
In our paper, we perform an in-depth analysis to understand how SS tasks interact with the learning
of the generator. We analyze the issues of SS tasks and propose to improve it with a multi-class
minimax game. In this Appendix section, we provide detail information about our proofs, discussion,
ablation study, network parameters and network architectures of models.

A Appendix: Proofs for Sections 4 and 5

Proposition 1 (Proof.)

Let Tk be the k-th type of transformation, and let PT
d be the distribution of the transformed real

sample. This section shows the proof for optimal C∗. Ck(.) is the k-th soft-max output of C, hence∑K
k=1 Ck(x) = 1,∀x. Ψ(C) can be re-written as:

Ψ(C) =

∫
pTd (x)

( K∑
k=1

p(Tk|x) log
(
Ck(x)

))
dx (12)

where p(Tk|x) is the probability that x belongs to class Tk, which can be considered as the the k-th
output of “ground-truth” classifier on sample x we expect the classifier C to predict. Assume that
Ψ(C) has first-order derivative with respective to Ck(x). The optimal solution of Ck(x) can be
obtained via setting this derivative equal to zero:

∂Ψ(C)

∂Ck(x)
=

∂

∂Ck(x)

∫
pTd (x)

( K∑
k=1

p(Tk|x) log
(
Ck(x)

))
dx

=
∂

∂Ck(x)

∫
pTd (x)

(
p(T1|x) log

(
C1(x)

)
+

K∑
k=2

p(Tk|x) log
(
Ck(x)

))
dx

=
∂

∂Ck(x)

∫
pTd (x)

(
p(T1|x) log

(
1−

K∑
k=2

Ck(x)
)

+

K∑
k=2

p(Tk|x) log
(
Ck(x)

))
dx

= pTd (x)

(
p(Tk|x)

Ck(x)
− p(T1|x)

C1(x)

)
(13)

For any k ∈ {2, . . . ,K}, setting ∂Ψ
∂Ck(x) = 0, and the value of optimal C∗k has the following form:

p(T1|x)

C∗1 (x)
=
p(T2|x)

C∗2 (x)
= · · · = p(Tk|x)

C∗K(x)
(14)

Note that
∑K

k=1 C
∗
k(x) = 1, according to Bayes’ theorem pTd (x) ∗ p(Tk|x) = p(Tk) ∗ pTk

d (x), and
p(Ti) = p(Tj) = 1

K , i, j ∈ [1,K] (the probability we apply the transformations Tk for sample x are

equal), We finally obtain the optimal C∗k(x) from Eq. 14: C∗k(x) = p(Tk|x)∑K
k=1 p(Tk|x)

=
p
Tk
d (x)∑K

k=1 p
Tk
d (x)

.

That concludes our proof.

Theorem 1 (Proof.) Substitute C∗ obtained above into Φ(G,C):

Φ(G,C∗) =

∫
pTg (x)

[ K∑
k=1

p(Tk|x) log
(
C∗k(x)

)]
(15)
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Substitute C∗ into (15) we have:

Φ(G,C∗) =

∫
pTg (x)

K∑
k=1

[
p(Tk|x) log

(
C∗k(x)

)]
dx

=

∫
pTg (x)

K∑
k=1

[
p(Tk|x) log

( pTk

d (x)∑K
k=1 p

Tk

d (x)

)
dx

]

=

K∑
k=1

∫ [
pTg (x)p(Tk|x) log

( pTk

d (x)∑K
k=1 p

Tk

d (x)

)
dx

]

=

K∑
k=1

∫ [
1

K
pTk
g (x) log

( pTk

d (x)∑K
k=1 p

Tk

d (x)

)
dx

]

=
1

K

K∑
k=1

[ ∫
pTk
g (x) log

( pTk

d (x)∑K
k=1 p

Tk

d (x)

)
dx

]

=
1

K

K∑
k=1

[
E
x∼PTk

g
log
( pTk

d (x)∑K
k=1 p

Tk

d (x)

)]

(16)

That concludes our proof.

