
On the Inductive Bias of Neural Tangent Kernels

Alberto Bietti
Inria∗

alberto.bietti@inria.fr

Julien Mairal
Inria∗

julien.mairal@inria.fr

Abstract

State-of-the-art neural networks are heavily over-parameterized, making the opti-
mization algorithm a crucial ingredient for learning predictive models with good
generalization properties. A recent line of work has shown that in a certain over-
parameterized regime, the learning dynamics of gradient descent are governed by
a certain kernel obtained at initialization, called the neural tangent kernel. We
study the inductive bias of learning in such a regime by analyzing this kernel and
the corresponding function space (RKHS). In particular, we study smoothness,
approximation, and stability properties of functions with finite norm, including
stability to image deformations in the case of convolutional networks, and compare
to other known kernels for similar architectures.

1 Introduction

The large number of parameters in state-of-the-art deep neural networks makes them very expressive,
with the ability to approximate large classes of functions [26, 41]. Since many networks can
potentially fit a given dataset, the optimization method, typically a variant of gradient descent, plays
a crucial role in selecting a model that generalizes well [39].

A recent line of work [2, 16, 20, 21, 27, 30, 54] has shown that when training deep networks in a
certain over-parameterized regime, the dynamics of gradient descent behave like those of a linear
model on (non-linear) features determined at initialization. In the over-parameterization limit, these
features correspond to a kernel known as the neural tangent kernel. In particular, in the case of
a regression loss, the obtained model behaves similarly to a minimum norm kernel least squares
solution, suggesting that this kernel may play a key role in determining the inductive bias of the
learning procedure and its generalization properties. While it is still not clear if this regime is at play
in state-of-the-art deep networks, there is some evidence that this phenomenon of “lazy training” [16],
where weights only move very slightly during training, may be relevant for early stages of training and
for the outmost layers of deep networks [29, 53], motivating a better understanding of its properties.

In this paper, we study the inductive bias of this regime by studying properties of functions in the
space associated with the neural tangent kernel for a given architecture (that is, the reproducing kernel
Hilbert space, or RKHS). Such kernels can be defined recursively using certain choices of dot-product
kernels at each layer that depend on the activation function. For the convolutional case with rectified
linear unit (ReLU) activations and arbitrary patches and linear pooling operations, we show that the
NTK can be expressed through kernel feature maps defined in a tree-structured hierarchy.

We study smoothness and stability properties of the kernel mapping for two-layer networks and
CNNs, which control the variations of functions in the RKHS. In particular, a useful inductive bias
when dealing with natural signals such as images is stability of the output to deformations of the
input, such as translations or small rotations. A precise notion of stability to deformations was
proposed by Mallat [35], and was later studied in [11] in the context of CNN architectures, showing

∗Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, 38000 Grenoble, France

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

the benefits of different architectural choices such as small patch sizes. In contrast to the kernels
studied in [11], which for instance cover the limiting kernels that arise from training only the last
layer of a ReLU CNN, we find that the obtained NTK kernel mappings for the ReLU activation lack
a desired Lipschitz property which is needed for stability to deformations in the sense of [11, 12, 35].
Instead, we show that a weaker smoothness property similar to Hölder smoothness holds, and this
allows us to show that the kernel mapping is stable to deformations, albeit with a different guarantee.

In order to balance our observations on smoothness, we also consider approximation properties for the
NTK of two-layer ReLU networks, by characterizing the RKHS using a Mercer decomposition of the
kernel in the basis of spherical harmonics [6, 46, 47]. In particular, we study the decay of eigenvalues
for this decomposition, which is then related to the regularity of functions in the space, and provides
rates of approximation for Lipschitz functions [6]. We find that the full NTK has better approximation
properties compared to other function classes typically defined for ReLU activations [6, 17, 19],
which arise for instance when only training the weights in the last layer, or when considering Gaussian
process limits of ReLU networks (e.g., [24, 28, 36, 40]).

Contributions. Our main contributions can be summarized as follows:

• We provide a derivation of the NTK for convolutional networks with generic linear operators for
patch extraction and pooling, and express the corresponding kernel feature map hierarchically
using these operators.

• We study smoothness properties of the kernel mapping for ReLU networks, showing that it is
not Lipschitz but satisfies a weaker Hölder smoothness property. For CNNs, we then provide a
guarantee on deformation stability.

• We characterize the RKHS of the NTK for two-layer ReLU networks by providing a spectral
decomposition of the kernel and studying its spectral decay. This leads to improved approximation
properties compared to other function classes based on ReLU.

