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In this supplementary material, we include the detailed proofs for the Propositions 4.1, 5.1 and the
Theorems 4.1, 5.1. We also provide further details of the search space optimization. Finally, we show
extra experimental results on the test functions Levy10 and Ackley10.

1 Proof of All the Propositions and Theorems

1.1 Background

Gaussian Process A Gaussian Process (GP) is a distribution over functions, which is completely
specified by its mean function and covariance function [4]. Assume the function f follows a GP
with mean function m0(x) and covariance function k(x, x′). Given the observed data Dt−1 =
{(xi, yi)}ni=1, yi = f(xi) + ξi, where ξi ∼ N (0, σ2) is the noise, the posterior distribution of f is a
GP with the following posterior mean and variance,

µt−1(x) = m0(x) + k|Dt−1|(x)
T (K|Dt−1| + σ2I|Dt−1|)

−1y|Dt−1|,

σ2
t−1(x) = k(x, x)− k|Dt−1|(x)

T (K|Dt−1| + σ2I|Dt−1|)
−1k|Dt−1|(x),

(1)

where y|Dt−1| = [y1, . . . , y|Dt−1|]
T , k|Dt−1|(x) = [k(x, xi)]

|Dt−1|
i=1 , K|Dt−1| = [k(xi, xj)]i,j , I|Dt−1|

is the |Dt−1| × |Dt−1| identity matrix and |Dt−1| denotes the cardinality of Dt−1. To aid readability,
in the sequel we remove the notation that shows the dependence of k,K, I, y on |Dt−1|.

GP-UCB Acquisition Function The GP-UCB acquisition function is defined as [1–3, 5],

αUCB(x;Dt−1) = µt−1(x) +
√
βtσt−1(x), (2)

where µt−1(x), σt−1(x) are the posterior mean and standard deviation of the GP given observed data
Dt−1 and βt ≥ 0 is an appropriate parameter that balances the exploration and exploitation. Given a
search domain, {βt} can be chosen following the suggestion in [5] to ensure global convergence in
this domain.

Maximum Information Gain For any search space S, define the maximum mutual information
γT,S [5]:

γT,S := max
A⊂S,|A|=T

1

2
log det(IT + σ−2KT ), (3)

where KT = [k(x, x′)]x,x′∈A and IT is the identity matrix with size T × T .

Defining gk(γ) for kernel k(.) With the types of kernels satisfied Assumption 4.2 in the paper, for
all small positive γ, there always exists gk(γ) > 0 such that,

∀x, x′ : ‖x− x′‖2 ≥ gk(γ), k(x, x′) ≤ γ. (4)

The value of gk(γ) can be computed from γ and the kernel covariance function k(x, x′) i.e. for
Squared Exponential kernel kSE(x, x′) = θ2exp(−‖x− x′‖22/(2l2)), gk(γ) will be

√
2l2log(θ2/γ).
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1.2 Proof of Proposition 4.1

Substituting Eq. (1) into Eq. (2) and combining with Assumption 4.1 in the paper, we have,

αUCB(x;Dt−1) = k(x)T (K + σ2I)−1y +
√
βt

√
k(x, x)− k(x)T (K + σ2I)−1k(x). (5)

Since k(x, x′) is a kernel covariance function that satisfies the Assumptions 4.2 in the paper, then,

k(x) x→∞−−−−→ 0, k(x, x) = θ2. (6)

Combining Eq. (5) and Eq. (6), the proposition is proved, i.e.,

αUCB(x;Dt−1)
x→∞−−−−→

√
βtθ. �

1.3 Proof of Theorem 4.1

Firstly, we prove that with the choice of S = Rd \A, where 1) A contains all the points x that are far
from all the current observations, and, 2) A := {x ∈ Rd : |αUCB(x;Dt−1)−

√
βtθ| < ε/2}, there

exists a point in S whose GP-UCB acquisition function value is within ε from the maximum of the
acquisition function, i.e. ∃xu ∈ S : |αUCB(xu;Dt−1)−maxx∈Rd αUCB(x;Dt−1)| ≤ ε. With the
choice of ε < |