Proposition 2 (Proof.) Training self-supervised task Ψ+(G,C) with minimax game is similar to
previous objective, except the additional term of fake class as below:

Ψ+(G,C) = Ex∼PT
d
ETk∼T log

(
Ck(x)

)
+ Ex∼PT

g
ETk∼T log

(
CK+1(x)

)
=

∫ (
pTd (x)

K∑
i=1

p(Tk|x) log
(
Ck(x)

)
+ pTg (x)

K∑
i=1

p(Tk|x) log
(
CK+1(x)

))
dx

(17)

Assume that Ψ+(G,C) has first-order derivative with respective to Ck(x). The optimal C∗k(x) can
be derived via setting derivative of Ψ+(G,C) equal to zero as follows:

∂Ψ+(G,C)

∂Ck(x)

=
∂

∂Ck(x)

∫ (
pTd (x)

K∑
i=1

p(Tk|x) log
(
Ck(x)

)
+ pTg (x)

K∑
i=1

p(Tk|x) log
(
CK+1(x)

))
dx

=
∂

∂Ck(x)

∫ (
pTd (x)p(T1|x) log

(
1−

K∑
k=1

Ck(x)− CK+1(x)
)

+ pTd (x)

K∑
k=2

p(Tk|x) log
(
Ck(x)

)
+ pTg (x)

K∑
k=1

p(Tk|x) log
(
CK+1(x)

))
dx

(18)

Similar to above, for any k ∈ {2, . . . ,K}, we have the derivative ∂Ψ+(G,C)
∂Ck(x) :

∂Ψ+(G,C)

∂Ck(x)
= pTd (x)

(p(T1|x)

C∗1 (x)
− p(Tk|x)

C∗k(x)

)
(19)
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Setting ∂Ψ
∂Ck(x) = 0, and we get optimal C∗k , k ∈ {1, . . . ,K}:

pTd (x)p(T1|x)

C∗1 (x)
=
pTd (x)pT2

(x)

C∗2 (x)
= · · · = pTd (x)p(Tk|x)

C∗K(x)
=
pTd (x)

∑K
k=1 p(Tk|x)∑K

k=1 C
∗
k(x)

(20)

With k = K + 1, we obtain the derivative of ∂Ψ+(G,C)
∂CK+1(x) :

∂Ψ+(G,C)

∂CK+1(x)
= pTd (x)

p(T1|x)

C∗1 (x)
− pTg (x)

∑
k=1Kp(Tk|x)

C∗K+1(x)
(21)

Setting ∂Ψ
∂CK+1(x) = 0, and finally we get optimal C∗k , k ∈ {1, . . . ,K + 1}:

pTd (x)p(T1|x)

C∗1 (x)
= · · · = pTd (x)p(Tk|x)

C∗K(x)
=
pTd (x)

∑K
k=1 p(Tk|x)∑K

k=1 C
∗
k(x)

=
pTg (x)

∑K
k=1 p(Tk|x)

C∗K+1(x)
(22)

Because
∑K

k=1 C
∗
k(x) + C∗K+1(x) = 1, we finally obtain the optimal C∗k(x) from Eq. 20: C∗k(x) =

pT
d (x)

pT
g (x)

p(Tk|x)∑K
k=1 p(Tk|x)

C∗K+1(x) =
pT
d (x)

pT
g (x)

p
Tk
d (x)∑K

k=1 p
Tk
d (x)

C∗K+1(x). That concludes the proof.

Theorem 2 (Proof.) Substitute optimal C∗ obtained above into Φ+(G,C):

Φ+(G,C∗) =

(
Ex∼PT

g

K∑
k=1

p(Tk|x) log
(
C∗k(x)

)
− Ex∼PT

g

K∑
k=1

p(Tk|x) log
(
C∗K+1(x)

))
(23)

The first term can be written as:

Ex∼PT
g

K∑
k=1

p(Tk|x) log(C∗k(x))

= Ex∼PT
g

[ K∑
k=1

p(Tk|x) log
(pTd (x)

pTg (x)

p(Tk|x)∑K
k=1 p(Tk|x)

C∗K+1(x)
)]

= Ex∼PT
g

[ K∑
k=1

p(Tk|x) log
(
C∗K+1(x)

)
+ log

(pTd (x)

pTg (x)

)
+ log

( p(Tk|x)∑K
k=1 p(Tk|x)

)]

= Ex∼PT
g

[ K∑
k=1

p(Tk|x) log
(
C∗K+1(x)

)]
+ Ex∼PT

g

[ K∑
k=1

p(Tk|x) log
(pTd (x)

pTg (x)

)]

