 and Lemma 10 in Chaudhuri and
Dasgupta [1],

ENBADj ≤ PN (ρ(x,X
(j)
(k+1)(x)) > rp(x))+

PN (|Ŷ (B(j))− η(B(j))| ≥ ∆(x)−∆o)

≤ exp

(
−k

2
(1− k

np
)2

)
+ 2 exp(−2k(∆(x)−∆o)

2)

= exp (−k/8) + 2 exp(−2k(∆(x)−∆o)
2), (2)

where we substitute p = 2k/n to obtain the last equality.

Similarly, for the pointwise risk of the bigNN classifier,
R∗n,k,s(x)−R∗(x) = 2∆(x)1(g∗n,k,s(x) 6= g(x))

= 2∆(x)1
( s∑
j=1

BADj > s/2
)

By taking expectation over the training data, we can then conclude that
ENR∗n,k,s(x)−R∗(x)

≤ 2∆(x)PN
( s∑
j=1

BADj > s/2
)

≤ 2∆(x)(4EN (BADj))
s/2

≤ 2∆(x)[4 exp(−k/8) + 8 exp(−2k(∆(x)−∆o)
2)]s/2

≤ max
{

[8 exp(−k/8)]s/2,

2∆(x)[16 exp(−2k(∆(x)−∆o)
2)]s/2

}

4 Proof for Theorem 1

Proof. We define ∆i = 2i∆o. Pick any io > 1. Lemma 2 bounds the pointwise regret on the set
∆(x) > ∆io . On the set of ∆(x) ≤ ∆io , recall that

R
(j)
n,k,s(x)−R∗(x) = 2∆(x)1(g

(j)
n,k,s(x) 6= g(x))

so that the pointwise regret is always bounded by 2∆(x) ≤ 2∆io . Then we have
EnRn,k,s −R∗

≤ EX
{

2∆io · 1(∆(X) ≤ ∆io)+

max
{

[8 exp(−k/8)]s/2,

2∆(x)[16 exp(−2k(∆(x)−∆o)
2)]s/2

}
· 1(∆(X) > ∆io)

}
4



For the first term,
EX
{

2∆io1(∆(X) ≤ ∆io)
}
≤ 2C∆β+1

io
.

For the second term,

EX
{

2[4e−k/8]s/21(∆(X) > ∆io)
}
≤ (2
√

2)s exp(−ks/16).

The last term is decomposed to the sum of the followings with i ≥ io:

EX{2∆(x)[16 exp(−2k(∆(x)−∆o)
2)]s/2

× 1(∆i < ∆(X) ≤ ∆i+1)}
≤ 2∆i+1[16 exp(−2k(∆i −∆o)

2)]s/2PX(∆(X) ≤ ∆i+1)

≤ 2C∆1+β
i+1 4s exp(−ks(∆i −∆o)

2).

If we set io = max
(

1,
⌈
log2

√
2(2+β)
ks∆2

o

⌉)
,

2C∆1+β
i+1 4s exp(−ks(∆i −∆o)

2)

2C∆1+β
i 4s exp(−ks(∆i−1 −∆o)2)

= 21+β exp(−ks[(∆i −∆o)
2 − (∆i−1 −∆o)

2])

= 21+β exp(−ks∆2
o[(2

i − 1)2 − (2i−1 − 1)2])

≤ 21+β exp(−ks∆2
o[2

i−1 · 2 · 2i−1])

≤ 21+β exp(−(2 + β)) ≤ 1/2.

Therefore,

EX{2∆(x)[16 exp(−2k(∆(x)−∆o)
2)]s/2

∗ 1(∆(X) > ∆io)}

≤
∞∑
i=io

EX{2∆(x)[16 exp(−2k(∆(x)−∆o)
2)]s/2

∗ 1(∆i < ∆(X) ≤ ∆i+1)}
≤ 2EX{2∆(x)[16 exp(−2k(∆(x)−∆o)

2)]s/2

1(∆io < ∆(X) ≤ ∆io+1)}
≤ 4C∆1+β

io+14s exp(−ks(∆io −∆o)
2) ≤ C1∆1+β

io

Hence,

EnRn,k,s −R∗

≤ 2C∆1+β
io

+ (2
√

2)s exp(−ks/16) + C1∆1+β
io

≤ 2C2∆1+β
io

= 2C2 · 2io(1+β)∆1+β
o

= 2C2 ·

{
max

[
2∆o,

√
2(2 + β)

ks

]}1+β

= 2C2 ·

{
max

[
2L(2k/n)α,

√
2(2 + β)

ks

]}1+β

.

Recall that s = Nγ and n = N1−γ . Therefore, if we let k = kon
2α/(2α+1)s−1/(2α+1), then

EnRn,k,s −R∗

≤ C0[n−α/(2α+1)s−α/(2α+1)]1+β

= C0N
−α(1+β)/(2α+1)
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5 Proof for Theorem 2

Proof. Assume that ∆(x) > ∆o. Assume without loss of generality that η(x) > 1/2. Under the
(α,L)-smooth assumption of η, we have that

η(B(x, r)) ≥ η(x)− Lpα

= η(x)−∆o =
1

2
+ (∆(x)−∆o).

Hence x ∈ X+
p,((∆(x)−∆o)) and x 6∈ ∂p,(∆(x)−∆o).

