
A Comparison with Recent Results

In this section we compare our result in Theorem 3.3 with recent generalization error bounds for
over-paramerized neural networks by Cao and Gu [8], Yehudai and Shamir [37], E et al. [14], and
backup our discussions in Remark 3.5 and Remark 3.6.

A.1 Comparison with Cao and Gu [8]

In this section we provide direct comparison between our result in Theorem 3.3 and Theorem 4.4 in
Cao and Gu [8]. To concretely compare these two results, we apply our result to the setting studied in
Cao and Gu [8], which is based on the following assumption.
Assumption A.1. There exist a constant γ ą 0 and

fp¨q P

"

fpxq “

ż

Rd

cpuqσpuJxqppuqdu : }cp¨q}8 ď 1

*

,

where ppuq the density of standard Gaussian vectors, such that y ¨ fpxq ě γ for all px, yq P supppDq.

Under Assumption 3.1 and Assumption A.1, in order to train the network to achieve ε expected 0-1
loss, Cao and Gu [8] gave a sample complexity of order rOppolyp2L, γ´1q ¨ ε´4q. In comparison, our
result in Theorem 3.3 leads to the following corollary.
Corollary A.2. Under Assumption 3.1 and Assumption A.1, for any δ P p0, e´1s, there exists

m˚pδ, γ, L, nq “ rO
`

polyp2L, γ´1q
˘

¨ n7 ¨ logp1{δq

such that if m ě m˚pδ,R, L, nq, then with probability at least 1´ δ over the randomness of Wp0q,
the parameters given by Algorithm 1 with η “ κ ¨R{pm

?
nq for some small enough absolute constant

κ satisfies

E
“

L0´1
D pxWq

‰

ď rO

˜

2L ¨ γ´1

?
n

¸

,

where the expectation is taken over the draws of training examples tpxi, yiqu
n
i“1 as well as the

uniform draw of xW from tWp0q, . . . ,Wpn´1qu.

By setting the expected 0-1 loss bound to ε, we obtain a sample complexity of order rOp4L ¨ γ´2ε´2q,
which is better than the sample complexity given in Cao and Gu [8] by a factor of ε´2.

A.2 Comparison with Yehudai and Shamir [37], E et al. [14]

Here we give a detailed explanation to Remark 3.6, where we compare our result with Yehudai and
Shamir [37], E et al. [14]. The reference function classes studied in these two papers share the same
general form:

 

fpxq “ W2σpW
p0q
1 xq : }W2}F ď Cm´1{2

(

,

where C is a constant, and W
p0q
1 P Rmˆd is the first layer parameter matrix whose rows are

sampled from certain distribution π associated to the initialization scheme. Specifically, Yehudai
and Shamir [37] studied the case where π is the uniform distribution over the d-dimensional cube
r´d´1{2, d´1{2sd, while E et al. [14] studied the uniform distribution over the sphere Sd´1. By
standard concentration inequality, we can see that in both papers, with high probability, the distri-
bution π gives W

p0q
1 with }Wp0q

1 }2 « Opm1{2q. In terms of second layer initialization W
p0q
2 , the

generalization results in both papers require that }Wp0q
2 }2 ď Opm´1{2q. With such a scaling, we can

apply the following lemma.

Lemma A.3. Suppose that Wp0q “ pW
p0q
1 ,W

p0q
2 q P Rmˆd ˆ R1ˆm be weights satisfying

}W
p0q
2 }F ď Km´1{2 for some K “ rOp1q, then

 

fpxq “ W2σpW
p0q
1 xq : }W2}F ď Cm´1{2

(

Ď F ,
where

F “
 

W
p0q
2 σpW

p0q
1 xq `W2σpW

p0q
1 xq : }W2}F ď pC `Kq ¨m

´1{2
(

,

and σp¨q is the activation function of interest.
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We compare our result with the bounds given by Yehudai and Shamir [37], E et al. [14] by comparing
the reference function classes we use. Apparently, a larger reference function class in general gives a
better generalization error bound. Such a comparison requires us to adjust the scaling of initialized
parameters. Based on our previous discussion, it is easy to see that the initialized second layer weights
in our work and Yehudai and Shamir [37], E et al. [14] are all of the same scaling. However, the } ¨ }2
of first layer weight matrix in Yehudai and Shamir [37], E et al. [14] is larger than ours by a factor of?
m. Adjusting this scaling difference will give an extra factor