+ Ex∼PT
g

[ K∑
k=1

p(Tk|x) log
( p(Tk|x)∑K

k=1 p(Tk|x)

)]

= Ex∼PT
g

[ K∑
k=1

p(Tk|x) log
(
C∗K+1(x)

)]
+

1

K

[ K∑
k=1

∫
pTk
g (x) log

(pTk

d (x)

pTk
g (x)

)
dx

]

+ Ex∼PT
g

[ K∑
k=1

p(Tk|x) log
( p(Tk|x) ∗ pTd (x)∑K

k=1 p(Tk|x) ∗ pTd (x)

)]

= Ex∼PT
g

[ K∑
k=1

p(Tk|x) log
(
C∗K+1(x)

)]
− 1

K

[ K∑
k=1

KL(PTk
g ||P

Tk

d )

]

+
1

K

K∑
k=1

[
E
x∼PTk

g
log
( pTk

d (x)∑K
k=1 p

Tk

d (x)

)]

(24)
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With the note that pTd (x) ∗ p(Tk|x) = p(Tk) ∗ pTk

d (x) = 1
K p

Tk

d (x) and pTg (x) ∗ p(Tk|x) = p(Tk) ∗
pTk
g (x) = 1

K p
Tk
g (x). Moving the first term of Eq. 24 from the right side to left side, it concludes the

proof.

Theorem 3 KL divergence is invariant to affine transform.

Proofs. Let x ∈ Rn×1 be a random variable. px(x) is a distribution defined on x. Let T be an affine
transform, i.e., T (x) = Ax + b, where A ∈ Rn×n is a full rank matrix and b ∈ Rn×1. Then for a
random variable y = T (x) = Ax + b, py(y) = |J |px

(
T−1(y)

)
, where J is the Jacobian matrix,

with its (i, j)-th entry defined as:

J i,j =
∂xi

∂yj
(25)

Obviously, J = A−1. Then we have py(y) = |A−1|px
(
T−1(y)

)
.

Let px1
(x) and px2

(x) are two distributions defined on x. Then let py1
(y) and py2

(y) be the

corresponding distributions defined on y. Then we have py1(y) = |A−1|px1

(
T−1(y)

)
and

py2
(y) = |A−1|px2

(
T−1(y)

)
.

Using the definition of the KL divergence between py1
and py2

, we have:

KL(py1
||py2

) =

∫
py1

(y) log
py1

(y)

py2
(y)

dy (26)

=

∫
|A−1|px1

(
T−1(y)

)
log
|A−1|px1

(T−1(y))

|A−1|px2

(
T−1(y)

)dy (27)

=

∫
|A−1|px1

(
T−1(y)

)
log

px1

(
T−1(y)

)
px2

(
T−1(y)

)dy (28)

As x = T−1(y), then we have:

KL(py1
||py2

) =

∫
|A−1|px1

(
T−1(y)

)
log

px1

(
T−1(y)

)
px2

(
T−1(y)

)dy (29)

=

∫
|A−1|px1(x) log

px1
(x)

px2(x)
dy (30)

According to the property of multiple integral, we have:

KL(py1
||py2

) =

∫
|A−1|px1

(x) log
px1(x)

px2
(x)
|A|dx (31)

=

∫
px1(x) log

px1
(x)

px2(x)
dx (32)

= KL(px1 ||px2) (33)

It concludes our proof.

Corollary 1 KL divergence between real and fake distributions is equal to that of rotated real and
rotated fake distributions by Tk: KL(PTk

g ||P
Tk

d ) = KL(Pg||Pd), k ∈ [1 : K]

Note that we apply the above theorem of invariance of KL, with px1
, px2

being Pg, Pd respectively,
and image rotation Tk as the transform.
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A.1 Implementation

Here, we discuss details of our implementation. For the SS tasks, we follow the geometric transfor-
mation of [10] to argument images and compute pseudo labels. It is simple yet effective and currently
the state-of-the-art in self-supervised tasks. In particular, we train discriminator to recognize the 2D
rotations which were applied to the input image. We rotate the input image with K = 4 rotations
(0◦, 90◦, 180◦, 270◦) and assign them the pseudo-labels from 1 to K.

To implement our model, the GAN objectives for discriminator and generator can be the ones in
original GAN by Goodfellow et al. [12], or other variants. In our work, we conduct experiments to
show improvements with two baseline models: original SSGAN [4] and DistGAN [42].

