
Supplement for Variational Bayesian Optimal
Experimental Design

Adam Foster† Martin Jankowiak‡ Eli Bingham‡ Paul Horsfall‡
Yee Whye Teh† Tom Rainforth† Noah Goodman‡§
†Department of Statistics, University of Oxford, Oxford, UK

‡Uber AI Labs, Uber Technologies Inc., San Francisco, CA, USA
§Stanford University, Stanford, CA, USA

adam.foster@stats.ox.ac.uk

A Details for variational estimators

The proofs in A.1 and A.2 are included for completeness.

A.1 Variational posterior µ̂post

We require valid approximations qp(θ|y, d) to have the same support as p(θ|y, d). Recall

Lpost(d) = Ep(y,θ|d)

[
log

qp(θ|y, d)

p(θ)

]
(16)

and

EIG(d) = Ep(y,θ|d)

[
log

p(θ|y, d)

p(θ)

]
(17)

We aim to show EIG(d) ≥ Lpost(d). Following [3], we have

EIG(d)− Lpost(d) =Ep(y,θ|d)

[
log

p(θ|y, d)

p(θ)
− log

qp(θ|y, d)

p(θ)

]
(18)

=Ep(y,θ|d)

[
log

p(θ|y, d)p(θ)

p(θ)qp(θ|y, d)

]
(19)

=Ep(y|d)

[
Ep(θ|y,d)

[
log

p(θ|y, d)

qp(θ|y, d)

]]
(20)

=Ep(y|d) [KL (p(θ|y, d)||qp(θ|y, d))] (21)

≥0. (22)

To further prove that the bound is tight, we note that the penultimate term
Ep(y|d) [KL (p(θ|y, d)||qp(θ|y, d))] equals 0 if and only if KL (p(θ|y, d)||qp(θ|y, d)) = 0 for
almost all y (i.e. the union of all y for which this does not hold has measure zero). The occurs if and
only if qp(θ|y, d) = p(θ|y, d) for almost all y, θ.

A.2 Variational marginal µ̂marg

We now demonstrate that Umarg(d) is an upper bound on EIG(d). Proceeding in the same manner as
for µ̂post, we find

Umarg(d)− EIG(d) =Ep(y,θ|d)

[
log

p(y|θ, d)

qm(y|d)
− log

p(y|θ, d)

p(y|d)

]
(23)
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=Ep(y,θ|d)

[
log

p(y|θ, d)p(y|d)

qm(y|d)p(y|θ, d)

]
(24)

=Ep(y|d)

[
log

p(y|d)

qm(y|d)

]
(25)

=KL (p(y|d)||qm(y|d)) (26)
≥0. (27)

Again, the bound is tight if and only if qm(y|d) = p(y|d) almost everywhere.

A.3 Variational NMC µ̂VNMC

We now prove Lemma 1 from the main paper, duplicating the Lemma itself below for convenience.

Lemma 1. For any given model p(θ)p(y|θ, d) and valid qv(θ|y, d),

1. EIG(d) = limL→∞ UVNMC(d, L) ≤ UVNMC(d, L2) ≤ UVNMC(d, L1) ∀L2 ≥ L1 ≥ 1,

2. UVNMC(d, L) = EIG(d) ∀L ≥ 1 if qv(θ|y, d) = p(θ|y, d) ∀y, θ,

3. UVNMC(d, L)−EIG(d)=Ep(y|d)

[
KL
(∏L

`=1 qv(θ`|y, d)
∣∣∣∣ 1
L

∑L
`=1 p(θ`|y, d)

∏
k 6=` qv(θk|y, d)

)]
Proof. Starting with proving the first result in lemma, we first recall the definition of UVNMC(d, L)
itself,

UVNMC(d, L) = E

[
log p(y|θ0, d)− log

1

L

L∑
`=1

p(y, θ`|d)

qv(θ`|y, d)

]
(28)

where the expectation is taken over y, θ0:L ∼ p(y, θ0|d)
∏L
`=1 qv(θ`|y, d). We consider positive

integers L2 ≥ L1. We let δ = UVNMC(d, L1)− UVNMC(d, L2). Then,

δ = E

[
log

1

L2

L2∑
`=1

p(y, θ`|d)

qv(θ`|y, d)

]
− E

[
log

1

L1

L1∑
`=1

p(y, θ`|d)

qv(θ`|y, d)

]
. (29)

We now proceed as in [7]. Let I1, ..., IL1
be distinct indices drawn uniformly from 1, ..., L2. Then,

1

L2

L2∑
`=1

p(y, θ`)

qv(θ`|y, d)
= EI1,...,IL1

 1

L1

L1∑
j=1

p(y, θIj )

qv(θIj |y, d)

 (30)

So

δ = E

log

EI1:L1

 1

L1

L1∑
j=1

p(y, θIj )

qv(θIj |y, d)

− E

[
log

1

L1

L1∑
`=1

p(y, θ`|d)

qv(θ`|y, d)

]
, (31)

then by Jensen’s Inequality

δ ≥ E

EI1:L1

log

 1

L1

L1∑
j=1

p(y, θIj )

qv(θIj |y, d)

− E

[
log

1

L1

L1∑
`=1

p(y, θ`|d)

qv(θ`|y, d)

]
(32)

≥ E

[
log

1

L1

L1∑
`=1

p(y, θ`|d)

qv(θ`|y, d)

]
− E

[
log

1

L1

L1∑
`=1

p(y, θ`|d)

qv(θ`|y, d)

]
(33)

≥ 0 (34)

where we have used that θI1 , ..., θIL1

d
= θ1, ..., θL1

. This shows that UVNMC(d, L1) ≥ UVNMC(d, L2).
For the limit limL→∞ UVNMC(d, L) we first fix some y for which p(y|d) > 0 and consider