?
m, which matches the

?
m factor in

the definition of our neural network function. Note that even after adjusting the scaling of parameters,
these random feature function classes are not directly comparable, since the activation functions and
the distributions of random weights are different. However, an informal comparison can already
clearly show the advantage of our result. Moreover, we remark that at least for two-layer networks,
our analysis can be easily generalized to other activation functions and initialization methods, and
the resulting NTRF class should be strictly larger than the random feature function classes used in
Yehudai and Shamir [37], E et al. [14]. This justifies our discussion in Remark 3.6.

B Proofs of Technical Lemmas in Section 4

In this section we provide the proofs of the technical lemmas in Section 4. We first introduce some
extra notations. Following Allen-Zhu et al. [2], for a parameter collection W and i P rns, we denote

hi,0 “ xi, hi,l “ σpWlhi,l´1q, l P rL´ 1s

as the hidden layer outputs of the network. We also define binary diagonal matrices

Di,l “ diag
`

1tpWlhi,lq1 ą 0u, . . . ,1tpWlhi,lqm ą 0u
˘

, l P rL´ 1s.

For i P rns and l P rL´ 1s, we use h1i,l, D1
i,l and h

p0q
i,l , D

p0q
i,l to denote the hidden layer outputs and

binary diagonal matrices with parameter collections W1 and Wp0q respectively. We also implement
the following matrix product notation which is also used in Zou et al. [39], Cao and Gu [8]:

l2
ź

r“l1

Ar :“

"

Al2Al2´1 ¨ ¨ ¨Al1 if l1 ď l2
I otherwise.

With this notation, we have the following matrix product representation of the neural network
gradients:

∇Wl
fWpxiq “

#

?
m ¨

“

hi,l´1WL

`
śL´1

r“l`1 Di,rWr

˘

Di,l

‰J
, l P rL´ 1s,

?
m ¨ hJi,L´1, l “ L.

B.1 Proof of Lemma 4.1

The following two lemmas are proved based on several results given by Allen-Zhu et al. [2]. Note
that in their paper, both the first and the last layers of the network are fixed, which is slightly different
from our setting. We remark that this difference does not affect the result.

Lemma B.1. If ω ď OpL´9{2rlogpmqs´3q, then with probability at least 1 ´ OpnLq ¨
expr´Ωpmω2{3Lqs, 1{2 ď }hi,l}2 ď 3{2 for all W P BpWp0q, ωq, i P rns and l P rL´ 1s.

Lemma B.2. If ω ď OpL´6rlogpmqs´3q, then with probability at least 1 ´ OpnL2q ¨

expr´Ωpmω2{3Lqs, uniformly over:

• any i P rns, 1 ď l1 ă l2 ď L´ 1

• any diagonal matrices D2
i,1, . . . ,D

2
i,L´1 P r´1, 1smˆm with at mostOpmω2{3Lq non-zero entries,

the following results hold:

(i) For all W P BpWp0q, ωq, }
śl2

r“l1
pDi,r `D2

i,rqWr}2 ď Op
?
Lq.

(ii) For all W P BpWp0q, ωq, }WL

śL´1
r“l1

pDi,r `D2
i,rqWr}2 ď Op1q.
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(iii) For all W,W1 P BpWp0q, ωq,
›

›

›

›

›

W1
L

L´1
ź

r“l1

pD1
i,r `D2

i,rqW
1
r ´WL

L´1
ź

r“l1

Di,rWr

›

›

›

›

›

2

ď O
´

ω1{3L2
a

logpmq
¯

.

We are now ready to prove Lemma 4.1.