We integrate SS tasks into Dist-GAN [42] and conduct study with this baseline. In our experiments,
we observe that Dist-GAN has good convergence property and this is important for our ablation study.

min
G
V(D,C,G) = V(D,G)

+λg

∣∣∣∣∣∣∣∣(Ex∼PT
g
ETk∼T log

(
Ck(x)

)
− Ex∼PT

g
ETk∼T log

(
CK+1(x)

))
−
(
Ex∼PT

d
ETk∼T log

(
Ck(x)

)
− Ex∼PT

d
ETk∼T log

(
CK+1(x)

))∣∣∣∣∣∣∣∣
(34)

Second, in practice, achieving equilibrium point for optimal D, G, C is difficult. Therefore, inspired
by [42], we propose the new generator objective to improve Eq. 9 as written in Eq. 34. It couples
the convergence of Φ+(G,C) and Ψ+(G,C) that allows the learning is more stable. Our intuition is
that if generator distribution is similar to the real distribution, the classification performance on its
transformed fake samples should be similar to that of those from real samples. Therefore, we propose
to match the self-supervised tasks of real and fake samples to train the generator. In other words, if
real and fake samples are from similar distributions, the same tasks applied for real and fake samples
should have resulted in similar behaviors. In particular, given the cross-entropy loss computed on
real samples, we train the generator to create samples that are able to match this loss. Here, we use
`1-norm for the Φ+(G,C) and V(D,G) is the objective of GAN task [42]. In our implementation, we
randomly select a geometric transformation Tk for each data sample when training the discriminator.
And the same Tk are applied for generated samples when matching the self-supervised tasks to train
the generator.

For this objective of generator, similar to Eq. 24, we have:

Ex∼PT
d

[ K∑
k=1

p(Tk|x) log
(
C∗k(x)

)]

= Ex∼PT
d

[ K∑
k=1

p(Tk|x) log
(
C∗K+1(x)

)]
+

[ K∑
k=1

KL(PTk

d ||P
Tk
g )

]

+

K∑
k=1

[
E
x∼PTk

d

log
( pTk

d (x)∑K
k=1 p

Tk

d (x)

)]
(35)

The objective of Eq. 34 can be re-written as:

∗ =

∣∣∣∣∣∣∣∣ K∑
k=1

(
KL(PTk

d ||P
Tk
g ) + KL(PTk

g ||P
Tk

d )
)

+

K∑
k=1

E
x∼PTk

g
log
( pTk

d (x)∑K
k=1 p

Tk

d (x)

)
−

K∑
k=1

E
x∼PTk

d

log
( pTk

d (x)∑K
k=1 p

Tk

d (x)

)∣∣∣∣∣∣∣∣ ≥ 0

(36)

Pg = Pd is the solution that minimizes Eq. 36. In practice, we found that this is stable. It is due to
the stability of symmetric KL divergence (forward KL and inverse KL).
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Figure 5: From left to right: Real samples, argument real samples by rotation, mixed argument real
and fake samples, and generated images of CIFAR-10.

B Appendix: Experiments

B.1 Details of experiment setup

In our experiments, FID is computed every 10K iterations in training and visualized with the
smoothening windows of 5. The latent dimension is dz = 128 and mini-batch size is 64 for our all
experiments. We visualize losses and FID scores in several figures. In these figures, the horizontal
axis is the number of training iterations, and the vertical axis is either the loss and FID score. We
compute the negative discriminator/classifier value function for the visualization. We investigate the
improvements of our proposed techniques on two baseline models:

Dist-GAN [42]: We use Dist-GAN implemented with three network architectures: DCGAN, CNN in
SN-GAN and ResNet. We use standard “log" loss for DCGAN architecture, and with “hinge" loss
SN-GAN (the CNN network as in SN-GAN [31]) and ResNet architectures. We use “hinge" loss
for SN-GAN and ResNet because it attains better performance than standard “log" loss as shown in
[31]. We train models using Adam optimizer with learning rate lr = 0.0002, β1 = 0.5, β2 = 0.9 for
DCGAN and SN-GAN architectures and β1 = 0.0, β2 = 0.9 for ResNet architecture [13]. If not
precisely mentioned, it means Dist-GAN is used for the experiments.
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Figure 6: From left to right: Real samples, argument real samples by rotation, mixed argument real
and fake samples, and generated images of STL-10.