UVNMC(d, L, y) = E

[
log p(y|θ0, d)− log

1

L

L∑
`=1

p(y, θ`|d)

qv(θ`|y, d)

]
. (35)
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with the expectation taken over p(θ0|y, d)
∏L
`=1 qv(θ`|y, d). Since p(y, θ|d)/qv(θ|y, d) is bounded

by assumption, the Strong Law of Large Numbers implies that, in limit of large L,

1

L

L∑
`=1

p(y, θ`|d)

qv(θ`|y, d)
→ p(y|d) a.s. (36)

Furthermore, using the same argument as before, UVNMC(d, L1, y) ≥ UVNMC(d, L2, y) whenever
L2 ≥ L1. Thus the Bounded Convergence Theorem implies

UVNMC(d, L, y) ↓ Ep(θ0|y,d)[log p(y|θ0, d)− log p(y|d)] as L→∞ (37)

so, taking expectations of p(y|d), by the Monotone Convergence Theorem

UVNMC(d, L) ↓ Ep(y,θ0|d)[log p(y|θ0, d)− log p(y|d)] = EIG(d) as L→∞. (38)

For the second result, we simply note that

p(y, θ|d)

p(θ|y, d)
=
p(y, θ|d)
p(y,θ|d)
p(y|d)

= p(y|d) (39)

Finally, for the third result, we proceed as in [21]. We have

UVNMC(d, L)− EIG(d) = E

[
log p(y|d)− log

1

L

l∑
`=1

p(y, θ`|d)

qv(θ`|y, d)

]
(40)

where the expectation is over p(y, θ0|d)
∏L
`=1 qv(θ`|y, d).

Then

UVNMC(d, L)− EIG(d) = E

[
− log

1

L

L∑
`=1

p(θ`|y, d)

qv(θ`|y, d)

]
(41)

= E

[
log

∏L
`=1 qv(θ`|y, d)

1
L

∑L
`=1 p(θ`|y, d)

∏
k 6=` qv(θk|y, d)

]
(42)

= E

[
log

∏L
`=1 qv(θ`|y, d)

P (θ1:L|y, d)

]
(43)

= Ep(y|d)

[
KL

(
L∏
`=1

qv(θ`|y, d)||P (θ1:L|y, d)

)]
(44)

where P (θ1:L|y, d) = 1
L

∑L
`=1 p(θ`|y, d)

∏
k 6=` qv(θk|y, d).

A.4 Variational marginal + likelihood µ̂m+`

We now prove Lemma 2 from the main paper, duplicating the Lemma itself below for convenience.
Lemma 2. For any given model p(θ)p(y|θ, d) and valid qm(y|d) and q`(y|θ, d), we have

|Im+`(d)− EIG(d)| ≤ −Ep(y,θ|d)[log qm(y|d) + log q`(y|θ, d)] + C, (13)

where C = −H[p(y|d)] − Ep(θ) [H(p(y|θ, d)] does not depend on qm or q`. Further, the RHS of
(13) is 0 if and only if qm(y|d) = p(y|d) and q`(y|θ, d) = p(y|θ, d) for almost all y, θ.

Proof. We aim to bound |Im+`(d)− EIG(d)|. Let δ = Im+`(d)− EIG(d). We have

δ = Ep(y,θ|d)

[
log

q`(y|θ, d)

qm(y|d)

]
− Ep(y,θ|d)

[
log

p(y|θ, d)

p(y|d)

]
(45)

= Ep(y,θ|d)

[
log

q`(y|θ, d)

qm(y|d)
− log

p(y|θ, d)

p(y|d)

]
(46)
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= Ep(y,θ|d)

[
log

q`(y|θ, d)

qm(y|d)
− log

p(y|θ, d)

qm(y|d)
+ log

p(y|θ, d)

qm(y|d)
− log

p(y|θ, d)

p(y|d)

]
(47)

= −Ep(y,θ|d)

[
log

qm(y|d)p(y|θ, d)

q`(y|θ, d)qm(y|d)

]
+ Ep(y,θ|d)

[
log

p(y|θ, d)p(y|d)

qm(y|d)p(y|θ, d)

]
(48)

= −Ep(θ)
[
Ep(y|θ,d)

[
log

p(y|θ, d)

q`(y|θ, d)

]]
+ Ep(y|d)

[
log

p(y|d)

qm(y|d)

]
(49)

= −Ep(θ) [KL(p(y|θ, d)||q`(y|θ, d))] + KL(p(y|d)||qm(y|d)). (50)

So, by the triangle inequality

|δ| ≤ Ep(θ) [KL(p(y|θ, d)||q`(y|θ, d))] + KL(p(y|d)||qm(y|d)). (51)

We can rewrite the RHS using the following relation

KL(p(x)||q(x)) = Ep(x)

[
log

p(x)

q(x)

]
(52)

= Ep(x)[log p(x)]− Ep(x)[log q(x)] (53)

= −H[p(x)]− Ep(x)[log q(x)]. (54)

This gives us

|δ| ≤ Ep(θ) [−H(p(y|θ, d)]− Ep(y,θ|d)[log q`(y|θ, d)]−H[p(y|d)]− Ep(y,|d)[log qm(y|d)] (55)

≤ −Ep(y,θ|d)[log qm(y|d) + log q`(y|θ, d)]−H[p(y|d)]− Ep(θ) [H(p(y|θ, d)] (56)

as required.

Finally, from (51) we see that the error bound is tight if and only if both KL-divergences are 0 if and
only if q`(y|θ, d) = p(y|θ, d) and qm(y|d) = p(y|d) for almost all y, θ.