Proof of Lemma 4.1. Since fW1pxiq “
?
m ¨W1

Lh1i,L´1, fWpxiq “
?
m ¨WLhi,L´1, by direct

calculation, we have

fW1pxiq ´ FW,W1pxiq “ ´
?
m ¨

L´1
ÿ

l“1

WL

˜

L´1
ź

r“l`1

Di,rWr

¸

Di,lpW
1
l ´Wlqhi,l´1

`
?
m ¨W1

Lph
1
i,L´1 ´ hi,L´1q.

By Claim 8.2 in Allen-Zhu et al. [2] , there exist diagonal matrices D2
i,l P Rmˆm with entries in

r´1, 1s such that }D2
i,l}0 ď Opmω2{3Lq and

hi,L´1 ´ h1i,L´1 “

L´1
ÿ

l“1

«

L´1
ź

r“l`1

pD1
i,r `D2

i,rqW
1
r

ff

pD1
i,l `D2

i,lqpWl ´W1
lqhi,l´1

for all i P rns. Therefore

fW1pxiq ´ FW,W1pxiq “
?
m ¨

L´1
ÿ

l“1

W1
L

«

L´1
ź

r“l`1

pD1
i,r `D2

i,rqW
1
r

ff

pD1
i,l `D2

i,lqpWl ´W1
lqhi,l´1

´
?
m ¨

L´1
ÿ

l“1

WL

˜

L´1
ź

r“l`1

Di,rWr

¸

Di,lpW
1
l ´Wlqhi,l´1.

By (iii) in Lemma B.2, with probability at least 1´OpnL2q ¨ expr´Ωpmω2{3Lqs, we have

|fW1pxiq ´ FW,W1pxiq| ď O
´

ω1{3L2
a

m logpmq
¯

¨

L´1
ÿ

l“1

}hi.l´1}2 ¨ }W
1
l ´Wl}2

ď O
´

ω1{3L2
a

m logpmq
¯

¨

L´1
ÿ

l“1

}W1
l ´Wl}2,

where the last inequality follows by Lemma B.1. This inequality finishes the proof.

B.2 Proof of Lemma 4.2

Intuitively, Lemma 4.2 follows by the fact that the composition of a convex function and an almost
linear function is almost convex. The detailed proof is as follows.

Proof of Lemma 4.2. By the convexity of `pzq, we have

LipW
1q ´ LipWq “ `ryifW1pxiqs ´ `ryifWpxiqs ě `1ryifWpxiqs ¨ yi ¨ rfW1pxiq ´ fWpxiqs.

By chain rule, we have

L
ÿ

l“1

x∇Wl
LipWq,W1

l ´Wly “ `1ryifWpxiqs ¨ yi ¨ x∇fWpxiq,W
1 ´Wy.

Therefore by triangle inequality, we have

`1ryifWpxiqs ¨ yi ¨ rfW1pxiq ´ fWpxiqs ě `1ryifWpxiqs ¨ yi ¨ x∇fWpxiq,W
1 ´Wy ´ I

“
řL

l“1x∇Wl
LipWq,W1

l ´Wly ´ I,
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where I “
ˇ

ˇ`1ryifWpxiqs ¨ yi ¨
“

fW1pxiq ´ fWpxiq ´ x∇fWpxiq,W
1 ´ Wy

‰
ˇ

ˇ. Then by upper-
bounding I with Lemma 4.1 and the fact that |`1ryifWpxiqs ¨ yi| ď 1, we have

LipW
1q ´ LipWq ě

L
ÿ

l“1

x∇Wl
LipWq,W1

l ´Wly ´O
´

ω1{3L2
a

m logpmq
¯

L´1
ÿ

l“1

}W1
l ´Wl}2

ě

L
ÿ

l“1

x∇Wl
LipWq,W1

l ´Wly ´ ε,

where the last inequality again follows by ω ď O
`

L´9{4m´3{8rlogpmqs´3{8ε3{4
˘

.

B.3 Proof of Lemma 4.3

To prove Lemma 4.3, we first introduce the following lemma which provides an upper bound for the
gradient of the neural network function near initialization.