Related work. Neural tangent kernels were introduced in [27], and similar ideas were used to obtain
more quantitative guarantees on the global convergence of gradient descent for over-parameterized
neural networks [2, 3, 16, 20, 21, 30, 50, 54]. The papers [3, 20, 51] also derive NTKs for convo-
lutional networks, but focus on simpler architectures. Kernel methods for deep neural networks
were studied for instance in [17, 19, 34]. Stability to deformations was originally introduced in the
context of the scattering representation [12, 35], and later extended to neural networks through kernel
methods in [11]. The inductive bias of optimization in neural network learning was considered, e.g.,
by [1, 4, 13, 39, 48]. [6, 25, 45, 49] study function spaces corresponding to two-layer ReLU networks.
In particular, [25] also analyzes properties of the NTK, but studies a specific high-dimensional limit
for generic activations, while we focus on ReLU networks, studying the corresponding eigenvalue
decays in finite dimension.

2 Neural Tangent Kernels

In this section, we provide some background on “lazy training” and neural tangent kernels (NTKs),
and introduce the kernels that we study in this paper. In particular, we derive the NTK for generic
convolutional architectures on ℓ2 signals. For simplicity of exposition, we consider scalar-valued
functions, noting that the kernels may be extended to the vector-valued case, as done, e.g., in [27].

2.1 Lazy training and neural tangent kernels

Multiple recent works studying global convergence of gradient descent in neural networks (e.g., [2,
20, 21, 27, 30, 54]) show that when a network is sufficiently over-parameterized, weights remain
close to initialization during training. The model is then well approximated by its linearization around
initialization. For a neural network f(x; θ) with parameters θ and initialization θ0, we then have:2

f(x; θ) ≈ f(x; θ0) + 〈θ − θ0,∇θf(x; θ0)〉. (1)

This regime where weights barely move has also been referred to as “lazy training” [16], in contrast
to other situations such as the “mean-field” regime (e.g., [15, 38, 37]), where weights move according

2While we use gradients in our notations, we note that weak differentiability (e.g., with ReLU activations) is
sufficient when studying the limiting NTK [27].

2

to non-linear dynamics. Yet, with sufficient over-parameterization, the (non-linear) features x 7→
∇θf(x; θ0) of the linearized model (1) become expressive enough to be able to perfectly fit the
training data, by approximating a kernel method.

Neural Tangent Kernel (NTK). When the width of the network tends to infinity, assuming an
appropriate initialization on weights, the features of the linearized model tend to a limiting kernel K,
called neural tangent kernel [27]:

〈∇θf(x; θ0),∇θf(x
′, θ0)〉 → K(x, x′). (2)

In this limit and under some assumptions, one can show that the weights move very slightly and the
kernel remains fixed during training [27], and that gradient descent will then lead to the minimum
norm kernel least-squares fit of the training set in the case of the ℓ2 loss (see [27] and [37, Section
H.7]). Similar interpolating solutions have been found to perform well for generalization, both in
practice [10] and in theory [8, 31]. When the number of neurons is large but finite, one can often show
that the kernel only deviates slightly from the limiting NTK, at initialization and throughout training,
thus allowing convergence as long as the initial kernel matrix is non-degenerate [3, 16, 20, 21].

NTK for two-layer ReLU networks. Consider a two layer network of the form f(x; θ) =
√

2
m

∑m
j=1 vjσ(w

⊤
j x), where σ(u) = (u)+ = max(0, u) is the ReLU activation, x ∈ R

p, and

θ = (w⊤
1 , . . . , w

⊤
m, v⊤) are parameters with values initialized as N (0, 1). Practitioners often include

the factor
√

2/m in the variance of the initialization of vj , but we treat it as a scaling factor follow-
ing [20, 21, 27], noting that this leads to the same predictions. The factor 2 is simply a normalization
constant specific to the ReLU activation and commonly used by practitioners, which avoids vanishing
or exploding behavior for deep networks. The corresponding NTK is then given by [16, 21]:

K(x, x′) = 2(x⊤x′)Ew∼N (0,I)[1{w⊤x ≥ 0}1{w⊤x′ ≥ 0}] + 2Ew∼N (0,I)[(w
⊤x)+(w

⊤x′)+]

= ‖x‖‖x′‖κ
(〈x, x′〉
‖x‖‖x′‖

)

, (3)

where

κ(u) := uκ0(u) + κ1(u) (4)

κ0(u) =
1

π
(π − arccos(u)) , κ1(u) =

1

π

(

u · (π − arccos(u)) +
√

1− u2
)

. (5)

The expressions for κ0 and κ1 follow from standard calculations for arc-cosine kernels of degree 0
and 1 (see [17]). Note that in this two-layer case, the non-linear features obtained for finite neurons
correspond to a random features kernel [42], which is known to approximate the full kernel relatively
well even with a moderate amount of neurons [7, 42, 43]. One can also extend the derivation to other
activation functions, which may lead to explicit expressions for the kernel in some cases [19].