We conclude with an additional observation. Suppose that we set qm(y|d) = Ep(θ)[q`(y|θ, d)]. This
could be possible for instance when θ takes finitely many values. In this case, Im+`(d) is actually a
lower bound on EIG(d). This is in contrast to the general case when qm and q` are learned separately,
in which it is neither an upper nor a lower bound.

To show that Im+`(d) is a lower bound when qm(y|d) = Ep(θ)[q`(y|θ, d)], we begin with the
Donsker-Varadhan bound [11]

EIG(d) ≥ Ep(y,θ|d)[T (y, θ)]− log
(
Ep(θ)p(y|d)[e

T (y,θ)]
)
. (57)

Substituting T (y, θ) = log(q`(y|θ, d)/qm(y|d)) we have

EIG(d) ≥ Ep(y,θ|d)

[
log

q`(y|θ, d)

qm(y|d)

]
− log

(
Ep(θ)p(y|d)

[
q`(y|θ, d)

qm(y|d)

])
(58)

≥ Im+`(d)− log

(
Ep(y|d)

[
Ep(θ)

{
q`(y|θ, d)

qm(y|d)

}])
(59)

≥ Im+`(d)− log

(
Ep(y|d)

[Ep(θ) {q`(y|θ, d)}
qm(y|d)

])
(60)

≥ Im+`(d)− log

(
Ep(y|d)

[
qm(y|d)

qm(y|d)

])
(61)

≥ Im+`(d). (62)

B Details for convergence rates

We now provide the details for Theorem 1. Key to proving the aspect of the Theorem relating to
the convergence of the variational parameter φK to φ∗ is Assumption 1. Points 1-5 correspond to
assumptions H2’, H3, H4, H6, and H7 of [28]; our proof will rely heavily on theirs. We note that
also that our measurability assumption made in the Theorem itself means that their assumption H1 is
automatically satisfied.
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Assumption 1. Assume:

1. The function φ 7→ f(X,φ) is almost surely convex in its second argument and differentiable
with Lipschitz continuous gradient, i.e. ∀φ1, φ2 ∈ Φ:

E(‖∇f(X,φ1)−∇f(X,φ2)‖2) ≤ C‖φ1 − φ2‖
with probability 1 for some C.

2. The function f is ν-strongly convex; that is, for all φ1, φ2 ∈ Φ:

f(X,φ1) ≥ f(X,φ2) +∇f(X,φ2)T (φ1 − φ2)

+ ν
2‖φ1 − φ2‖2

3. There exists σ > 0 such that E[‖∇f(X,φ∗)‖2) ≤ σ2

4. The function φ 7→ f(X,φ) is almost surely twice differentiable with Lipschitz continuous
Hessian Hf , i.e. ∀φ1, φ2 ∈ Φ:

E(‖(Hf)(X,φ1)− (Hf)(X,φ2)‖) ≤ C ′‖φ1 − φ2‖

5. There exists τ > 0 such that E[‖∇f(X,φ∗)‖4] ≤ τ4 and there exists a positive definite
operator Σ such that E[∇f(X,φ∗)⊗∇f(X,φ∗)] 4 Σ

6. The function µ is Lipschitz continuous

It should be noted that, though relatively standard, these assumptions are also quite strong, particularly
the assumption of strong convexity of f , and may well not hold in practice. In short, the stochastic
gradient scheme used in optimizing the bounds may only converge toward a local optimum of
the bound φ†, rather than the global optimum φ∗. When this happens the behavior and rates of
convergence will generally be the same, but the error breakdown will become

‖µ̂(d, φK)− EIG(d)‖2
≤ ‖µ̂(d, φK)− B(d, φK)‖2 (63a)

+
∥∥B(d, φK)− B(d, φ†)

∥∥
2

(63b)

+
∣∣B(d, φ†)− EIG(d)

∣∣ . (63c)
where ∣∣B(d, φ†)− EIG(d)

∣∣ ≥ |B(d, φ∗)− EIG(d)| .

We now present our proof for the result, repeating the Theorem itself for convenience.
Theorem 1. Let X be a measurable space and Φ be a convex subset of a finite dimensional inner
product space. Let X1, X2, ... be i.i.d. random variables taking values in X and f : X × Φ→ R be
a measurable function. Let

µ(φ) , E[f(X1, φ)] ≈ µ̂N (φ) ,
1

N

∑N

n=1
f(Xn, φ)

and suppose that supφ∈Φ ‖f(X1, φ)‖2 < ∞. Then supφ∈Φ ‖µ̂N (φ)− µ(φ)‖2 = O(N−1/2). Sup-
pose further that Assumption 1 in Appendix B holds and that φ∗ is the unique minimizer of µ. After
K iterations of the Polyak-Ruppert averaged stochastic gradient descent algorithm of [28] with
gradient estimator ∇φf(Xt, φ), we have ‖µ(φK)− µ(φ∗)‖2 = O(K−1/2) and, combining with the
first result,

‖µ̂N (φK)− µ(φ∗)‖2 = O(N−1/2 +K−1/2) = O(T−1/2) if N ∝ K.

Proof of Theorem 1

Proof. We begin by establishing the uniform convergence of µ̂N (φ) to µ(φ), for which we simply
use the L2 weak law of large numbers. Specifically, we let Yn = f(Xn, φ) and εN (φ) = ‖µ̂N (φ)−
µ(φ)‖2, then

ε2
N (φ) = E

[ 1

N

N∑
n=1

(Yn − EYn)

]2
 (64)
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= E

(
1

N2

N∑
n=1

(Yn − EYn)2

)
(65)

=
1

N2
·NVar(Yn) (66)

≤ 1

N
sup
φ∈Φ
‖f(X1, φ)‖22 (67)

which is bounded by assumption. Thus

sup
φ∈Φ

εN (φ) = O(N−1/2) (68)

as required.