Lemma B.3. There exists an absolute constant κ such that, with probability at least 1´OpnL2q ¨

expr´Ωpmω2{3Lqs, for all i P rns, l P rLs and W P BpWp0q, ωq with ω ď κL´6rlogpmqs´3, it
holds uniformly that

}∇Wl
fWpxiq}F , }∇Wl

LipWq}F ď Op
?
mq.

We now provide the final proof of Lemma 4.3.

Proof of Lemma 4.3. Let ω “ C1L
´6m´3{8rlogpmqs´3ε3{4, where C1 is a small enough absolute

constant such that the conditions on ω given in Lemmas 4.2 and B.3 hold. It is easy to see that as
long as m ě C´8

1 R8L48rlogpmqs12ε´6, we have W˚ P BpWp0q, ωq. We now show that under our
parameter choice, Wp0q, . . . ,Wpn´1q are inside BpWp0q, ωq as well.

This result follows by simple induction. Clearly we have Wp0q P BpWp0q, ωq. Suppose that
Wp0q, . . . ,Wpiq P BpWp0q, ωq. Then by Lemma B.3, for l P rLs we have }∇Wl

LipW
piqq}F ď

Op
?
mq. Therefore

›

›W
pi`1q
l ´W

p0q
l

›

›

F
ď

i
ÿ

j“0

›

›W
pj`1q
l ´W

pjq
l

›

›

F
ď Op

?
mηnq.

Plugging in our parameter choice η “ νε{pLmq, n “ L2R2{p2νε2q for some small enough absolute
constant ν gives

›

›W
pi`1q
l ´W

p0q
l

›

›

F
ď O

`?
m ¨ LR2{p2mεq

˘

ď ω,

where the last inequality holds as long as m ě C2R
16L56rlogpmqs12ε´14 for some large enough

constant C2. Therefore by induction we see that Wp0q, . . . ,Wpn´1q P BpWp0q, ωq. As a result, the
conditions of Lemmas 4.2 and B.3 are satisfied for W˚ and Wp0q, . . . ,Wpn´1q.

In the following, we utilize the results of Lemmas 4.2 and B.3 to prove the bound of cumulative loss.
First of all, by Lemma 4.2, we have

LipW
pi´1qq ´ LipW

˚q ď x∇WLipW
pi´1qq,Wpi´1q ´W˚y ` ε

“

L
ÿ

l“1

xW
pi´1q
l ´W

piq
l ,W

pi´1q
l ´W˚

l y

η
` ε

Note that for the matrix inner product we have the equality 2xA,By “ }A}2F ` }B}
2
F ´ }A´B}2F .

Applying this equality to the right hand side above gives

LipW
pi´1qq ´ LipW

˚q ď

L
ÿ

l“1

}W
pi´1q
l ´W

piq
l }

2
F ` }W

pi´1q
l ´W˚

l }
2
F ´ }W

piq
l ´W˚

l }
2
F

2η
` ε.
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By Lemma B.3, for l P rLs we have }Wpi´1q
l ´W

piq
l }F ď η}∇Wl

LipW
pi´1qq}F ď Opη

?
mq.

Therefore

LipW
pi´1qq ´ LipW

˚q ď

L
ÿ

l“1

}W
pi´1q
l ´W˚

l }
2
F ´ }W

piq
l ´W˚

l }
2
F

2η
`OpLηmq ` ε.

Telescoping over i “ 1, . . . , n, we obtain
n
ÿ

i“1

LipW
pi´1qq ď

n
ÿ

i“1

LipW
˚q `

L
ÿ

l“1

}W
p0q
l ´W˚

l }
2
F

2η
`OpLηnmq ` nε

ď

n
ÿ

i“1

LipW
˚q `

LR2

2ηm
`OpLηnmq ` nε,

where in the first inequality we simply remove the term ´}Wpnq
l ´W˚

l }
2
F {p2ηq to obtain an upper

bound, and the second inequality follows by the assumption that W˚ P BpWp0q, Rm´1{2q. Plugging
in the parameter choice η “ νε{pLmq, n “ L2R2{p2νε2q for some small enough absolute constant
ν gives

n
ÿ

i“1

LipW
pi´1qq ď

n
ÿ

i“1

LipW
˚q ` 3nε,

which finishes the proof.

