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Appendix

A Experimental details

Throughout the experiments, the architectures for the FNP and FNP+ were constructed as follows.
We used a neural network torso in order to obtain an intermediate hidden representation h of the
inputs x and then parametrized two linear output layers, one that lead to the parameters of p(u|x) and
one that lead to the parameters of q(z|x), both of which were fully factorized Gaussians. The function
g(·, ·) for the Bernoulli probabilities was set to an RBF, i.e. g(ui,uj) = exp(−.5τ‖ui − uj‖2),
where τ was optimized to maximize the lower bound. The temperature of the binary concrete /
Gumbel-softmax relaxation was kept at 0.3 throughout training and we used the log CDF of a standard
normal as the τk(·) for G. For the classifiers p(y|z), p(y|z,u) we used a linear model that operated
on top of ReLU(z) or ReLU([z,u]) respectively. We used a single Monte Carlo sample for each
batch during training in order to estimate the bound of FNPs. We similarly used a single sample for
the NP, MC-dropout and the variationally trained Bayesian neural network (VI BNN). All of the
models were implemented in PyTorch and were run across six Titan X (Pascal) GPUs (one GPU per
model).

The NN, MC-dropout and VI BNN had the same torso and classifier as the FNPs. As the NP has
not been previously employed in the settings we considered, we designed the architecture in a way
that is similar to the FNP. More specifically, we used the same neural network torso to provide an
intermediate representation h for the inputs x. To obtain the global embedding r we concatenated the
labels y to obtain h̃ = [h,y], projected h̃ to 256 dimensions with a linear layer and then computed
the average of each dimension across the context. The parameters of the distribution over the global
latent variables θ were then given by a linear layer acting on top of ReLU(r). After sampling θ we
then used a linear classifier that operated on top of [h,ReLU(θ)].

In the regression experiment for the initial transformation of x we used 100 ReLUs for both NP and
FNP models via a single layer MLP, whereas for the regressor we used a linear layer for NP (more
capacity lead to overfitting and a decrease in predictive uncertainty) and a single hidden layer MLP of
100 ReLUs for the FNPs. For the MC-dropout network used a single hidden layer MLP of 100 units
and we applied dropout with a rate of 0.5 at the hidden layer. In all of the neural networks models,
the heteroscedastic noise was parametrized according to σ = .1 + 0.9 log(1 + exp(d)), where d was
a neural network output. For the GP, we optimized the kernel lengthscale according to the marginal
likelihood. We also found it beneficial to apply a soft-free bits [1] modification of the bound to help
with the optimization of z, where we allowed 1 free bit on average across all dimensions and batch
elements for the FNP and 4 for the FNP+.
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For the MNIST experiment, the model architecture was a 20C5 - MP2 - 50C5 - MP2 - 500FC -
Softmax, where 20C5 corresponds to a convolutional layer of 20 output feature maps with a kernel
size of 5, MP2 corresponds to max pooling with a size of 2, 500FC corresponds to fully connected
layer of 500 output units and Softmax corresponds to the output layer. The initial representation of
x for the NP and FNPs was provided by the penultimate layer of the network. For the MC-dropout
network we applied 0.5 dropout to every layer, whereas for the VI BNN we performed variational
inference over all of the parameters. The number of points in R was set to 300, a value that was
determined from a range of [50, 100, 200, 300, 500] by judging the performance of the NP and FNP
models on the MNIST / notMNIST pair. For the FNP we used minibatches of 100 points from M ,
while we always appended the full R to each of those batches. For the NP, since we were using
a random set of contexts every time, we used a batch size of 400 points, where, in order to be
comparable to the FNP, we randomly selected up to 300 points from the current batch for the context
points during training and used the same 300 points as FNP for evaluation. We set the upper bound
of training epochs for the FNPs, NN, MC-dropout and VI BNN networks to 100 epochs, and 200
epochs for the NP as it did less parameter updates per epoch than the others. Optimization was done
with Adam [4] using the default hyperparameters. We further did early stopping according to the
accuracy on the validation set and no other regularization was employed. Finally, we also employed
a soft-free bits [1] modification of the bound to help with the optimization; for the z of FNPs we
allowed 1 free bit on average across all dimensions and batch elements throughout training whereas
for the VI BNN we allowed 1 free bit on average across all of the parameters.