NTK for fully-connected deep ReLU networks. We define a fully-connected neural network by

f(x; θ) =
√

2
mn

〈wn+1, an〉, with a1 = σ(W 1x), and

ak = σ

(
√

2

mk–1
W kak–1

)

, k = 2, . . . , n,

where W k ∈ R
mk×mk–1 and wn+1 ∈ R

mn are initialized with i.i.d. N (0, 1) entries, and σ(u) = (u)+
is the ReLU activation and is applied element-wise. Following [27], the corresponding NTK is defined
recursively by K(x, x′) = Kn(x, x

′) with K0(x, x
′) = Σ0(x, x

′) = x⊤x′, and for k ≥ 1,

Σk(x, x
′) = 2E(u,v)∼N (0,Bk)[σ(u)σ(v)]

Kk(x, x
′) = Σk(x, x

′) + 2Kk–1(x, x
′)E(u,v)∼N (0,Bk)[σ

′(u)σ′(v)],

3

where Bk =

(

Σk–1(x, x) Σk–1(x, x
′)

Σk–1(x, x
′) Σk–1(x

′, x′)

)

. Using a change of variables and definitions of arc-cosine

kernels of degrees 0 and 1 [17], it is easy to show that

2E(u,v)∼N (0,Bk)[σ(u)σ(v)] =
√

Σk–1(x, x)Σk–1(x′, x′)κ1

(

Σk–1(x, x
′)

√

Σk–1(x, x)Σk–1(x′, x′)

)

(6)

2E(u,v)∼N (0,Bk)[σ
′(u)σ′(v)] = κ0

(

Σk–1(x, x
′)

√

Σk–1(x, x)Σk–1(x′, x′)

)

, (7)

where κ0 and κ1 are defined in (5).

Feature maps construction. We now provide a reformulation of the previous kernel in terms of
explicit feature maps, which provides a representation of the data and makes our study of stability
in Section 4 more convenient. For a given input Hilbert space H, we denote by ϕH,1 : H → H1

the kernel mapping into the RKHS H1 for the kernel (z, z′) ∈ H2 7→ ‖z‖‖z′‖κ1(〈z, z′〉/‖z‖‖z′‖),
and by ϕH,0 : H → H0 the kernel mapping into the RKHS H0 for the kernel (z, z′) ∈ H2 7→
κ0(〈z, z′〉/‖z‖‖z′‖). We will abuse notation and hide the input space, simply writing ϕ1 and ϕ0.

Lemma 1 (NTK feature map for fully-connected network). The NTK for the fully-connected network
can be defined as K(x, x′) = 〈Φn(x),Φn(x

′)〉, with Φ0(x) = Ψ0(x) = x and for k ≥ 1,

Ψk(x) = ϕ1(Ψk–1(x))

Φk(x) =

(

ϕ0(Ψk–1(x))⊗ Φk–1(x)
ϕ1(Ψk–1(x))

)

,

where ⊗ is the tensor product.

2.2 Neural tangent kernel for convolutional networks

In this section we study NTKs for convolutional networks (CNNs) on signals, focusing on the
ReLU activation. We consider signals in ℓ2(Zd,Rm0), that is, signals x[u] with u ∈ Z

d denoting
the location, x[u] ∈ R

m0 , and
∑

u∈Zd ‖x[u]‖2 < ∞ (for instance, d = 2 and m0 = 3 for RGB
images). The infinite support allows us to avoid dealing with boundary conditions when considering
deformations and pooling. The precise study of ℓ2 membership is deferred to Section 4.