√
βtθ −minx∈Rd(αUCB(x;Dt−1))|, let us consider three cases:

• Case 1: The argmax of the GP-UCB acquisition function is at infinity. This means that
the GP-UCB acquisition function maximum is equal to

√
βtθ. As the GP-UCB acquisition

function is continuous and ε < |
√
βtθ −minx∈Rd(αUCB(x;Dt−1))|, hence, there exists a

point xu such that αUCB(xu) =
√
βtθ − ε/2. By the definition of S, it is straightforward

that xu belongs to S , thus proving that there exists a point in S whose GP-UCB acquisition
function value is within ε from the maximum of the acquisition function.

• Case 2: The argmax of the GP-UCB acquisition function x′max is at a finite location
and its acquisition function value is larger or equal

√
βtθ + ε/2. It is straightforward

to see that the argmax x′max belongs to the region S and this is the point that satisfies
|αUCB(x′max;Dt−1)−maxx∈Rd αUCB(x;Dt−1)| ≤ ε.

• Case 3: The GP-UCB acquisition function argmax is at a finite location and the acquisition
function maximum is smaller than

√
βtθ + ε/2. As the GP-UCB acquisition function is

continuous and ε < |
√
βtθ − minx∈Rd(αUCB(x;Dt−1))|, there exists a point xu ∈ S :

αUCB(xu;Dt−1) =
√
βtθ − ε/2. As maxx∈Rd αUCB(x;Dt−1) <

√
βtθ + ε/2, it follows

directly that |αUCB(xu;Dt−1)−maxx∈Rd αUCB(x;Dt−1)| ≤ ε.

Secondly, we will give analytical expression for one way to define the region A. We will prove that
A can be chosen as {x : ∀xi ∈ Dt−1 : ‖x− xi‖2 ≥ gk(γ)}, where,

γ = min(
√
(0.5

√
βtθε− 0.0625ε2)/(|Dt−1|λmax)θ, 0.25ε/max

( ∑
zj≤0

−zj ,
∑
zj≥0

zj)
)
,

gk(.) defined as in Eq. (4), λmax ∈ R+ is the largest singular value of (K + σ2I)−1, zj is the jth

element of vector (K + σ2I)−1y and ε < |
√
βtθ −minx∈Rd(αUCB(x;Dt−1))|. With this choice of

A, then the region S can be computed as S =
⋃|Dt−1|
i=1 Si, Si = {x : ‖x−xi‖2 ≤ gk(γ)}, xi ∈ Dt−1.

Consider the GP-UCB acquisition function,

αUCB(x;Dt−1) = µt−1(x) +
√
βtσt−1(x)

= k(x)T (K + σ2I)−1y +
√
βt

√
k(x, x)− k(x)T (K + σ2I)−1k(x)

= k(x)T (K + σ2I)−1y +
√
βt

√
θ2 − k(x)T (K + σ2I)−1k(x).

The error between αUCB(x;Dt−1) and
√
βtθ can be computed as,√

βtθ − αUCB(x;Dt−1) = −k(x)T (K + σ2I)−1y +

√
βtk(x)T (K + σ2I)−1k(x)√

θ2 − k(x)T (K + σ2I)−1k(x) + θ
. (7)
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First, we consider the first term in Eq. (7). It is easy to see that,∑
zi≤0

zik(x, xi) ≤ k(x)T (K + σ2I)−1y ≤
∑
zi>0

zik(x, xi),

where zi is the ith element of vector (K + σ2I)−1y. Therefore,

|k(x)T (K + σ2I)−1y| ≤ max
(∣∣∣∣ ∑

zi≤0

zik(x, xi)

∣∣∣∣, ∣∣∣∣ ∑
zi≥0

zik(x, xi)

∣∣∣∣)
≤ max

(∑
zi≤0

−zik(x, xi),
∑
zi≥0

zik(x, xi)
)
.