The architecture for the CIFAR 10 experiment was a 2x(128C3) - MP2 - 2x(256C3) - MP2 - 2x(512C3)
- MP2 - 1024FC - Softmax along with batch normalization [3] employed after every layer (besides
the output one). Similarly to the MNIST experiment, the initial representation of x for the NP
and FNPs was provided by the penultimate layer of each of the networks. We didn’t optimize any
hyperparameters for these experiments and used the same number of reference points, free bits,
amount of epochs, regularization and early stopping criteria we used at MNIST. For the MC-dropout
network we applied dropout with a rate of 0.2 at the beginning of each stack of convolutional layers
that shared the same output channels and with a rate of 0.5 before every fully connected layer. For the
VI BNN, we performed variational inference over the layers were dropout was originally employed in
the MC-dropout network, and we performed maximum likelihood for the rest. Optimization was done
with Adam with an initial learning rate of 0.001 that was decayed by a factor of 10 every thirty epochs
for the NN, MC-Dropout, VI BNN and FNPs and every 60 epochs for the NP. We also performed
data augmentation during training by doing random cropping with a padding of 4 pixels and random
horizontal flips for both the reference and other points. We did not do any data augmentation during
test time. The images were further normalized by subtracting the mean and by dividing with the
standard deviation of each channel, computed across the training dataset.

B Ablation study on MNIST

In this section we provide the additional results we obtained on MNIST during the ablation study.
The discussion of the results can be found in the main text. We measured the sensitivity of NPs and
FNPs to the size of the reference set R, the trade-offs we obtain by varying the dimensionalities of
u, z for the FNP+, and finally the deviation of the scores for the FNPs after 5 replications, where on
each one we select a different subset of size 300 (the size we used for the experiments in the main
paper) of the training set as R. The results can be seen at Table 1, Table 2 and Table 3.

Table 1: Test error and uncertainty quality as a function of the size of the reference set R. For the
o.o.d. entropy and AUCR we report the mean and standard error across all of the o.o.d. datasets.

(a) Error %

# R NP FNP FNP+

50 0.6 30.6 0.7
100 0.6 0.9 0.9
200 0.4 0.8 0.7
500 0.5 0.9 0.7

(b) o.o.d. entropy

# R NP FNP FNP+

50 1.0±0.2 2.1±0.0 1.6±0.1
100 1.4±0.3 1.8±0.1 2.0±0.1
200 0.9±0.2 1.8±0.1 1.6±0.1
500 0.8±0.1 1.7±0.1 1.3±0.1

(c) AUCR

# R NP FNP FNP+

50 99.4±0.3 80.0±0.3 99.7±0.2
100 99.7±0.2 99.6±0.1 99.9±0.1
200 99.5±0.2 99.8±0.1 99.8±0.1
500 99.5±0.2 99.8±0.1 99.4±0.3
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Table 2: Test error and uncertainty quality as a function of the size of u, z for the FNP+. We used the
same R as the one for the experiments in the main text.

u, z Error % o.o.d. entropy AUCR

32, 64 0.7 1.8±0.1 99.9±0.1
64, 32 0.7 1.2±0.3 99.3±0.6
16, 80 0.7 2.0±0.1 99.6±0.4
8, 88 0.8 1.1±0.0 99.4±0.1
2, 94 4.7 0.4±0.0 91.4±2.2

Table 3: Average and standard error for the FNP models after 5 replications with different reference
sets R of size 300.

FNP FNP+

MNIST 0.02± 0.0 / 0.7±0.0 0.02±0.0 / 0.7±0.0

nMNIST 1.95±0.06 / 99.93±0.03 1.97±0.05 / 99.97± 0.02
fMNIST 1.69±0.05 / 99.43±0.10 1.63±0.04 / 99.58±0.07
Omniglot 1.88±0.04 / 99.86±0.04 1.85±0.06 / 99.90±0.03
Gaussian 1.95±0.14 / 99.81±0.16 2.07±0.02 / 99.98±0.02
Uniform 1.99±0.06 / 99.96±0.02 1.95±0.06 / 99.96±0.02

CIFAR10 0.17±0.01 / 7.5±0.08 0.08±0.01 / 7.3±0.04

SVHN 0.86±0.05 / 90.74±0.81 0.51±0.04 / 91.3±0.76
tImag32 1.22±0.02 / 94.49±0.29 0.69±0.02 / 92.6±0.39
iSUN 1.33±0.02 / 95.71±0.24 0.75±0.02 / 93.8±0.38
Gaussian 1.05±0.10 / 93.73±1.29 0.60±0.08 / 93.6±1.09
Uniform 0.85±0.16 / 89.43±4.20 0.61±0.11 / 93.4±1.89

C The Functional Neural Process is an exchangeable stochastic process

Proposition. The distributions defined in Eq.8, 9 define valid permutation invariant stochastic
processes, hence they correspond to Bayesian models.

Proof. In order to prove the proposition we will rely on de Finetti’s and Kolmogorov Extension
Theorems [5] and show that p(yD|XD) is permutation invariant and its marginal distributions are
consistent under marginalization. We will focus on FNP as the proof for FNP+ is analogous. As a
reminder, we previously defined R to be a set of reference inputs R = {xr1, . . . ,xrK}, we defined Dx
to be the set of observed inputs, and we also defined the auxiliary sets M = Dx \ R, the set of all
inputs in the observed dataset that are not a part of the reference set R, and B = R ∪M , the set of
all points in the reference and observed dataset.