Patch extraction and pooling operators P k and Ak. Following [11], we define two linear opera-
tors P k and Ak on ℓ2(Zd) for extracting patches and performing (linear) pooling at layer k, respec-

tively. For an H-valued signal x[u], P k is defined by P kx[u] = |Sk|−1/2(x[u + v])v∈Sk
∈ H|Sk|,

where Sk is a finite subset of Zd defining the patch shape (e.g., a 3x3 box). Pooling is defined
as a convolution with a linear filter hk[u], e.g., a Gaussian filter at scale σk as in [11], that is,

Akx[u] =
∑

v∈Zd hk[u − v]x[v]. In this discrete setting, we can easily include a downsampling

operation with factor sk by changing the definition of Ak to Akx[u] =
∑

v∈Zd hk[sku− v]x[v] (in
particular, if hk is a Dirac at 0, we obtain a CNN with “strided convolutions”). In fact, our NTK
derivation supports general linear operators Ak : ℓ2(Zd) → ℓ2(Zd) on scalar signals.

For defining the NTK feature map, we also introduce the following non-linear point-wise operator M ,
given for two signals x, y, by

M(x, y)[u] =

(

ϕ0(x[u])⊗ y[u]
ϕ1(x[u])

)

, (8)

where ϕ0/1 are kernel mappings of arc-cosine 0/1 kernels, as defined in Section 2.1.

CNN definition and NTK. We consider a network f(x; θ) =
√

2
mn

〈wn+1, an〉ℓ2 , with

ãk[u] =

{

W 1P 1x[u], if k = 1,
√

2
mk–1

W kP kak–1[u], if k ∈ {2, . . . , n},

ak[u] = Akσ(ãk)[u], k = 1, . . . , n,

4

where W k ∈ R
mk×mk–1|Sk| and wn ∈ ℓ2(Zd,Rmn) are initialized with N (0, 1) entries, and σ(x̃k)

denotes the signal with σ applied element-wise to x̃k. We are now ready to state our result on the
NTK for this model.

Proposition 2 (NTK feature map for CNN). The NTK for the above CNN, obtained when the number
of feature maps m1, . . . ,mn → ∞ (sequentially), is given by K(x, x′) = 〈Φ(x),Φ(x′)〉ℓ2(Zd),

with Φ(x)[u] = AnM(xn, yn)[u], where yn and xn are defined recursively for a given input x by
y1[u] = x1[u] = P 1x[u], and for k ≥ 2,

xk[u] = P kAk–1ϕ1(xk–1)[u]

yk[u] = P kAk–1M(xk–1, yk–1)[u],

with the abuse of notation ϕ1(x)[u] = ϕ1(x[u]) for a signal x.

The proof is given in Appendix A.2, where we also show that in the over-parameterization limit, the
pre-activations ãki [u] tend to a Gaussian process with covariance Σk(x, u;x′, u′) = 〈xk[u], x

′
k[u

′]〉
(this is related to recent papers [24, 40] studying Gaussian process limits of Bayesian convolutional
networks). The proof is by induction and relies on similar arguments to [27] for fully-connected
networks, in addition to exploiting linearity of the operators P k and Ak, as well as recursive feature
maps for hierarchical kernels. The recent papers [3, 51] also study NTKs for certain convolutional
networks; in contrast to these works, our derivation considers general signals in ℓ2(Zd), supports

intermediate pooling or downsampling by changing Ak, and provides a more intuitive construction
through kernel mappings and the operators P k and Ak. Note that the feature maps xk are defined
independently from the yk, and in fact correspond to more standard multi-layer deep kernel ma-
chines [11, 17, 19, 33] or covariance functions of certain deep Bayesian networks [24, 28, 36, 40].
They can also be seen as the feature maps of the limiting kernel that arises when only training weights
in the last layer and fixing other layers at initialization (see, e.g., [19]).

3 Two-Layer Networks

In this section, we study smoothness and approximation properties of the RKHS defined by neural
tangent kernels for two-layer networks. For ReLU activations, we show that the NTK kernel mapping
is not Lipschitz, but satisfies a weaker smoothness property. In Section 3.2, we characterize the RKHS
for ReLU activations and study its approximation properties and benefits. Finally, we comment on
the use of other activations in Section 3.3.

3.1 Smoothness of two-layer ReLU networks

Here we study the RKHS H of the NTK for two-layer ReLU networks, defined in (3), focusing on
smoothness properties of the kernel mapping, denoted Φ(·). Recall that smoothness of the kernel
mapping guarantees smoothness of functions f ∈ H, through the relation

|f(x)− f(y)| ≤ ‖f‖H‖Φ(x)− Φ(y)‖H. (9)

We begin by showing that the kernel mapping for the NTK is not Lipschitz. This is in contrast to the
kernel κ1 in (5), obtained by fixing the weights in the first layer and training only the second layer
weights (κ1 is 1-Lipschitz by [11, Lemma 1]).