(8)

For all small positive γ, for all x such that ‖x − xi‖2 ≥ gk(γ),∀xi ∈ Dt−1 with gk(γ) defined in
Eq. (4), we have k(x, xi) ≤ γ,∀xi ∈ Dt−1. Combining this with Eq. (8), the first term in Eq. (7) is
bounded as,

|k(x)T (K + σ2I)−1y| ≤ max
(∑
zi≤0

−zi,
∑
zi≥0

zi

)
γ. (9)

Second, consider the second term in Eq. (7). Since K is a covariance matrix, it is a positive
semidefinite matrix, hence, (K + σ2I) and (K + σ2I)−1 are also positive semidefinite symmetric
matrices. Using the singular value decomposition (SVD), we have, (K + σ2I)−1 = UDUT , where
D is a diagonal matrix and U is a unitary matrix. Denote λmax (λmax ∈ R+) to be the maximum
entry on the diagonal of matrix D (λmax is also called the largest singular value of the matrix
(K + σ2I)−1), we then have,

k(x)T ((K + σ2I)−1 − λmaxI)k(x) = k(x)T (UDUT − UλmaxIUT )k(x)
= (UTk(x))T (D − λmaxI)UTk(x).

Since (D − λmaxI) is a negative semidefinite matrix, (UTk(x))T (D − λmaxI)UTk(x) ≤ 0. There-
fore,

k(x)T (K + σ2I)−1k(x) ≤ λmaxk(x)Tk(x) ≤ λmax
|Dt−1|∑
i=1

k2(x, xi). (10)

For all small positive γ, for all x such that ‖x − xi‖2 ≥ gk(γ),∀xi ∈ Dt−1 with gk(γ) defined in
Eq. (4), we have k(x, xi) ≤ γ,∀xi ∈ Dt−1. Combining this with Eq. (10), we now have,

0 ≤ k(x)T (K + σ2I)−1k(x) ≤ nλmaxγ2, (11)

where n denotes |Dt−1|, i.e. cardinality of Dt−1. Consider the function,

f(z) =

√
βtz√

θ2 − z + θ
, 0 ≤ z ≤ θ2.

It is easy to see f(z) is a monotone increasing function in the range [0, θ2]. Hence, with k(x)T (K +
σ2I)−1k(x) being in the range [0, nλmaxγ

2], then,

0 ≤
√
βtk(x)T (K + σ2I)−1k(x)√

θ2 − k(x)T (K + σ2I)−1k(x) + θ
≤

√
βtnλmaxγ

2√
θ2 − nλmaxγ2 + θ

, (12)

where γ ≤
√
θ/(nλmax). From Eqs. (7), (9) and (12), we have that: ∀γ > 0, then ∀x such that

‖x− xi‖2 ≥ dγ , i = 1, n, the following inequality is satisfied,

|
√
βtθ − αUCB(x;Dt−1)| ≤ max

(∑
zi≤0

−zi,
∑
zi≥0

zi

)
γ +

√
βtnλmaxγ

2√
θ2 − nλmaxγ2 + θ

. (13)

With the choice of γ = min
( 0.25ε

max(
∑
zi≤0−zi,

∑
zi≥0 zi)

,
1√
βt

√
0.5
√
βtθε− 0.0625ε2

nλmax

)
, 0 < ε <

4
√
βtθ. Then from Eq. (13), we have that ∀x : ‖x− xi‖2 ≥ dγ , i = 1, n, the following inequality
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satisfies,

|
√
βtθ − αUCB(x;Dt−1)| < max

(∑
zi≤0

−zi,
∑
zi≥0

zi

) 0.25ε

max(
∑
zi≤0−zi,

∑
zi≥0 zi)

+

√
βtnλmax

(
1√
βt

√
0.5
√
βtθε− 0.0625ε2

nλmax

)2

√√√√θ2 − nλmax
(

1√
βt

√
0.5
√
βtθε− 0.0625ε2

nλmax

)2

+ θ

< 0.25ε+ 0.25ε

< ε/2. �

(14)

Remark 1.1 Note that if |
√
βtθ − minx∈Rd αUCB(x;Dt−1)| = 0, then ∀ε < |

√
βtθ −

maxx∈Rd αUCB(x;Dt−1)| or < |
√
βtθ −maxx∈Dt−1

αUCB(x;Dt−1)|, the bound in Theorem 4.1
remains valid. As in this case, the GP-UCB argmax is at a finite location and its acquisition function
value >

