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A Proof of Lemma 4.2

Since regret(t) is not larger than 1 in any case,R(T, b) ≤
∑T
t=zT

mt, where {mt}Tt=zT is a sequence
of independent Bernoulli variables with E[mt] = λ1t. By Hoeffding’s inequality,

P
( T∑
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λ1t > a
)
≤ exp

(
− 2a2

T

)
,

for any a ≥ 0. Setting exp(−2a2/T ) = δ, we have a =
√
T log(1/δ)/2. Hence, with probability at

least 1− δ,
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λ1t +

√
T

2
log
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)
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2
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Since λ1t = λ1
√

log(dt)/t,
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λ1

√
log(dt)

t
≤ λ1T
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t
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log(dT )
√

1 + logT ,

where the first inequality is due to Jensen’s inequality and the second is due to
∑T
t=1(1/t) ≤

1 +
∫ T
t=1

(1/t)dt = 1 + logT.

B Proof of Lemma 4.3

Recall that we defined zT = max
(

3
C(φ1)2

logd, 1
C(φ1)2

log(T
2

δ′ )
)

where C(φ1) = min(0.5,
φ2
1

256s0
).

Due to assumptions A2 and A3 and Corollary 3.4, we have with probability at least 1− δ′,

Σ̂t :=
1

t

t∑
τ=1

b̄(τ)b̄(τ)T ∈ C
(
supp(β),

φ1√
2

)
for all t ≥ zT , (i)

where δ′ < δ. It remains to show that when (i) holds, the left-hand side of (8) is smaller than
(δ − δ′)/t2. In Section 3.2, we have shown that given the conditioning argument in (8) and the
restriction (7) on πa(t)(t), (r̂(τ) − b̄(τ)Tβ|Fτ−1) is R̃-sub-Gaussian for all τ = 1, · · · , t, with
R̃ = O(1). Applying Lemma 3.2 with

(
xτ , yτ

)
=
(
b̄(τ), r̂(τ)

)
for τ = 1, · · · , t, φ = φ1/

√
2,

R = R̃ and δ = (δ − δ′)/t2 completes the proof.
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C Proof of Lemma 4.4

Suppose t corresponds to subgroup (c-a). Since a(t) = argmax
1≤i≤N

{bi(t)T β̂(t− 1)} for this subgroup,

(ba(t)(t)− ba∗(t)(t))T β̂(t− 1) ≥ 0 and

regret(t) ≤ regret(t) + (ba(t)(t)− ba∗(t)(t))T β̂(t− 1)

= (ba(t)(t)− ba∗(t)(t))T (β̂(t− 1)− β)

≤ ||ba(t)(t)− ba∗(t)(t)||2||β̂(t− 1)− β||2
≤ ||β̂(t− 1)− β||2
≤ ||β̂(t− 1)− β||1 ≤ dt,

where the second inequality is due to Cauchy-Schwarz inequality and the third inequality is due to
assumption A1. Hence, the sum of regrets from subgroup (c-a) is at most

∑T
t=1 dt, which we can

bound as follows.
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The derivation is analogous to that of the upper bound of
∑
t λ1t because dt and λ1t have the same

order in t. Meanwhile, we proved in Lemma 4.3 that the subgroup (c-b) is empty with probability at
least 1− δ. Therefore, with probability at least 1− δ,

R(T, c) ≤
T∑
t=1

dt ≤
√

128

φ21
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√
log
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T
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logT .

D Proof of Theorem 4.1

Let R(T, a) be the sum of regrets from group (a). Due to R(T, a) ≤ zT , Lemma 4.2, and Lemma
4.4, we have with probability at least 1− 2δ,

R(T ) ≤ R(T, a) +R(T, b) +R(T, c)

≤ max
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.
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