
A Data Statistics and Model Parameters in Tables 1 and 2
Table 3 presents data statistics and parameters for the models in Tables 1 and 2 in the main text. The standard
test accuracy is the model accuracy on natural, unmodified test sets.

Dataset training test # of # of # of robust depth standard test acc.
set size set size features classes trees ε robust natural robust natural

breast-cancer 546 137 10 2 4 0.3 8 6 .978 .964
covtype 400,000 181,000 54 7 80 0.2 8 8 .847 .877
diabetes 614 154 8 2 20 0.2 5 5 .786 .773

Fashion-MNIST 60,000 10,000 784 10 200 0.1 8 8 .903 .903
HIGGS 10,500,000 500,000 28 2 300 0.05 8 8 .709 .760
ijcnn1 49,990 91,701 22 2 60 0.1 8 8 .959 .980

MNIST 60,000 10,000 784 10 200 0.3 8 8 .980 .980
webspam 300,000 50,000 254 2 100 0.05 8 8 .983 .992

MNIST 2 vs. 6 11,876 1,990 784 2 1000 0.3 6 4 .997 .998

Table 3: The data statistics and parameters for the models presented in Tables 1 and 2.

B Results for Solving Single Layer Bounds with Dynamic Programming
In this section we provide results of our algorithm by using Eq. (7) for solving the last single layer bounds. Since
using dynamic programming to find the maximum valued path in a graph can take significantly longer time
than using (6), we found that the solving time increases noticeably if using the same T and L values. For some
models, we reduce the values of T or L in order to speed up our method with dynamic programming. But even
with smaller T or L values, the lower bounds r can also be improved with dynamic programming.

Dataset MILP [20] Ours (with DP) Ours vs. MILP
avg. r∗ avg. time T L avg. rour avg. time rour/r

∗ speedup
breast-cancer .210 .012s 2 1 .209 .001s 1.00 12X

covtype .028? 355?s 2 3 .024 5.70s .86 62X
diabetes .049 .061s 2 2 .044 .013s .90 4.7X

Fashion-MNIST .014? 1150?s 2 1 .012 22.8s .86 50X
HIGGS .0028? 68?min 4 1 .0023 22.1s .82 185X
ijcnn1 .030 4.64s 2 1 .027 .053s .90 88X

MNIST .011? 367?s 2 1 .011 5.10s 1.00 72X
webspam .00076 47.2s 2 1 .00051 3.29s .67 14X

MNIST 2 vs. 6 .057 23.0s 4 1 .050 2.41s .88 9.5X

Table 4: Average `∞ distortion over 500 examples and average verification time per example for three
verification methods. Here we evaluate the bounds for standard (natural) GBDT models. Results
marked with a star (“?”) are the averages of 50 examples due to long running time. T is the number
of independent sets and L is the number of levels in searching cliques used in our algorithm. A ratio
rour/r

∗ close to 1 indicates better lower bound quality.

Dataset MILP [20] Ours (with DP) Ours vs. MILP
avg. r∗ avg. time T L avg. rour avg. time rour/r

∗ speedup
breast-cancer .400 .009s 2 1 .399 .001s 1.00 9.0X

covtype .046? 305?s 2 2 .035 3.69s .76 83X
diabetes .112 .034s 2 2 .111 .005s .98 7.1X

Fashion-MNIST .091? 41?min 2 1 .071 19.9s .78 124X
HIGGS .0084? 59?min 4 1 .0069 4.25s .82 783X
ijcnn1 .036 2.52s 2 2 .035 .655s .97 3.8X

MNIST .264? 615?s 2 1 .264 7.74s 1.00 63X
webspam .015 83.7s 2 1 .011 1.26s .73 66X

MNIST 2 vs. 6 .313 91.5s 2 1 .309 5.91s .99 15.5X

Table 5: Verification bounds and running time for robustly trained GBDT models introduced in [9].
The settings for each method are similar to the settings in Table 4.

C Connection between the Score in Figure 4 and Other Feature Importance
Scores

We note that our perturbation-sensitivity notion of feature importance is complementary to the conventional
tree/forest feature importance, with several critical differences. In Figure 5 below we show the feature importance
map of the same standard and robust models used in Figure 4 in the main text. A feature’s importance is measured
by the average gain across all the splits it is used in. Pixels with darker color have larger importance and yellow
pixels have zero importance. Our single-feature robustness bounds shown in Figure 4 are different from
importance scores (Figure 5) in the following ways:

• The conventional feature importance score only depends on the model itself, and is test data indepen-
dent. Conversely, our single-feature robustness bound depends on both the model and the test data
point; for different data points, the model may be sensitive to different features.

13

• The conventional feature importance is a heuristic score. Our robustness bound can give a formal
guarantee that the model output would not change if this single feature is perturbed within a given
range.

• The conventional feature importance score assigns non-zero importance to more pixels than our
method does in general.

Standard DT Robust DT

0

2000

4000

Figure 5: Feature importance of the same models as in Figure 4 in the main text. Left: standard DT model;
Right: robust DT model. Yellow pixels have zero feature importance while darker pixels have larger importance.
A feature’s importance is measured by the average gain across all the splits it is used in.

D Proof of Lemma 1
Lemma 1. For boxes B1, . . . , BK , if Bi ∩Bj 6= ∅ for all i, j ∈ [K], let B̄ = B1 ∩B2 ∩ · · · ∩BK be their
intersection. Then B̄ will also be a box and B̄ 6= ∅.

Proof. If we have K one dimensional intervals I1 = (l1, r1], I2 = (l2, r2], . . . , IT = (lK , rK], we want to
prove if every pair of them have nonempty overlap I1 ∩ · · · ∩ IK 6= ∅. This can be proved by the following.
Without loss of generality we assume l1 ≤ l2 ≤ · · · ≤ lK . For each k < K, Ik ∩ IK 6= ∅ implies lK < rk.
Therefore, (lT ,min(r1, r2, . . . , rK)] will be a nonempty set that is contained in I1, I2, . . . , IK . Therefore
I1 ∩ I2 ∩ · · · ∩ IK 6= ∅ and it is another interval.

This can be generalized to d-dimensional boxes. Assume we have boxes B1, . . . , BK such that Bi ∩Bj 6= ∅ for
any i and j. Then for each dimension we can apply the above proof, which implies that B1∩B2∩· · ·∩BK 6= ∅
and the intersection will be another box.

E An O(n) time algorithm for verifying a decision tree
The robustness of a single tree can be easily verified by the following O(n) algorithm, which tra-
verse the whole tree and computes the bounding boxes for each node in a depth-first search fashion.
Algorithm 3: Linear time `∞ untargeted attack for a decision tree.

1 Initial p∗ = 0, `t = −∞, rt =∞, ∀t = 1, . . . d;
2 ComputeRecursive(0, 0);

3 Function ComputeRecursive(i, p)
4 if i is leaf node then
5 if vi 6= y0 then
6 p∗ ← min(p∗, p);
7 else

/* Checking conditions for the left child */
8 s← rti ;
9 rti ← min(rti , Iti) ;

10 if lti ≤ rti then
11 if rti < xti then
12 ComputeRecursive(i.left_child, max(p, |xti − rti |))
13 else
14 ComputeRecursive(i.left_child, p) ;
15 rti ← s;

/* Checking conditions for the right child */
16 s← lti ;
17 lti ← max(lti , Iti) ;
18 if lti ≤ rti then
19 if lti > xti then
20 ComputeRecursive(i.right_child, max(p, |xti − lti |))
21 else
22 ComputeRecursive(i.right_child, p) ;
23 end

14