We will start with the permutation invariance. It will suffice to show that each of the individual
probability densities described at Section 2.1 are permutation equivariant, as the products / sums will
then make the overall probability permutation invariant. Without loss of generality we will assume
that the elements in the set B are arranged as B = {Dx, R \ Dx}. Consider applying a permutation
σ(·) over D, D̃ = σ(D); this will also induce the same permutation over Dx, hence we will have that
σ(B) = {σ(Dx), R \ Dx}. Now consider the fact that in the FNP each individual ui is a function,
let it be f(·), of the values of xi; as a result we will have that:

f(σ(B)) = σ(f(B)), (1)

i.e. the latent variables u are permutation equivariant w.r.t. B. Continuing to the latent adjacency
matrices G,A; in the FNP each particular element i, j of these is a function of the values of the
specific ui,uj . As a result, we will also have permutation equivariance for the rows / columns of
G,A. Now since G,A are essentially used as a way to factorize the joint distribution over the zi in
B and given the fact that the distribution of each zi is invariant to the permutation of its parents, we
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will have that the permutation of B will result into the same re-ordering of the zi’s i.e.:
σ(ZB) = g(σ(B)), (2)

where g(·) is the function that maps B to ZB . Finally, as each yi is a function, let it be h(·), of
the specific zi, we will similarly have that σ(yB) = h(σ(B)). We have thus described that all of
the aforementioned random variables are permutation equivariant to B and as a result, due to the
permutation invariant product / integral / summation operators, we will have that the FNP model is
permutation invariant.

Continuing to the consistency under marginalization. Following [2] let us define D̃ = D∪{(x0, y0)}
and consider two cases, one where the x0 belongs in R and one where it doesn’t. We will show that
in both cases

∫
p(yD̃|XD̃)dy0 = p(yD|XD). Lets consider the case when x0 ∈ R. In this case we

have that the M and B sets will be the same across D and D̃. As a result we can proceed as∫
p(yD̃|XD̃)dy0 =

∑
G,A

∫
pθ(UB |XB)p(G,A|UB)pθ(ZB ,yB |R,G,A)dUBdZBdyi∈R\D̃xdy0.

(3)
Now we can notice that yi∈R\D̃x ∪ y0 = yi∈R\Dx , hence the measure that we are integrating over
above can be rewritten as∫

p(yD̃|XD̃)dy0 =
∑
G,A

∫
pθ(UB |XB)p(G,A|UB)pθ(yB ,ZB |R,G,A)dUBdZBdyi∈R\Dx ,

(4)
where it is easy to see that we arrived at the same expression as the one provided at Eq. 8. Now we
will consider the case where x0 /∈ R. In this case we have that R \ D̃x = R \ Dx and thus∫

p(yD̃|XD̃)dy0 =
∑

G,A,a0

∫
pθ(UB |XB)p(G,A|UB)pθ(yB ,ZB |R,G,A)

pθ(u0|x0)p(a0|UR,u0)pθ(z0|para0
(R,yR))pθ(y0|z0)dUBdZBdu0dz0dyi∈R\Dxdy0. (5)

Notice that in this case the new point that is added is a leaf in the dependency graph, hence it doesn’t
affect any of the points in D. As a result we can easily marginalize it out sequentially∫

p(yD̃|XD̃)dy0 =
∑

G,A,a0

∫
pθ(UB |XB)p(G,A|UB)pθ(yB ,ZB |R,G,A)

pθ(u0|x0)p(a0|UR,u0)pθ(z0|para0
(R,yR))

���
���

���:
1(∫

pθ(y0|z0)dy0
)
dUBdZBdu0dz0dyi∈R\Dx .

(6)

=
∑

G,A,a0

∫
pθ(UB |XB)p(G,A|UB)pθ(yB ,ZB |R,G,A)

pθ(u0|x0)p(a0|UR,u0)

���
���

���
���

��:1(∫
pθ(z0|para0

(R,yR))dz0

)
dUBdZBdu0dyi∈R\Dx (7)

=
∑
G,A

∫
pθ(UB |XB)p(G,A|UB)pθ(yB ,ZB |R,G,A)

pθ(u0|x0)
���

���
���

�:1(∑
a0

p(a0|UR,u0)

)
dUBdZBdu0dyi∈R\Dx (8)

=
∑
G,A

∫
pθ(UB |XB)p(G,A|UB)pθ(yB ,ZB |R,G,A)

���
���

���:
1(∫

p(u0|x0)du0

)
dUBdZBdyi∈R\Dx

(9)

=
∑
G,A

∫
pθ(UB |XB)p(G,A|UB)pθ(yB ,ZB |R,G,A)dUBdZBdyi∈R\Dx (10)
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where it is similarly easy to see that we arrived at Eq. 8. So we just showed that in both cases we
have that

∫
p(yD̃|XD̃)dy0 = p(yD|XD), hence the model is consistent under marginalization.

