
A Dropout with SNI

In order to apply SNI to Dropout, we need to decide how to ‘suspend’ the noise to compute ⇡̄✓. While
one could apply no dropout mask and scale the activations accordingly, we empirically found it to be
better to instead sample one dropout mask and keep it fixed for all gradient updates using the thus
collected data. This follows the implementation used in [11].

B Supervised Classification Task

Network architecture and hyperparameters The network consist of a 1D-convolutional layer
with 10 filters and a kernel size of 11 followed by two hidden, fully connected layers of size 1024 and
256 and the last layer which outputs nc logits. When the VIB or Dropout are used, they are applied
to the last hidden layer. We use a learning rate of 1e� 4. The relative weight for weight decay was
�w = 1e� 3, which performed best out of {1e� 2, 1e� 3, 1e� 4, 1e� 5}. For the VIB we used
� = 1e� 3, which performed best out of {1e� 2, 1e� 3, 1e� 4, 1e� 5}. Lastly, For dropout we
tested the dropout rates pd 2 {0.1, 0.2, 0.5}, out of which 0.2 performed best. Our results were stable
across a range of hyperparameters, see fig. 5.

...

Figure 4: Generation of the input data x: We embed the information about c twice, once through f
c

and once through g
c. See text for details.

Data generation For each data-point, after drawing the class label ci, we want to encode the
information about ci in two ways, using the encoding functions f c and g

c which use one of !f and
!
g different patterns to encode the information. The larger ! is, the less general the encoding is as it

applies to fewer data-points. Note that there are ! different patterns per class.

We generate the patterns by first generating a set of random functions {f c

j
}!f

j=1 and {gc
j
}!g

j=1 by
randomly drawing Fourier coefficients from [0, 1]. Those functions are converted into vectors by
evaluating them at dx sorted points randomly drawn from [0, 1]. The resulting pattern-vectors for f c

will have a dimension of dx, whereas the ones for gc will be smaller, dg < dx.

To encode the information about ci we first choose one pattern from {f c

j
}j (slightly overloading

notation between functions and pattern-vectors) and add some noise:

x
0
i
= f

c

j
+ ✏i where ✏ ⇠ N (0,�✏) and j ⇠ Cat(!f ) (13)

14



Next, to also encode the information about ci using g
c, we choose one of the !

g patterns {gc
j
}j and

replace a part of the vector x
0
i
, which is possible because the g

c patterns are shorter: dg < dx. The
location of replacement is randomly drawn for each data-point, but restricted to a a set of ng possible
locations which are also random, but kept fixed for the experiment and the same between training and
testing set. The process is pictured in fig. 4.

By changing the number of possible locations ng and the strength of the noise added to f
c, �✏,we can

tune the relative difficulty of learning to recognize patterns gc and f
c, allowing us to find a regime

where both can be found. Within this regime, our qualitative results were stable. We use ng = 3 and
�✏ = 1. Furthermore, we have for the dimension of of the observations dx = 100, and for the size of
the patterns gc we have dg = 20. We use nc = 5 different classes.

Figure 5: Loss function (error) on test set. Same results as in main text, but for multiple hyperparam-
eters. The qualitative results are stable under a wide range of hyperparameters.

C Multiroom

The observation space measures 11⇥ 11⇥ 3 where the 3 channels are used to encode object type and
object features like orientation or ‘open/closed’ and ‘color’ for doors on each of the 11⇥ 11 spatial
locations (see fig. 2 for a typical layout for nr = 3).

The agent uses a 3-layer CNN with 16, 32 and 32 filters respectively. All layers use a kernel of size 2.
After the CNN, it uses one hidden layer of size 64 to which IBAC or Dropout are applied if they are
used. Dropout uses pd = 0.2 and was tested for {0.1, 0.2, 0.5}. Both weight decay and IBAC were
tried with a weighting factor of {1e � 3, 1e � 4, 1e � 5, 1e � 6}, with 1e � 4 performing best for
weight decay and 1e� 6 performing best for IBAC. The output of the hidden layer is fed into a value
function head and the policy head.

We use a discount factor � = 0.99, a learning rate of 7e�4, generalized value estimation with�GAE =
0.95 [45], an entropy coefficient of �H = 0.01, value loss coefficient �V = 0.5, gradient clipping at
0.5 [45], and PPO with the Adam optimizer [24].

D Coinrun

Architecture and Hyperparameters We use the same architecture (’Impala’) and default policy
gradient hyperparameters as well as the codebase (https://github.com/openai/coinrun) from
the authors of [11] to ensure staying as closely as possible to their proposed benchmark.

Dropout and IBAC where applied to the last hidden layer and both, as well as weight decay, were
tried with the same set of hyperparameters as in Multiroom. The best performance was achieved with
pd = 0.2 for Dropout and 1e�4 for IBAC and weight decay. Batch normalization was applied between
the layers of the convolutional part of the network. Note that the original architecture in [11] uses
Dropout also on earlier layers, however, we achieve higher performance with our implementation.

In fig. 6 (left) we show results for Dropout with and without SNI and for � = 1 and � = 0.5. We
find that � = 1 learns fastest, possible due to the high importance weight variance in the stochastic

15

https://github.com/openai/coinrun


term in SNI for � < 1 (see fig. 3 (right)). However, all Dropout implementations converge to roughly
the same value, significantly below the ‘baseline’ agent, indicating that Dropout is not suitable for
combination with weight decay and data augmentation.

In fig. 6 (right) we show the test performance for IBAC and Dropout with and without SNI, without

using weight decay and data-augmentation. Again, we can see that SNI helps the performance.
Interestingly, we can see that IBAC does not prevent overfitting by itself (one can see the performance
decreasing for longer training) but does lead to faster learning. Our conjecture is that it finds more
general features early on in training, but ultimately overfits to the test-set of environments without
additional regularization. This further indicates that it’s regularization is different to techniques such
as weight decay, explaining why their combination synergizes well.

In fig. 7 we show the training set performance of our experiments.

Figure 6: Left: Comparison for different implementations of Dropout on the test environments.
Right: Comparison of IBAC and Dropout, with and without SNI, without weight decay and data

augmentation.

Figure 7: Training Performance with weight decay and data augmentation (left) and without (right)

16


	Introduction
	Background
	Regularization Techniques in Supervised Learning

	The Problem of using Stochastic Regularization in RL
	Method
	Selective Noise Injection
	Information Bottleneck Actor Critic

	Experiments
	Learning Features in the Low-Data Regime
	Multiroom
	Coinrun

	Related Work
	Conclusion
	Dropout with SNI
	Supervised Classification Task
	Multiroom
	Coinrun