Let g∗n,s,k(xo), g̃n,s,k(xo) be the bigNN classifiers based on two iid samples respectively. Apply the
same argument as in (1), it is easy to see that given x 6∈ ∂p,(∆(x)−∆o),

1(g∗n,s,k(xo) 6= g̃n,s,k(xo))

= 1(more than bs/2c BAD and fewer than bs/2c BAD′, or

fewer than bs/2c BAD and more than bs/2c BAD′)

Taking expectation over the training data, we have

CIS(bigNN)(x) ≡ PN (g∗n,s,k(xo) 6= g̃n,s,k(xo))

≤ 2PN

 s∑
j=1

BADj > s/2 and
s∑
j=1

BAD′j < s/2


≤ 2PN

 s∑
j=1

BADj > s/2



≤ 2[4 exp(−k/8) + 8 exp(−2k(∆(x)−∆o)
2)]s/2

≤ 4 max
{

[4 exp(−k/8)]s/2,

[8 exp(−2k(∆(x)−∆o)
2)]s/2

}
The rest of the proof follows that of Theorem 3. Observe that the optimal rate of convergence is
O(N−αβ/(2α+1)).

6 Proof for Theorem 3

Proof. For simplicity, denote η1 , η and η0 , 1− η. Let x′ , NN(x;Dsub). We consider the event

A(x) , 1{|η(x)− 1/2| ≥ φ} where φ , C
(
dvc log(mδ )

mCd

)αH
d′ and its complement Ā(x).

On the set A(x), it follows that ηg(x)− η1−g(x) ≥ 2φ due to the definition of A(x). Consider the
inequality

ηg(x)− ηg](x) = ηg(x)− ηg∗n,k,s(x
′) ≤ |ηg(x)− ηg(x′)|+ [ηg(x

′)− ηg∗n,k,s(x
′)] (3)

The first term on the right hand side of (3) is

|ηg(x)− ηg(x′)| ≤ |η(x)− η(x′)| ≤ L‖x− x′‖αH ≤ C
(
dvc log(mδ )

mCd

)αH
d′

= φ

with probability 1− δ due to the Hölder-smoothness of η and Lemma 1 of Xue and Kpotufe [3].

Moreover, define the jth bad event as BADj , 1{η̂j(x′) − η(x′) > φ} for j = 1, . . . , s. On the
set A(x), ηg(x′) − ηg∗n,k,s(x

′) 6= 0 if and only if g(x′) 6= g∗n,k,s(x
′). The latter event implies that
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more than s/2 bad events occur, whose probability is less than (4E(BADj))
s/2 using concentration

equalities due to the Chernoff bound. Let φ̃ , C
(
dvc log(2n/δ̃)

nCd

) αH
2αH+d′ . Choose δ̃ so that φ̃ < φ

From Proposition 1 of Xue and Kpotufe [3], we know that

E(BADj) = P[Ŷ (j)(x′)− η(x′) > φ] < P
[
η̂j(x

′)− η(x′) > φ̃
]
≤ 2δ̃.

Therefore, with probability at least 1− (8δ̃)s/2, the second term ηg(x
′)− ηg∗n,k,s(x

′) = 0. For large

enough s and n, (8δ̃)s/2 < δ. Hence the above equality occurs with probability at least 1− δ.

Combining the results, we have with probability at least 1− 2δ,

ηg(x)− ηg](x) < 2φ ≤ ηg(x)− η1−g(x)

so that ηg](x) > η1−g(x), which means g](x) = g(x). In this case, the excess error is 0.

We now consider the set of Ā(x) , 1{|η(x)− 1/2| < φ}. Consider the following inequality,

ηg(x)− ηg](x) = ηg(x)− ηg∗n,k,s(x
′) ≤ [ηg(x)− ηg∗n,k,s(x)] + |ηg∗n,k,s(x)− ηg∗n,k,s(x

′)| (4)

The first term on the right hand side will be related to the regret of the BigNN classifier. For the
second term, by Lemma 1 of Xue and Kpotufe [3], we have with probability at least 1− δ over the
sample,

|η(x)− η(x′)| ≤ L‖x− x′‖α ≤ φ.
Then |η(x′)− 1/2| ≤ 2φ. We have

|ηg∗n,k,s(x)− ηg∗n,k,s(x
′)| ≤ sup

|η(x)−1/2|<φ
|η(x′)−1/2|<2φ

|η(x)− η(x′)| < 3φ.

Lastly, take expectation over X of the left hand side of both (3) and (4), we have with probability at
least 1− 3δ,

Regret of g] = EX(ηg(X)− ηg](X))

= EX [0A(X)] + EX(ηg(X)− ηg](X))Ā(X)

≤ EX [ηg(X)− ηg∗n,k,s(X)] + EX |ηg∗n,k,s(X)− ηg∗n,k,s(X
′)|Ā(X)

≤ Regret of g∗n,k,s + 3φEXĀ(X)

= Regret of g∗n,k,s + 3φP(|η(x)− 1/2| < φ)

≤ Regret of g∗n,k,s + C(φ)β+1

≤ Regret of g∗n,k,s + C

(
dvc log(mδ )

mCd

)αH (β+1)

d′

.

7 Additional figures

Figure 1 shows that bigNN has significantly shorter computing time than the oracle method. Here the
‘speedup’ is defined as the computing time for the oracle kNN divided by the time for bigNN.

In Figure 2, we allow γ to grow to 0.9. As mentioned earlier, when s grows too fast (e.g. γ ≥ 0.4
in this example), the performance of bigNN starts to deteriorate, due to increased ‘bias’ of the base
classifier, despite faster computing.
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Figure 1: Speedup of bigNN, for γ = 0.0, 0.1, . . . , 0.9, with k set as n2α/(2α+1)s−1/(2α+1). γ = 0
corresponds to the oracle kNN.
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Figure 2: Risk and speedup of bigNN, γ = 0.0, . . . , 0.9, for the Credit data.
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