D Minibatch optimization of the bound of FNPs

As we mentioned in the main text, the objective of FNPs is amenable to minibatching where the size
of the batch scales according to the reference set R. We will only describe the procedure for the FNP
as the extension for FNP+ is straightforward. Lets remind ourselves that the bound of FNPs can be
expressed into two terms:

L = Eqφ(ZR|XR)pθ(UR,G|XR)[log pθ(yR,ZR|R,G)− log qφ(ZR|XR)]+

+ Epθ(UD,A|XD)qφ(ZM |XM )[log pθ(yM |ZM ) + log pθ (ZM |parA(R,yR))− log qφ(ZM |XM )]

= LR + LM |R, (11)

where we have a term that corresponds to the variational bound on the datapoints in R, LR, and
a second term that corresponds to the bound on the points in M when we condition on R, LM |R.
While the LR term of Eq. 11 cannot, in general, be decomposed to independent sums due to the DAG
structure in R, the LM |R term can; from the conditional i.i.d. nature of M and the structure of the
variational posterior we can express it as M independent sums:

LM |R = Epθ(UR|XR)

[ |M |∑
i=1

Epθ(ui,Ai|xi,UR)qφ(zi|xi)

[
log pθ

(
yi, zi|parAi

(R,yR)
)
−

− log qφ(zi|xi)
]]
. (12)

We can now easily use a minibatch M̂ of points from M in order to approximate the inner sum and
thus obtain unbiased estimates of the overall bound that depend on a minibatch {R, M̂}:

L̃M |R = Epθ(UR|XR)

[
|M |
|M̂ |

|M̂ |∑
i=1

Epθ(ui,Ai|xi,UR)qφ(zi|xi)

[
log pθ

(
yi, zi|parAi

(R,yR)
)
−

− log qφ(zi|xi)
]]
, (13)

thus obtain the following unbiased estimate of the overall bound that depends on a minibatch {S, M̂}

L ≈ LR + L̃M |R. (14)

In practice, this might limit us to use relatively small reference sets as training can become relatively
expensive; in this case an alternative would be to subsample also the reference set and just reweigh
appropriately LR. This provides a biased gradient estimator but, after a limited set of experiments, it
seems that it can work reasonably well.

E Predictive distribution of FNPs

Given the fact that the parameters of the model has been optimized, we are now seeking a way to
do predictions for new unseen points. As we assumed that all of the reference points are a part of
the observed dataset D, every new point x∗ will be a part of O. Furthermore, we will have that
B = Dx = XD. We will only provide the derivation for the FNP model, since the extension to FNP+

is straightforward. To derive the predictive distribution for this point we will rely on Bayes theorem
and thus have:

pθ(y
∗|x∗,XD,yD) =

pθ(y
∗,yD|x∗,XD)∫

pθ(y∗,yD|x∗,XD)dy∗
. (15)

As we have established the consistency of FNP, we know that the denominator is pθ(yD|XD).
Therefore we can expand the enumerator and rewrite Eq. 15 as
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pθ(y
∗|x∗,XD,yD) =

∑
G,A,a∗

∫
pθ(UD|XD)p(G,A|UD)pθ(ZD,yD|R,G,A)

pθ(yD|XD)

pθ(u
∗|x∗)p(a∗|UR,u

∗)pθ(z
∗|para∗(R,yR))pθ(y

∗|z∗)dUDdu∗dZDdz∗,
(16)

where a∗ is the binary vector that denotes which points from R are the parents of the new
point. We can now see that the top part is the posterior distribution of the latent variables of
the model when we condition on D. We can thus replace it with its variational approximation
pθ(UD|XD)p(G,A|UD)qφ(ZD|XD) and obtain

pθ(y
∗|x∗,XD,yD) ≈

∑
G,A,a∗

∫
pθ(UD|XD)p(G,A|UD)qφ(ZD|XD)

pθ(u
∗|x∗)p(a∗|UR,u

∗)pθ(z
∗|para∗(R,yR))pθ(y

∗|z∗)dUDdu∗dZDdz∗
(17)

=
∑
a∗

∫
pθ(UR,u

∗|XR,x
∗)p(a∗|UR,u

∗)pθ(z
∗|para∗(R,yR))

pθ(y
∗|z∗)dURdu

∗dz∗ (18)

after integrating / summing over the latent variables that do not affect the distributions that are specific
to the new point.
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