SSGAN: We were unable to reproduce results as reported in the original paper with this code2,
although we have followed the best parameter settings of the paper and communicated with authors
of SSGAN regarding the issues. We achieve best results with another setting (spectral norm, λ =
0,diter = 10, β1 = 0.5, β2 = 0.999). We use this setting as the baseline and compare to the one
using our proposed SS tasks instead of the original SS tasks.

B.2 Ablation study SS in Discriminator and Generator Learning for the original SS
proposed in [4]

In this experiment, we analyze original SS tasks proposed in [4] to understand the effect of self-
supervised tasks. We aim to provide empirical observation of how the Ψ(C) contributes to the
discriminator via changing λd with fixed λg = 0. Experiments are on CIFAR-10 dataset using small
DCGAN architecture. For implementation, they are integrated into the discriminator of the baseline
model, Dist-GAN [42] as mentioned above. Through the experiment, we confirm that the contribution
of Ψ(C) is important in Dist-GAN model. We should set the λd attain the good trade-off between
GAN task and SS task because increasing λd is not helpful. The SS task with λd = 1.0 is good for
Dist-GAN model, which is also discussed in [4] with SN-GAN model [31].

2https://github.com/google/compare_gan
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Figure 7: The ablation study of SS task Ψ(C) as proposed in [4]. We analyze its effect via λd
fine-tuning, λg = 0.0. (a) The discriminator losses of SS task, (b) The discriminator losses of GAN
task, (c) the feature representation quality and (d) FID scores. With λd = 7.0 for SS task, the model
becomes seriously collapsed with FID > 100. Experiments are conducted with the baseline model,
Dist-GAN. (Best view in color).

The results in Fig. 7 illustrate the effects of Ψ(C) to GAN with different values of λd. Fig. 7a
represents the losses of the SS task of the discriminator. It shows that in most cases, the larger λd
lead to faster Ψ(C) loss converges. However, when λd > 1.0, the FID is not improved. We observe
that once λd is higher, the loss of GAN task is dominated by the SS tasks. When λd is too high, (e.g.,
λd = 7.0), GAN loss is almost unchanged about first 10K iterations (Fig. 7b) in early iterations and
the model gets collapsed. This can be explained as follows. When the discriminator improvement
is slow due to the strong dominance of Ψ(C), the learning of the generator faster. This serious
unbalance easily leads to the collapsed generator and the learning of generator gets stuck thereafter.
When the GAN loss is strongly dominated by SS loss, the loss of GAN is saturated.

To understand deeper, we evaluate the representation qualities of the intermediate layers of the
discriminator as in [4] in this experiment. Given the above pre-trained discriminators, we compute
features of train and test sets of CIFAR-10 via its last convolution layer. We evaluate the classification
performance as training logistic regression on these features and measure with top-1 accuracy. We
follow the experimental setup of parameters as in [4]. The result (Fig. 7c) that as λd >= 1.0, the
accuracy is also similar, except for the case λ = 7.0, the quality of feature is slightly worse but not
too significant (although the GAN model is collapsed). It means increasing λd does not necessarily
improve the feature representation quality of the discriminator.

Overall, with Dist-GAN as baseline, we observe that using the original SS tasks with λd = 1.0
provide considerable improvement, and the results suggest that λd should not be too high, but instead
the one that provides a good trade-off between GAN and SS tasks.
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Figure 8: The ablation studies with (a) SSGAN+ using λg and ours (SSGAN+ + MS) (b) Dist-GAN
with Φ(C) and Ψ(G,C) as fine-tuning λg, fixed λd = 1.0. (c) Our model (Dist-GAN + MS) with
Ψ+(G,C) and Φ+(G,C) with λg = 0.1 and λd = 1.0. Experiments are with CIFAR-10 dataset.
(Best view in color)

0.5 1 1.5 2 2.5 3
Iterations 105

20

30

40

50

60

70

80

F
ID

DCGAN for CIFAR-10

Baseline
Baseline + SS (

d
 = 1.0, 

g
 = 0.00)

Baseline + MS (
d
 = 1.0, 

g
 = 0.01)

Baseline + MS (
d
 = 1.0, 

g
 = 0.05)