B.4 Proof of Lemma 4.4

Here we prove Lemma 4.4. The proof essentially follows by standard Gaussian tail bound and a
bound on the length of last hidden layer output vector.

Proof of Lemma 4.4. By Lemma 4.1 in Allen-Zhu et al. [2], with probability at least 1 ´OpnLq ¨
expr´Ωpm{Lqs ą 1 ´ δ{2 over the randomness of W

p0q
1 , . . . ,W

p0q
L´1, }hp0qi,L´1}2 P r1{2, 3{2s for

all i P rns. Condition on W
p0q
1 , . . . ,W

p0q
L´1, fWp0qpxiq “

?
m ¨W

p0q
L hi,L´1 is a Gaussian random

variable with variance }hi,L´1}
2
2. Therefore by standard Gaussian tail bound and union bound, with

probability at least 1´ δ, |fWp0qpxiq| ď Op
a

logpn{δqq for all i P rns.

C Proofs of Results in Section A

In this section we provide the proofs of Corollary A.2 and Lemma A.3.

C.1 Proof of Corollary A.2

The following lemma is a simplified version of Lemma C.2 in Cao and Gu [8]. Since the proof is
almost the same as the proof of Lemma C.2 in Cao and Gu [8], except replacing the ε-net argument
with a simple union bound over n training examples, we omit the proof detail here.
Lemma C.1. For any δ ą 0, if m ě K ¨ 4LL4γ´2 logpnL{δq for some large enough ab-
solute constant K, then with probability at least 1 ´ δ, there exists αL´1 P Rm such that
yi ¨ xαL´1,hi,L´1y ě 2´Lγ for all i P rns.

Proof of Corollary A.2. SetB “ logt1{rexppn´1{2q´1su “ Oplogpnqq, then for cross-entropy loss
we have `pzq ď n´1{2 for z ě B. Moreover, let B1 “ maxiPrns |fWp0qpxiq|. Then by Lemma 4.4,
with probability at least 1´ δ, B1 ď Op

a

logpn{δqq for all i P rns.

By Lemma C.1, with probability at least 1 ´ δ, there exists αL´1 P Sm´1 such that yi ¨
xαL´1,hi,L´1y ě 2´Lγ for all i P rns. Therefore, setting R “ pB ` B1q ¨ 2Lγ´1 “ rOp2Lγ´1q,
we have

W “ p0, . . . ,0, Rm´1{2 ¨αJL´1q P Bp0, Rm´1{2q.
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Moreover, f˚p¨q :“ fWp0qp¨q ` x∇WfWp0qp¨q,Wy satisfies f˚ P FpWp0q, Rq, and

yi ¨ f
˚pxiq “ yi ¨ fWp0qpxiq ` yi ¨ x

?
m ¨ hJi,L´1, Rm

´1{2 ¨αJL´1y

ě pB `B1q ¨ 2Lγ´1 ¨ 2´Lγ ´B1

ě B.

Therefore we have `pyi ¨ f˚pxiqq ď ε, i P rns. Applying Theorem 3.3 gives

E
“

L0´1
D pxWq

‰

ď rO

˜

2L ¨ γ´1

?
n

¸

`O

«

c

logp1{δq

n

ff

“ rO

˜

2L ¨ γ´1

?
n

¸

.

This finishes the proof.

C.2 Proof of Lemma A.3

Here we give the proof of Lemma A.3. It is based on a simple construction.

Proof of Lemma A.3. For any fpxq “ W2σpW
p0q
1 xq with }W2}F ď Cm´1{2, by the assumption

that }Wp0q
2 }F ď Km´1{2 for some K “ rOp1q, we have W1

2 :“ W2 ´W
p0q
2 satisfies }W1

2}F ď

pC `Kq ¨m´1{2. Therefore

fpxq “ W2σpW
p0q
1 xq “ W

p0q
2 σpW

p0q
1 xq `W1

2σpW
p0q
1 xq Ď F .

This finishes the proof.