We turn now to the stochastic gradient descent convergence. We begin by applying Theorem 3 of
[28] using points 1-5 of Assumption 1 to give

‖φK − φ∗‖2 = O(K−1/2) (69)

and (see [28] page 4)
Eµ(φK)− µ(φ∗) = O(K−1/2). (70)

To establish L2 convergence of the function values, it remains to control the variance of µ(φK). We
now invoke point 6 of Assumption 1 to see that, for some constant B (namely the Lipschitz constant
for µ),

Var[µ(φK)] = E
[
(µ(φK)− E [µ(φK)])

2
]

(71)

≤ E
[
(µ(φK)− µ(EφK))2

]
(72)

≤ B2E
[
(φt − Eφt)2

]
(73)

≤ B2‖φK − φ∗‖22. (74)

By (69) we conclude
√

Var[µ(φK)] = O(K−1/2). Thus µ(φK) converges in L2 at the required rate.

Finally, if εK = ‖µ̂K(φK)− µ(φ∗)‖2 then

εK ≤ ‖µ̂K(φK)− µ(φK)‖2 + ‖µK(φK)− µ(φ∗)‖2
≤ ‖µ̂K(φK)− µ(φK)‖2 + sup

φ∈Φ
‖µ̂K(φ)− µ(φ)‖2

= O(N−1/2 +K−1/2)

= O(T−1/2)

as required.

Finally, we discuss the necessary extensions for Im+`. The assumptions of the Theorem are subtly
different in this case. Specifically, we require Assumption 1 to hold for the integrand of F rather than
the integrand of Im+`, where F(d, φ) = −E[log qm(y|d) + log q`(y|θ, d)] + C is the loss function
that we use to train φ, and require Im+` to be Lipschitz continuous in φ.

The Monte Carlo error is no different in this setting. However, φ∗ is optimal with respect to F(d, φ)
rather than Im+` and the asymptotic bias term is |Im+`(d, φ

∗)− EIG(d)| ≤ F(d, φ∗) by Lemma 2.
For the optimization term, we have from equation (69) that ‖φK − φ∗‖2 = O(K−1/2). Then by the
Lipschitz assumption on Im+`, we have ‖Im+`(d, φk)− Im+`(d, φ

∗)‖2 = O(K−1/2). The rest of
the proof now goes through as above.

C Related work

In this section, we provide a more detailed discussion of existing techniques for EIG estimation to
complement Sec. 5 in the main text.

One established approach is to use a Laplace approximation to the posterior to make fast approxi-
mations of EIG [22, 25]
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µ̂laplace(d) ,
1

N

N∑
n=1

[H[p(θ)]−H[q(θ|yn, d)]] (75)

where q(θ|yn, d) is a Laplace approximation to p(θ|yn, d) that is computed once for each yn ∼
p(y|d).

Kleinegesse and Gutmann [18] recently suggested an implicit likelihood approach that directly
approximates the ratio r(d, θ, y) = p(y|θ, d)/p(y|d) using samples from p(y|θ, d) and p(y|d) and
the Likelihood-Free Inference by Ratio Estimation (LFIRE) method suggested by [41], which is
itself based around logistic regression. This yields the estimator

µ̂LFIRE(d) ,
1

N

N∑
n=1

log r̂(d, θn, yn) (76)

where log r̂(d, θn, yn) is estimated separately for each pairs of samples yn, θn.

In principal one could also exploit the equivalence between EIG and MI and use other existing
MI estimation methods, a number of which were recently summarized by [31]. Of particular
note, Belghazi et al. [4] use a bound on MI in the context of generative adversarial neural network
training that is based on the Donsker-Varadhan (DV) representation of the KL divergence [11].
Specifically, they introduce a parametrized approximation T (y, θ|d, φ) to log p(y,θ|d)

p(θ)p(y|d) and then
optimize the lower bound

LDV(d) , Ep(y,θ|d)[T (y, θ|d, φ)]− log
(
Ep(θ)p(y|d)[e

T (y,θ|d,φ)]
)
. (77)

The estimator µ̂DV is then produced in an analogous manner to µ̂post.

The EIG has been applied by a number of authors in specific contexts. For instance, the EIG has
been used to formulate acquisition functions in Bayesian optimization [16]. More recently, Ma et al.
[26] used an EIG-type objective to select features rather than designs for a partial VAE model. The
EIG estimation exploits the model structure of the partial VAE. Additionally, and in contrast to this
paper, approximations learned using the ELBO are used rather than approximations that are trained
using variational objectives that are directly tied to EIG estimation. For further discussion on the
implications of using the ELBO (i.e. the reverse KL divergence) in EIG estimation settings, see
Appendix G.

As mentioned previously, mutual information bounds are of interest in traditional signal processing
[3] and of increasing interest in the deep learning community [31]—although to the best of our
knowledge they have not been applied to BOED before. Interestingly, it is lower bounds that are of
primary importance in the deep learning setting because of the interplay between MI estimation and
the subsequent gradient-based optimization over parameters. This is in contrast to this work, in which
we maximize EIG over designs using Bayesian optimization—allowing the use of estimators such as
µ̂m+` that are not, in expectation, bounds.

D Experiment details

Computing All experiments were run on a machine with 32818560 kB mem-
ory, 8 Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz processors, running Fedora 28,
Python 3.6.8, Pytorch 1.1.0. To reproduce the results presented in the paper, see
https://github.com/ae-foster/pyro/tree/vboed-reproduce. The methods in
this paper form part of Pyro’s OED support, the documentation for which is provided at
http://docs.pyro.ai/en/stable/contrib.oed.html.