Baseline + MS (
d
 = 1.0, 

g
 = 0.10)

Baseline + MS (
d
 = 1.0, 

g
 = 0.20)

0.5 1 1.5 2 2.5 3
Iterations 105

20

30

40

50

60

70

80

F
ID

DCGAN for CIFAR-10

Baseline
Baseline + MS (

d
 = 1.0, 

g
 = 0.1)

Baseline + MS (
d
 = 2.0, 

g
 = 0.1)

Baseline + MS (
d
 = 3.0, 

g
 = 0.1)

Baseline + MS (
d
 = 4.0, 

g
 = 0.1)

Baseline + MS (
d
 = 5.0, 

g
 = 0.1)

Figure 9: Our model (Dist-GAN + MS) with (a) with fine-tuning λg , fixed λd = 1.0. (b) fine-tuning
λd, fixed λg = 0.1. The baseline is Dist-GAN model, and we use DCGAN architecture. (Best view
in color)

B.2.1 SS task in Generator Learning

We continue to investigate the effects of λg with fixed λd = 1.0 for the SS tasks proposed in [4]. The
experimental setup is similar to the previous one. The result represented in Fig. 8a show that λg > 0
still improves the baseline model, but higher than the case of λg = 0. Note that [4] does not report
result with λg = 0.0.

Following our discussion on Theorem 1, applying Φ(G,C) as proposed in [4] does not support the
matching between the generator and data distributions. From these experiments, we observe that
the generator and discriminator are unable to reach optimal points, and using large λg degrades the
quality of GAN task, and even leads to mode collapse. For example, as λg increases (eg. λg = 0.3),
it seriously hurts the quality of GAN task of the generator.

In addition, we verify with original code of SSGAN [4] on CIFAR-10 using our best setting mentioned
above. Fig. 8a confirms that with our best setting λg = 0.01 and λg = 0.2 achieve similar FID and
increasing λg = 0.5 degrades its performance, which is consistent to our analysis. In the same figure,
when we use our proposed MS, FID is improved.

B.3 Ablation study (λd, λg) with DCGAN for our proposed method

We first change the λg according λd = 1.0 (Fig. 9a). With minimax game, the result suggests that
λg = 0.1 is the best for DCGAN architecture. Then, we seek λd with this λg = 0.1 as shown in Fig.
9b. Interestingly, now the best λd = 4.0, which is higher than λd = 1.0 of the original SS (the best
with the original SS; Fig. 7d). This suggests that using our proposed mini-max game based SS enable
larger range of λd with stable performance.
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Figure 10: Understanding the effects of MS tasks (our proposed self-supervised tasks), by fine-tuning
λg (first row) λd (second row) for CIFAR-10 and STL-10 with other architectures. From left to
right: SN-GAN for CIFAR-10, ResNet for CIFAR-10, SN-GAN for STL-10 and ResNet for STL-10.
SN-GAN architecture referred as CNN architectures used in SN-GAN [31].

B.4 Ablation study of our proposed method with SN-GAN and ResNet architectures

The detail of the ablation study of λd and λg for our proposed SS tasks using SN-GAN and ResNet
architectures are shown in Fig. 10.

C Appendix: Network architectures

C.1 DCGAN architecture

Our DCGAN architecture, which is used for ablation studies on CIFAR-10, are presented in Table. 4.

Table 4: Our DCGAN architecture is similar to [37] but the smaller number of feature maps (D = 64)
to be more efficient for our ablation study on CIFAR-10. The Encoder is the mirror of the Generator.
Slopes of lReLU functions are set to 0.2. U(0, 1) is the uniform distribution.

RGB image x ∈ RM×M×3

5×5, stride=2 conv. 1× D ReLU

5×5, stride=2 conv. BN 2× D ReLU

5×5, stride=2 conv. BN 4× D ReLU

5×5, stride=2 conv. BN 8× D ReLU

dense→ 128

(a) Encoder, M = 32 for CIFAR-10

z ∈ R128 ∼ U(0, 1)

dense→ 2× 2× 8× D

5×5, stride=2 deconv. BN 4× D ReLU

5×5, stride=2 deconv. BN 2× D ReLU

5×5, stride=2 deconv. BN 1× D ReLU

5×5, stride=2 deconv. 3 Sigmoid

(b) Generator for CIFAR-10

RGB image x ∈ RM×M×3

5×5, stride=2 conv. 1× D lReLU

5×5, stride=2 conv. BN 2× D lReLU

5×5, stride=2 conv. BN 4× D lReLU

5×5, stride=2 conv. BN 8× D lReLU

dense→ 1, dense→ 5 (two heads)

(c) Discriminator, M = 32 for
CIFAR-10. Two heads for the
real/fake discriminator and multi-class
classifier.