√
βtθ, thus our arguments in Case 2 hold. However, it is worth noting that the scenario

|
√
βtθ −minx∈Rd αUCB(x;Dt−1)| = 0 is very rare in practice. With Assumption 4.1, most of the

time, minx∈Rd αUCB(x;Dt−1) ≤ 0, hence |
√
βtθ −minx∈Rd αUCB(x;Dt−1)| > 0. Only when the

noise is large, there is a very small chance |
√
βtθ −minx∈Rd αUCB(x;Dt−1)| = 0 can happen.

1.4 Proof of Proposition 5.1

Following Lemma 5.7 in [5], for any d-dimensional domain Sk with side length rk, suppose the
kernel k(x, x′) satisfies the following condition on the derivatives of GP sample paths f : ∃ak, bk >
0, Pr{supx∈Sk |∂f/∂xj | > L} ≤ ak exp

−(L/bk)2 , j = 1, d. Pick δ ∈ (0, 1), and define βt =

2 log(t22π2/(3δ))+2d log(t2dbkrk
√

log(4dak/δ)), then ∀ε > 0, with probability larger than 1− δ,
we have maxx∈Sk αUCB(x;Dt−1) ≤ µt−1(xt) + β

1/2
t σt−1(xt) + 1/t2,∀t ≥ 1, where xt is the

suggestion from the GP-UCB algorithm at iteration t. Therefore,

maxx∈Sk f(x)−maxx∈Dt f(x)

≤ µt−1(xt) + β
1/2
t σt−1(xt) + 1/t2 −maxx∈Dt

f(x)

≤ µt−1(xt) + β
1/2
t σt−1(xt) + 1/t2 −maxx∈Dt

αLCB(x;Dt−1)

≤ µt−1(xt) + β
1/2
t σt−1(xt) + 1/t2 − αLCB(xt;Dt−1)

≤ 2β
1/2
t σt−1(xt) + 1/t2.

(15)

Following Lemma 5.4 in [5], we have that,

T∑
t=1

4βtσ
2
t−1(xt) ≤ C1βT γT , (16)

with C1 = 8/ log(1 + σ−2), γT is the maximum information gain in the search space Sk (can be
computed using (3)).
Assume 2β

1/2
t σt−1(xt) does not converge to 0 when t → ∞. It means there exists T0, such that

∀t ≥ T0, 2β1/2
t σt−1(xt) ≥ m with m being a constant. Then, ∀T ≥ T0,

T∑
t=T0

4βtσ
2
t−1(xt) ≥ m2(T − T0). (17)

Which means, ∀T ≥ T0,

C1βT γT −
T0∑
t=1

4βtσ
2
t−1(xt) ≥ m2(T − T0). (18)

4



For the kernel classes: finite dimensional linear, Squared Exponential and Matérn, and assume the
kernel satisfies k(x, x′) ≤ 1 (condition 2 of Assumption 4.2 in the paper), we have that γT is upper
bounded by O(T d(d+1)/(2ν+d(d+1))(log T )) with ν > 1. However, the RHS of Eq. (18) is O(T ),
thus it is not correct. Therefore, 2β1/2

t σt−1(xt) converges to 0 when t → ∞. Which means there
∃Tk : ∀t ≥ Tk,

rb,Sk(t) = maxx∈Sk αUCB(x;Dt−1)−maxx∈Dt
αLCB(x;Dt−1) ≤ ε− 1/t2. (19)