D.1 EIG estimation accuracy

A/B test We consider a classical A/B test, commonly used in marketing and design applications.
Here the experiment design is the choice of group sizes: n participants are split between groups A
and B of size nA and n− nA, respectively. For each participant we measure a continuous response y.
We consider a linear data analysis model

θ ∼ N(0,Σθ) y|θ, d ∼ N(Xdθ, I) (78)

7



where Xd is the n× 2 design matrix with (1 0) for the first nA rows and (0 1) for the remainder.

In this example we set the number of participants to be n = 10 with 11 designs (nA = 0, ..., 10) and
the prior covariance matrix to be

Σθ =

(
102 0
0 1.822

)
(79)

We chose families of variational distributions that include the true posterior (or true marginal). For
the amortised posterior, we set φ = (A,Σp) with φ trained separately for each d and let

qp(θ|y, d, φ) ∼ N(Ay,Σp) (80)

whereA is a 10×2 matrix and Σp is positive definite. For the marginal, we simply take φ = (µm,Σm)
and

qm(y|d, φ) ∼ N(µm,Σm). (81)

For NMC and Laplace, no variational families need to be specified.

For LFIRE, we used a parametrization φ = (b, δ,Λ) and used the ratio estimate

log r̂(y|θ, d, φ) = b− (y − δ)TΛ(y − δ) (82)

where Λ is positive definite. This form was chosen to mimic the approximation made by the posterior
method, and so reduce the effect of architecture on performance.

For DV, we used a similar critic, namely we set φ = (A,Λ) and

T (y, θ|d, φ) = −(θ −Ay)TΛ(θ −Ay) (83)

where Λ is positive definite.

The ground truth EIG(d) was computed analytically. In Table 2, each estimator was allowed 10
seconds computation.

Preference We consider searching for an agent’s utility indifference point, using responses that are
both censored and corrupted with non-uniform noise. Let d ∈ R and

θ ∼ N(µθ, σ
2
θ)

η|θ, d ∼ N(d− θ, σ2
η(1 + |d|)2)

y = f(η)

(84)

where

f : R→ [ε, 1− ε] (85)

x 7→


ε if x ≤ logit(ε)
1− ε if x ≥ logit(1− ε)

1
1−e−x otherwise

(86)

and logit(p) = log p− log(1− p).

For this example we set µθ = −20, σθ = 20 and ση = 1. We took designs on a linearly spaced grid
in [−80, 80]. For the variational family for the posterior, we took φ = (w, σ, µ0, σ0, µ1, σ1) and then

qp(θ|y, d, φ) ∼ N(µp, σ
2
p ) where η̂ = d− logit(y) (87)

µp = wη̂ + (1− w)µθ + µ0 1{y=ε}+µ1 1{y=1−ε} (88)

σ2
p = σ2 + σ2

0 1{y=ε}+σ2
1 1{y=1−ε} (89)

For the marginal, we simply took φ = (µm, σm) and

qm(y|d, φ) ∼ f#N(µm, σ
2
m). (90)

where # denotes the push-forward measure. We note that this variational family contains the true
marginal.
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Figure 5: EIG curves for the Preference example, with estimators run until variance is negligible and
iterates of φ are stable to highlight the asymptotic bias.

For LFIRE, we used the parametrization φ = (b, b0, b1, δ, λ) with ratio estimate

η̂ = d− logit(y) (91)

log r̂(y|θ, d, φ) = b− λ(η̂ − δ)2 + b0 1{y=ε}+b1 1{y=1−ε} (92)

For DV, the critic had parametrization φ = (b0, b1, δi, δ0, δ1, λi, λ0, λ1) and we set

η̂ = d− logit(y) (93)
λ = λi + λ0 1{y=ε}+λ1 1{y=1−ε} (94)

δ = δi + δ0 1{y=ε}+δ1 1{y=1−ε} (95)

T (y, θ|d, φ) = −λ(η̂ − δ)2 + b0 1{y=ε}+ b1 1{y=1−ε} (96)

Both these forms were chosen to minimize the differences between the functional forms used for
different methods.

The ground truth EIG(d) was computed by running the marginal method, which is statistically
consistent for this example because the true marginal is contained in the variational family, to
convergence. The posterior and Laplace methods are both asymptotically biased (see Figure 5) and in
this case both make the same (Gaussian) distributional assumption. The posterior method, however,
produces better EIG estimates. For the benchmarking results in Table 2, 10 seconds computation was
allowed.

Mixed Effects Regression We consider BOED for a mixed effects regression model with a non-
linear linking function that will also serve as the basis for the adaptive experiment we run in Sec. 6.3.
This class of models is commonly used for analyzing data in a variety of scientific disciplines, where
including nuisance variables can be a critical component of the model. In our adaptive experiment,
the nuisance variables—i.e. the random effects—are used to account for the variability of individual
human participants. Because of the presence of nuisance variables these implicit likelihood models
represent a significant challenge for BOED.

We begin by describing the experiment set-up. Participants were presented with a question of the
form seen in Figure 6 with the possible images shown in Figure 7. There were two image feature
dimensions with 3 levels each. A single image i could therefore be represented as a 1 × 6 matrix
Xi with two entries 1 and the rest 0. With the left image i1 and right image i2, the question was
represented as Xd = Xi1 −Xi2 encoding the assumed left-right symmetry. We then considered a
model for the ith participant

θ ∼ N(0,Σθ) (97)

σ−2
ψ ∼ Γ(αψ, βψ) (98)

ψi|σψ ∼ N(0, σ2
ψI6) (99)

σ−2
k ∼ Γ(αk, βk) (100)

log ki|σk ∼ N(0, σ2
k) (101)

η|θ, ψi, ki, d ∼ N(ki(Xdθ +Xdψi), σ
2
η) (102)

9



y = f(η) (103)

where f is the censored sigmoid defined in (86) and i ∈ {1, ..., 8} as there were 8 different partici-
pants.