C.2 SNGAN architecture

Our SN-GAN architecture referred as CNN architectures of [31] for CIFAR-10 and STL-10 datasets
are presented in Table. 5.

C.3 ResNet architecture

Our ResNet architectures for CIFAR-10 and STL-10 are presented in Table. 6 and Table. 7.
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Table 5: Encoder, generator, and discriminator of standard CNN architectures for CIFAR-10 and
STL-10 used in our experiments. We use similar architectures as ones in [31]. The Encoder is the
mirror of the Generator. Slopes of lReLU functions are set to 0.1. U(0, 1) is the uniform distribution.

RGB image x ∈ RM×M×3

3×3, stride=1 conv. 64

4×4, stride=2 conv. BN 128 ReLU

4×4, stride=2 conv. BN 256 ReLU

4×4, stride=2 conv. BN 512 ReLU

dense→ 128

(a) Encoder, M = 32 for CIFAR-10,
and M = 48 for STL-10

z ∈ R128 ∼ U(0, 1)

dense→Mg ×Mg × 512

4×4, stride=2 deconv. BN 256 ReLU

4×4, stride=2 deconv. BN 128 ReLU

4×4, stride=2 deconv. BN 64 ReLU

3×3, stride=1 conv. 3 Sigmoid

(b) Generator, Mg = 4 for CIFAR-
10, and Mg = 6 for STL-10

RGB image x ∈ RM×M×3

3×3, stride=1 conv 64 lReLU
4×4, stride=2 conv 64 lReLU

3×3, stride=1 conv 128 lReLU
4×4, stride=2 conv 128 lReLU

3×3, stride=1 conv 256 lReLU
4×4, stride=2 conv 256 lReLU

3×3, stride=1 conv. 512 lReLU

dense→ 1, dense→ 5 (two heads)

(c) Discriminator, M = 32 for
CIFAR-10, and M = 48 for STL-
10. Two heads for the real/fake dis-
criminator and multi-class classifier.

Table 6: ResNet architecture for CIFAR10 dataset. The Encoder is the mirror of the Generator. We
use similar architectures and ResBlock to the ones used in [31]. U(0, 1) is the uniform distribution.

RGB image x ∈ R32×32×3

3×3 stride=1, conv. 256

ResBlock down 256

ResBlock down 256

ResBlock down 256

dense→ 128

(a) Encoder

z ∈ R128 ∼ U(0, 1)

dense, 4× 4× 256

ResBlock up 256

ResBlock up 256

ResBlock up 256

BN, ReLU, 3×3 conv, 3 Sigmoid

(b) Generator

RGB image x ∈ R32×32×3

ResBlock down 128

ResBlock down 128

ResBlock 128

ResBlock 128

ReLU

Global sum pooling

dense→ 1, dense→ 5 (two heads)

(c) Discriminator. Two heads for the
real/fake discriminator and multi-
class classifier.

Table 7: ResNet architecture for STL-10 dataset. The Encoder is the mirror of the Generator. We use
similar architectures and ResBlock to the ones used in [31]. U(0, 1) is the uniform distribution.

RGB image x ∈ R48×48×3

3×3 stride=1, conv. 64

ResBlock down 128

ResBlock down 256

ResBlock down 512

dense→ 128

(a) Encoder

z ∈ R128 ∼ U(0, 1)

dense, 6× 6× 512

ResBlock up 256

ResBlock up 128

ResBlock up 64

BN, ReLU, 3×3 conv, 3 Sigmoid

(b) Generator

RGB image x ∈ R48×48×3

ResBlock down 64

ResBlock down 128

ResBlock down 256

ResBlock down 512

ResBlock 1024

ReLU

Global sum pooling

dense→ 1, dense→ 5 (two heads)

(c) Discriminator. Two heads for the
real/fake discriminator and multi-
class classifier.
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