Finally, following Eq. (15), with probability larger than 1−δ, we have, ∀t, maxx∈Sk αUCB(x;Dt−1)
−maxx∈Dt

f(x) ≤ µt−1(xt)+β1/2
t σt−1(xt)+1/t2−maxx∈Dt

αLCB(x;Dt−1). Thus ∀t satisfies
Eq. (19), maxx∈Sk f(x)−maxx∈Dt

f(x) ≤ ε. �

1.5 Proof of Theorem 5.1

First, we prove that with our search space expansion strategy, the search space will continue to expand,
i.e. size(Sk)

k→∞−−−−→∞. As λmax is the largest singular value of the matrix (K + σ2I)−1, hence, it
is also the maximum entry on the diagonal of matrix D where D satisfies: (K + σ2I)−1 = UDUT

with U being a unitary matrix. Note that λmax = 1/(λmin,(K+σ2I)) where λmin,(K+σ2I) is the
smallest singular value of matrix (K + σ2I). We have,

nλmin,(K+σ2I) ≤ Tr(K + σ2I) = n(θ2 + σ2), (20)

where Tr(.) is the Trace operator and n = |Dt−1|. Thus λmin,(K+σ2I) ≤ (θ2 + σ2), which results
λmax ≥ 1/(θ2 + σ2). Therefore,√

(0.5
√
βtθε− 0.0625ε2)/(|Dt−1|λmax)θ

t→∞−−−→ 0, (21)

as βt ∼ O(log(t)) and |Dt−1| ≥ t− 1.
This means dε

t→∞−−−→ ∞, hence size(Sk)
k→∞−−−−→ ∞. Thus ∃k0 such that S∗ ⊂ Sk0 , where S∗ is

the region that contains the objective function global maximum. Following Proposition 5.1 in the
paper, with the choice of {βt} to be as suggested in the Theorem, the proposed algorithm achieves
the local ε-accuracy any search space. Thus it eventually achieves the local ε-accuracy in search
space Sk0 , hence ∃xk0 : (f(xk0)−maxx∈S0 f(x)) ≤ ε. Note that maxx∈S0 f(x) = maxx∈S∗ f(x)
as S∗ ⊂ Sk0 . Therefore, (maxx∈S∗ f(x)− f(xk0)) ≤ ε. �

2 Further Details of Search Space Optimization

The theoretical search space developed in Theorem 4.1 is the union of |Dt−1| balls. To suit optimizer
input, this region is converted to an encompassing hypercube using,

minxi∈Dt−1
(xki )− dε ≤ xk ≤ maxxi∈Dt−1

(xki ) + dε, k = 1, d. (22)

This encompassing hypercube is larger than our theoretical search space. In the case when the
GP-UCB acquisition function argmax is at finite location, then acquisition function maximum within
our theoretical search space and within this encompassing hypercube is the same. In the case
when the GP-UCB acquisition function argmax is at infinity, optimizing the acquisition function
within the encompassing hypercube results in the suggested point to be much further than it should
be. Therefore, in our algorithm, after optimizing the GP-UCB acquisition function within the
encompassing hypercube, we check,

• If the GP-UCB acquisition function maximum is larger than
√
βtθ or smaller than

√
βtθ− ε,

then suggest that point as the interesting point to be evaluated.

• If the GP-UCB acquisition function maximum is between
√
βtθ−ε and

√
βtθ, then construct

|Dt−1| encompassing hypercubes for the |Dt−1| balls. To save computation time, optimize
the acquisition function within the hypercube that encompass the ball whose center has
the highest αUCB value first. Then check if the acquisition function maximum is smaller
than

√
βtθ − ε, if yes, stop and pick that point to be the interesting point to be evaluated.

Otherwise, continue until find one.
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3 Extra Experimental Results

In this section, we show extra experimental results on the test functions Levy10 and Ackley10 that
we provide NeurIPS reviewers during rebuttal. The setups are same as in the paper. For Ackley10,
the number of experiments is 30 whilst for Levy10, the number of experiments is 10 as GPUCB-FBO
computation time for Levy10 is so expensive that we can only get 10 experiments during the whole
rebuttal time. For Ackley10, our proposed method outperforms other 6 methods by a high margin
and is better than GPUCB-FBO and, note that GPUCB-FBO computation time is at least 5-6 times
slower than our method. For Levy10, our proposed method is slightly better than EIH, EI-vol2 while
outperforming other baselines significantly.

Figure 1: Best found values of two high-dimensional synthetic benchmark test functions using
different algorithms. Function Ackley10 is plotted over 30 repetitions whilst Levy10 is plotted over
10 repetitions due to prohibitive computation time of the method GPUCB-FBO. (Best seen in color)
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