The actual prior values of the parameters used were

Σθ = 100I6 ση = 10 (104)
αψ = βψ = αk = βk = 2 (105)

We begin by discussing the variational families used to estimate the EIG.

For the posterior estimator of EIG, we took φ = (A,Σp) and

η̂ = logit(y) (106)
qp(θ|y, d, φ) ∼ N(Aη̂,Σp) (107)

For the marginal + likelihood estimator, we set φ = (µm, σm, µ`, σ`, ξ) and took

qm(y|d, φ) ∼ f#N(µm, σ
2
m) (108)

q`(y|θ, d, φ) ∼ f#N(eξXdθ + µ`, σ
2
` ) (109)

For LFIRE, we used φ = (b, δ, λ) and then took

η̂ = logit(y) (110)

log r̂(y|θ, d, φ) = b− λ(η̂ − δ)2 (111)

For DV, we used φ = (λ, ξ) and

η̂ = logit(y) (112)

T (y, θ|d, φ) = −λ(η̂ − eξXdθ)
2 (113)

For benchmarking, we computed the ground truth using a variant of NMC. Specifically, we note that

p(y|d) = Ep(θ,ψ,k)[p(y|θ, ψ, k, d)] (114)

p(y|θ, d) = Ep(ψ,k)[p(y|θ, ψ, k, d)] (115)

and for this model, we can sample directly from p(ψ, k). These identities allow us to estimate the
marginal and likelihood by Monte Carlo, and then combine in a NMC estimator for EIG(d). Whilst
inefficient, this estimator is statistically consistent.

We allowed 60 seconds computation per estimator to compute the results of Table 2. Encouragingly,
we find that our variational estimators outperform the LFIRE and DV baselines on this model and
exhibit low errors even though they both make suboptimal distributional assumptions about the
posterior/marginal.

Extrapolation We consider designing experiments to reduce posterior uncertainty in the model
prediction at another point in design space—a point that we cannot experiment on directly. For this
example, we take ψ ∼ N(µψ,Σψ) and

θ|ψ ∼ Bernoulli(logit−1(Xθψ))

y|ψ, d ∼ Bernoulli(logit−1(Xdψ))

where Xθ =
(
1 − 1

2

)
and Xd = (−1 d) for d ∈ R. Interestingly, this model admits efficient

sampling of y, θ ∼ p(y, θ|d) but not y ∼ p(y|θ, d). Therefore, whilst the posterior, marginal +
likelihood and DV methods are all applicable, LFIRE is not.

For the posterior method we set φ = (l0, l1) and

lp(y) = l1y + l0(1− y) (116)

qp(θ|y, d, φ) ∼ Bernoulli(logit−1(lp(y))). (117)
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We computed the prior entropy, which is not analytically tractable here, using a MC estimator, noting
that θ has a finite sample space.

For the marginal + likelihood method, we let φ = (l, l0, l1) and then

qm(y|d, φ) ∼ Bernoulli(logit−1(l)) (118)
l`(θ) = l1θ + l0(1− θ) (119)

q`(y|θ, d, φ) ∼ Bernoulli(logit−1(l`(θ))). (120)

Finally, for DV, we let φ = (wy, wθ, wyθ) and took

T (θ, y|d, φ) = wyy + wθθ + wyθyθ. (121)

The ground truth EIG was computed using MC, noting that the sample spaces for y, θ are finite in
this example. 10 seconds computation per methods was allowed for the results in Table 2.

D.2 End-to-end sequential experiments

Mechanical Turk experiment We begin by describing the experiment itself. Participants were
presented with a question of the form seen in Figure 6 with the possible images shown in Figure 7.
There were two image feature dimensions with 3 levels each. A single image i could therefore
be represented as a 1 × 6 matrix Xi with two entries 1 and the rest 0. With the left image i1 and
right image i2, the question was represented as Xd = Xi1 −Xi2 encoding the assumed left-right
symmetry.

The model and EIG estimation were the same as the mixed effects model in Sec. D.1. When
optimizing the EIG to select designs dt, we estimated EIG across all candidate designs. We allowed a
30s turnaround to learn the posterior from the previous data, estimate the EIG, select the next design,
and present it to the user. We estimated the EIG in parallel for all 36 designs to select the best design
at each step. For each independent run of the experiment there were 8 participants, each answering
10 questions. This allowed the interplay between fixed effects and random effects to be apparent.

Because we used this model to run an adaptive experiment, we required a variational family to learn
the full posterior (over random effects and hyperparameters as well as θ).

For the full variational inference of the posterior used when we receive actual data, we used a partial
mean-field approximation. Specifically, we set q(θ, σψ, (ψi)8

i=1, σk, (ki)
8
i=1) to be

θ ∼ N(µθ,Σθ) (122)

σ−2
ψ ∼ Γ(αψ, βψ) (123)

ψi|θ ∼ N(A(θ − µθ) + µψi ,Σψi) (124)

σ−2
k ∼ Γ(αk, βk) (125)

log ki ∼ N(µki , σ
2
ki) (126)

and we learned the variational parameters µθ,Σθ, αψ, βψ, A, µψi
,Σψi

, αk, βk, µki , σki by conven-
tional (not amortized) variational inference. Note that, under this approximate posterior, θ is multi-
variate Gaussian so we can compute its entropy analytically.

Finally we ran an additional experiment identical to the first, but using simulated data rather than
human responses. We took

θ = (−30 30 0 −12 −6 18) . (127)

We simulated the random effects ψ, k from the prior and used the prior value ση = 10. The entropy
results are presented in Figure 8. As expected, BOED decreases posterior uncertainty more quickly.

D.3 Constant Elasticity of Substitution (CES) experiment

We begin by describing the experiment set-up. The economic agent is presented with a sequence
of designs d. Each designs comprises two baskets x and x′ of goods. The agent then indicates
which basket they prefer on a one-dimensional slider—they may indicate a strong preference, weak
preference, or indifference.
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Figure 6: A screenshot of the question answering interface used by human participants in the adaptive
experiment in Sec. 6.3.