D Proofs of Lemmas in Section B

In this section we give the proofs of lemma B.1, Lemma B.2 and Lemma B.3 in Section B.

D.1 Proof of Lemma B.1

Proof of Lemma B.1. By Lemma 4.1 in Allen-Zhu et al. [2], with probability at least 1´OpnLq ¨
expr´Ωpm{Lqs, }hp0qi,l }2 P r3{4, 5{4s for all i P rns and l P rL ´ 1s. Moreover, by Lemma 5.2 in
Allen-Zhu et al. [2] and the 1-Lipschitz continuity of σp¨q, with probability at least 1 ´ OpnLq ¨
expr´Ωpmω2{3Lqs, }hi,l ´ h

p0q
i,l }2 ď OpωL5{2

a

logpmqq. Therefore by the assumption that ω ď
OpL´9{2rlogpmqs´3q, we have }hi,l}2 P r1{2, 3{2s for all i P rns and l P rL´ 1s.

D.2 Proof of Lemma B.2

We first introduce the following lemma characterizing the activation changes between networks
with two close enough parameter sets W and W1. This lemma directly follows by Lemma 8.2 in
Allen-Zhu et al. [2] and triangle inequality.

Lemma D.1. If ω ď OpL´9{2rlogpmqs´3{2q, then with probability at least 1 ´ OpnLq ¨
expr´Ωpmω2{3Lqs,

}Di,l ´D1
i,l}0 ď OpLω2{3mq

for all W,W1 P BpWp0q, ωq, i P rns and l P rL´ 1s.

Proof of Lemma B.2. We first prove (i) and (iii), and then use (iii) to prove (ii).

By Lemma D.1, with probability at least 1 ´ OpnLq ¨ expp´ΩpLω2{3mqq, }Di,l ´ D
p0q
i,l }0 ď

OpLω2{3mq for all i P rns and l P rL´1s. Therefore we have }Di,r`D2
i,r´D

p0q
i,l }0 ď OpLω2{3mq

for all i P rns and l P rL ´ 1s. Therefore by Lemma 5.6 in Allen-Zhu et al. [2], with probability
at least 1 ´ OpnL2q ¨ expr´Ωpmω2{3Lqs we have

›

›

śl2
r“l1

pDi,r `D2
i,rqWr

›

›

2
ď Op

?
Lq. This

completes the proof of (i) in Lemma B.2.
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Similarly, to prove (iii), applying Lemma D.1 to W1 gives that with probability at least 1´OpnLq ¨
expp´ΩpLω2{3mqq, }D1

i,l `D2
i,r ´D

p0q
i,l }0 ď OpLω2{3mq for all i P rns and l P rL´ 1s. Now by

Lemma 5.7 in Allen-Zhu et al. [2]4 with s “ Opmω2{3Lq to W and W1, we have

?
m ¨

›

›

›

›

›

W
p0q
L

L´1
ź

r“l1

pD1
i,r `D2

i,rqW
1
r ´W

p0q
L

L´1
ź

r“l1

D
p0q
i,r Wp0q

r

›

›

›

›

›

2

ď O
´

ω1{3L2
a

m logpmq
¯

, (D.1)

?
m ¨

›

›

›

›

›

W
p0q
L

L´1
ź

r“l1

Di,rWr ´W
p0q
L

L´1
ź

r“l1

D
p0q
i,r Wp0q

r

›

›

›

›

›

2

ď O
´

ω1{3L2
a

m logpmq
¯

. (D.2)

Moreover, by result (i), we have
›

›

›

›

›

pW1
L ´W

p0q
L q

L´1
ź

r“l1

pD1
i,r `D2

i,rqW
1
r

›

›

›

›

›

2

ď Op
?
Lωq ď O

´

ω1{3L2
a

logpmq
¯

, (D.3)

›

›

›

›

›

pWL ´W
p0q
L q

L´1
ź

r“l1

Di,rWr

›

›

›

›

›

2

ď Op
?
Lωq ď O

´
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Combining equations (D.1), (D.2), (D.3), (D.4) and applying triangle inequality gives the desired
final result (iii).