Figure 7: The nine characters we used in the adaptive experiment in Sec. 6.3. They vary along two
feature dimensions: the mouth (smile, frown, showing teeth) and eyebrows.

Figure 8: Evolution of the posterior entropy of the fixed effects in the Mechanical Turk experiment in
Sec. 6.3 with simulated data. We depict the mean and ±1 std. err. from 10 experimental trials.
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To model the agent’s responses, we use the CES utility model [2] which defines a utility

U(x) =

(∑
i

xρiαi

)1/ρ

(128)

for a basket of goods x. In this experiment, we took baskets x ∈ [0, 100]3 representing non-negative
quantities of three commodities.

Extending the preference example in the previous section, we assume the agent, when asked to
compare baskets x and x′ and indicate their preference on a slider, base their response on U(x)−
U(x′). Specifically, we use the following likelihood model

ρ ∼ Beta(aρ, bρ) (129)
α ∼ Dirichlet(cα) (130)

log u ∼ N(µu, σ
2
u) (131)

η|ρ,α, d ∼ N(u · (U(x)− U(x′)), σ2
ηu

2(1 + ‖x− x′‖)2) (132)

y = f(η) (133)

This represents a challenging experiment design problem for a number of reasons. First, for large
values of U(x)− U(x′) the agent’s response will be predictable gaining little information. For very
different baskets (‖x− x′‖ large) the responses will be noisy indicating our intuition that it is more
difficult to compare very different baskets. However, very similar baskets will have similar utilities
and the agent will be predictably indifferent. Optimal designs therefore lie in a sweet spot where:
i) baskets are similar to avoid high noise regions, but dissimilar enough to be informative; and ii)
the difference in utility is close to 0 under the current posterior. BOED is able to trade off these
considerations in a principled manner.

For this specific example we took

aρ = bρ = 1 cα = (1, 1, 1) (134)
µu = 1 σu = 3 (135)
ση = 0.005 (136)

To estimate the EIG, we used a marginal guide based on the one used in the preference example.
Specifically, we set φ = (µm, σm, p0, p1) and

r(y|d, φ) ∼ f#N(µm, σ
2
m), (137)

qp(y|d, φ) =


ε with probability p0

1− ε with probability p1

r(y|d, φ) with probability 1− p0 − p1

(138)

where # denotes the push-forward measure. This is simply a mixture of a discrete distribution on
end-points with a sigmoid transformed Gaussian.

To select designs, we used Bayesian optimization with a Matern52 kernel with lengthscale 20 and
variance set empirically. Both µ̂marg and µ̂NMC were allowed the same time budget to select designs
and used an identical Bayesian optimization procedure. Random designs were chosen uniformly on
[0, 100]6.

To learn the posterior at subsequent steps we used a mean-field variational approximation with
the same families as the prior. That is, we updated the parameters aρ, bρ, cα, µu, σu and left
the structure otherwise intact. The RMSEs of Figure 4 were expectations over the posterior:(
Ep(θ|d1:t,y1:t)[‖θ − θ∗‖2]

)1/2
.

E Additional experiments

E.1 Death process

We examine experimental design for the simple continuous time process considered in [9] and [18],
arising in epidemiology. Consider a population with fixed size N that is initially healthy at time
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Figure 9: EIG surfaces estimated by four methods for the two-dimensional design (t1, t2) for the
continuous time model described in Sec. E.1. The optimal design (t∗1, t

∗
2) determined by each method

is indicated with a cross. The posterior method with a LogNormal variational distribution yields
nearly exact results. The posterior method with a Truncated Normal distribution and the Laplace
method are not as accurate but still result in designs with large EIG. Note that the EIG has been
scaled for interpretability and that all four figures use a common scale. The errors of these estimators
are examined more closely in Figure 10.
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Figure 10: Absolute EIG errors corresponding to the estimates depicted in Fig. 9. The optimal design
(t∗1, t

∗
2) determined by an exact method is indicated with a star. The absolute error of the LogNormal

Posterior estimate is ∼ 10−3 across the design space. The mean absolute error of the Laplace EIG
estimates across the design space is about 30% higher than for the Posterior method with a Truncated
Normal variational distribution. In this case the Laplace method results in an upper bound, while (as
always) both Posterior methods yield a lower bound. All three figures have the same scale as Fig. 9,
except for the LogNormal errors, which have been scaled by an additional factor of 100.

t = 0, with individuals becoming infected at a constant rate b as time evolves. We consider a design
space d = (t1, t2), where 0 ≤ t1 ≤ t2, corresponding to the times at which we measure the number
of infected individuals. We place a log-normal prior on the infection rate b.

For this example, we investigate how the choice of variational family affects the asymptotic bias. In
Fig. 9 we compare the EIG surfaces obtained using four estimators: i) an exact method that uses
brute force quadrature; ii) µ̂post with a log-normal variational distribution; iii) µ̂post with a truncated
normal variational distribution; and iv) the Laplace approximation µ̂laplace. The log-normal family
matches the true posterior best, giving mean absolute errors ∼ 10−3. The second posterior method
and the Laplace approximation both make the same distributional assumption, but Laplace results
in absolute errors that are about 30% higher than for the posterior method. See Fig. 10 for a closer
analysis of the errors of the approximate methods.

Experimental details The likelihood for observing (I1, I2) infected individuals from a population
of size N at times (t1, t2) is given by [12]:

p(I1, I2|b, t1, t2) =
N !

I1!(I2 − I1)!(N − I2)!

[
1− e−bt1

]I1 ×[
1− e−b(t2−t1)

]I2−I1 [
e−bt1

]I2−I1 [
e−bt2

]N−I2 (139)

The prior over the infection rate b > 0 is taken to be

log b ∼ N(µb, σb) (140)
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so that the joint density is given by

p(I1, I2, b|t1, t2) = p(I1, I2|b, t1, t2)p(b) (141)

In our experiment we choose N = 10, µb = 0, and σb = 0.25. The figures are scaled such that
the maximum EIG over the design space (as computed with the exact method) is 1.0. For all four
EIG estimation methods we use quadrature and exact summation over the outcomes (I1, I2) where
appropriate to obtain maximally accurate results. That is, the obtained results are only constrained by
the methods themselves and not the computational budget used. Note that we do not make use of any
kind of amortization.

F Consistent EIG estimation with control variates

In this section, we show that an approximation to the marginal density qm(y|d) can be used a
control variate. Control variates are a means to reduce the variance of Monte Carlo estimators by
using expectations which can be computed analytically. Here, we assume that, for every θ, the KL
divergence KL ( p(y|θ, d) || qm(y|d) ) can be computed analytically. For example, this would be the
case if both p(y|θ, d) and qm(y|d) were Gaussian.

We begin by writing the EIG as

EIG(d) = Ep(y,θ|d)

[
log

p(y|θ, d)

p(y|d)

]
(142)

= Ep(y,θ|d)

[
log

p(y|θ, d)

qm(y|d)

]
+ Ep(y,θ|d)

[
log

qm(y|d)

p(y|d)

]
(143)

= Ep(θ) [KL ( p(y|θ, d) || qm(y|d) )]− KL ( p(y|d) || qm(y|d) ) . (144)

We can now use our assumption on the first term,

Ep(θ) [KL ( p(y|θ, d) || qm(y|d) )]→ Ep(θ) [analytic function of θ] (145)

and this expectation can be computed efficiently with conventional Monte Carlo. For the second term,
we use Nested Monte Carlo

KL ( p(y|d) || qm(y|d) ) ≈ 1

N

N∑
n=1

log
1
M

∑M
m=1 p(yn|θm, d)

qm(yn|d)
(146)

where yn
i.i.d.∼ p(y|d) and θm

i.i.d.∼ p(θ). The key benefit of this approach is that this esti-
mator may have lower variance than a direct NMC estimator of EIG(d). Indeed, if we let
A = log

(
1
M

∑M
m=1(y|θm, d)

)
and B = log qm(y|d) then the variance of the estimator in (146) is

Var(A−B) = Var(A) + Var(B)− 2 Cov(A,B) (147)

so the variance will be low when Cov(A,B) is large. We can expect this to happen when qm(y|d) is
a good approximation to the true marginal density p(y|d).

Finally, note that just like µ̂VNMC, this estimator is consistent, i.e. it will converge to the EIG as
N,M →∞.

G KL ( q || p ) versus KL ( p || q )

In Appendix A.1, we showed that our posterior estimator is implicitly minimizing the following
expected KL divergence

EIG(d)− Lpost(d) = Ep(y|d) [KL ( p(θ|y, d) || qp(θ|y, d) )] . (148)

In variational inference, the inner KL divergence is referred to as the forward KL. In this section, we
compare our approach with a similar approach which also uses a posterior approximation, but instead
minimize the reverse KL divergence, KL ( qp(θ|y, d) || p(θ|y, d) ).

Specifically, we explore how the reverse KL divergence exhibits discontinuous behaviour that could
be problematic in the context of EIG estimation. We begin by writing the posterior estimator as

Lpost(d) = Ep(y|d)

[
Ep(θ|y)[log qp(θ|y, d)]

]
+H[p(θ)]. (149)
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Figure 11: (a) Normal variational distributions found by fitting to a target posterior that is a mixture
with two distinct Normal components. In both plots, the target posterior is a mixture of N(µ1, 0.5

2)
andN(µ2, 1.0

2) and we vary ∆µpost = µ1−µ2. In the top plot, the gap between the two components
is ∆µpost = 3.0, while in the bottom plot ∆µpost = 3.3. In contrast to the behaviour resulting from
forward KL minimization, the mode-seeking behaviour of reverse KL minimization leads to a large
change in the corresponding optimal variational distribution from top to bottom. (b) We plot the
partial KL as we vary ∆µpost for the target posterior described in (a). The partial KL as estimated
by reverse KL minimization exhibits a sharp discontinuity as the gap between the two components
crosses ∆µpost ≈ 3.18.

The term involving qp is the expectation of the partial KL, Ep(θ|y) [log qp(θ|y, d)]. We will show that
reverse KL minimization can lead to a discontinuity in the partial KL.

We consider two possible methods for choosing qp. We know from (148) that the optimal choice of
qp within a variational family Q is

qforward(θ|y, d) , arg min
q∈Q

KL ( p(θ|y, d) || q(θ) ) . (150)

An alternative choice is

qreverse(θ|y, d) , arg min
q∈Q

KL ( q(θ) || p(θ|y, d) ) (151)

which is the form usually seen in variational inference. The posterior method outlined in Section 3
attempts to learn qforward for each y by maximizing the bound Lpost. In this appendix, we show that
the alternative qreverse, as well as resulting in less accurate EIG estimates in light of (148), can lead
to discontinuities in the partial KL.

Minimizing the reverse KL can result in the well-known behaviour of mode-locking—and thus
mode-dropping—which in our context can result in significant misestimates of the EIG. Furthermore,
since this mode-locking behaviour is discontinuous (so that it can occur for a particular design d
but not for a neighbouring design d′) it can potentially result in large design-dependent bias in EIG
estimation. For a quantitative exploration of this phenomenon for two bimodal posteriors and a
Normal family of variational distributions Q see Figure 11.
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