Finally to prove (ii), we write
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›

›
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i,rqWr

›

›

›

›

›

2

ď

›

›

›

›

›

WL

L´1
ź

r“l1

pDi,r `D2
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›
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.

Applying (iii) and (b) in Lemma 4.4 in Allen-Zhu et al. [2], with probability at least 1 ´OpnLq ¨
expr´Ωpm{Lqs, we obtain

›

›

›

›

›

WL

L´1
ź

r“l1

pDi,r `D2
i,rqWr

›

›

›

›

›

2

ď O
´

ω1{3L2
a

logpmq
¯

`Op1q “ Op1q.

This gives (ii).

D.3 Proof of Lemma B.3

Proof of Lemma B.3. By Lemma B.1, clearly we have

}∇Wl
fWpxiq}F “ }

?
m ¨ hi,L´1}2 ď Op

?
mq

for all W P BpWp0q, ωq and i P rns. For l P rL´ 1s, by direct calculation we have
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Therefore by Lemma B.1 and (ii) in Lemma B.2, we have

}∇Wl
fWpxiq}F ď Op

?
mq.

Finally, for }∇Wl
LipW

piqq}F we have

}∇Wl
LipW

piqq}F ď
ˇ

ˇ`1ryi ¨ fWpiqpxiqs ¨ yi
ˇ

ˇ ¨
›

›∇Wl
fWpiqpxiq

›

›

F
ď
?
m.

This completes the proof.
4Note that

?
m ¨W

p0q

L is a random vector following the Gaussian distribution Np0, Iq, which matches the
distribution of the last layer parameters in Allen-Zhu et al. [2] for the binary classification case, where the output
dimension of the network is 1.
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E Experimental Results

In this section we provide numerical calculations of the generalization bounds given by Theorem 3.3
and Corollary 3.10 on the MNIST dataset [22]. The main goal of these calculations is to demonstrate
that the bounds given in our results are informative and can provide practical insight.

We have done experiments of a five-layer fully connected NN on MNIST dataset (3 versus 8), and
calculated the first terms in the bounds given by Theorem 3.3 and Corollary 3.10.

• In Figure 1(a), we plot the first term in the bound of Theorem 3.3 with different values of R
and m, where the infimum of loss function values is approximated by solving the constrained
convex optimization problem inffPFpWp0q,Rqtp4{nq ¨

řn
i“1 `ryi ¨ fpxiqsu with projected stochastic

gradient descent.
• To demonstrate the scaling of the bound in Corollary 3.10, we calculate the value

of
a

yJpΘpLqq´1y{n, where y is the true label vector with random flips. We plot
a

yJpΘpLqq´1y{n in Figure 1(b) by varying the level of label noise, i.e., ratio of the labels
that are flipped. Note that to simplify calculation, we do not consider the ry introduced in Corol-
lary 3.10. Clearly, our calculation here gives an upper bound of the generalization bound in
Corollary 3.10.
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Figure 1: (a) Evaluation of the first term in the bound of Theorem 3.3 for different values of R and m.
(b) Evaluation of the first term of the bound in Corollary 3.10 with different ratio of label flip.

We can see that our bounds in both Theorem 3.3 and Corollary 3.10 give small and meaningful values.
Moreover, these experimental results also back up our theoretical analysis. In Figure 1(a), the curves
corresponding to different m’s also validate our theoretical result that the wider the network is, the
shorter SGD needs to travel to fit the training data. In addition, the larger the size of reference function
class (i.e., R), the smaller inffPFpWp0q,Rqtp4{nq ¨

řn
i“1 `ryi ¨ fpxiqsu will be. In Figure 1(b), we

can see that the noisier the labels, the larger the term
a

yJpΘpLqq´1y{n is. When most of the labels
are true labels, our bound can predict good test error; when the labels are purely random (i.e., ratio
of label flip “ 0.5), the bound on the test error can be larger than one. To sum up, these numerical
results demonstrate the practical values of our generalization bounds, and suggest that our bounds
can provide good measurements of the data classifiability.
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