Proposition 3 (Non-Lipschitzness). The kernel mapping Φ(·) of the two-layer NTK is not Lipschitz:

sup
x,y

‖Φ(x)− Φ(y)‖H
‖x− y‖ → +∞.

This is true even when looking only at points x, y on the sphere. It follows that the RKHS H contains
unit-norm functions with arbitrarily large Lipschitz constant.

Note that the instability is due to ϕ0, which comes from gradients w.r.t. first layer weigts. We now
show that a weaker guarantee holds nevertheless, resembling 1/2-Hölder smoothness.

Proposition 4 (Smoothness for ReLU NTK). We have the following smoothness properties:

1. For x, y such that ‖x‖ = ‖y‖ = 1, the kernel mapping ϕ0 satisfies ‖ϕ0(x)−ϕ0(y)‖ ≤
√

‖x− y‖.

5

2. For general non-zero x, y, we have ‖ϕ0(x)− ϕ0(y)‖ ≤
√

1
min(‖x‖,‖y‖)‖x− y‖.

3. The kernel mapping Φ of the NTK then satisfies

‖Φ(x)− Φ(y)‖ ≤
√

min(‖x‖, ‖y‖)‖x− y‖+ 2‖x− y‖.

We note that while such smoothness properties apply to the functions in the RKHS of the studied
limiting kernels, the neural network functions obtained at finite width and their linearizations around
initialization are not in the RKHS and thus may not preserve such smoothness properties, despite
preserving good generalization properties, as in random feature models [7, 43]. This discrepancy
may be a source of instability to adversarial perturbations.

3.2 Approximation properties for the two-layer ReLU NTK

In the previous section, we found that the NTK κ for two-layer ReLU networks yields weaker
smoothness guarantees compared to the kernel κ1 obtained when the first layer is fixed. We now
show that the NTK has better approximation properties, by studying the RKHS through a spectral
decomposition of the kernel and the decay of the corresponding eigenvalues. This highlights a
tradeoff between smoothness and approximation.

The next proposition gives the Mercer decomposition of the NTK κ(〈x, u〉) in (4), where x, y are in
the p− 1 sphere S

p−1 = {x ∈ R
p : ‖x‖ = 1}. The decomposition is given in the basis of spherical

harmonics, as is common for dot-product kernels [46, 47], and our derivation uses results by Bach [6]
on similar decompositions of positively homogeneous activations of the form σα(u) = (u)α+. See
Appendix C for background and proofs.

Proposition 5 (Mercer decomposition of ReLU NTK). For any x, y ∈ S
p−1, we have the following

decomposition of the NTK κ:

κ(〈x, y〉) =
∞
∑

k=0

µk

N(p,k)
∑

j=1

Yk,j(x)Yk,j(y), (10)

where Yk,j , j = 1, . . . , N(p, k) are spherical harmonic polynomials of degree k, and the non-negative
eigenvalues µk satisfy µ0, µ1 > 0, µk = 0 if k = 2j + 1 with j ≥ 1, and otherwise µk ∼ C(p)k−p

as k → ∞, with C(p) a constant depending only on p. Then, the RKHS is described by:

H =







f =
∑

k≥0,µk 6=0

N(p,k)
∑

j=1

ak,jYk,j(·) s.t. ‖f‖2H :=
∑

k≥0,µk 6=0

N(p,k)
∑

j=1

a2k,j
µk

< ∞







. (11)

The zero eigenvalues prevent certain functions from belonging to the RKHS, namely those with
non-zero Fourier coefficients on the corresponding basis elements (note that adding a bias may prevent
such zero eigenvalues [9]). Here, a sufficient condition for all such coefficients to be zero is that the
function is even [6]. Note that for the arc-cosine 1 kernel κ1, we have a faster decay µk = O(k−p−2),
leading to a “smaller” RKHS (see Lemma 17 in Appendix C and [6]). Moreover, the k−p asymptotic
equivalent comes from the term uκ0(u) in the definition (4) of κ, which comes from gradients of
first layer weights; the second layer gradients yield κ1, whose contribution to µk becomes negligible
for large k. We use an identity also used in the recent paper [25] which compares similar kernels
in a specific high-dimensional limit for generic activations; in contrast to [25], we focus on ReLUs
and study eigenvalue decays in finite dimension. We note that our decomposition uses a uniform
distribution on the sphere, which allows a precise study of eigenvalues and approximation properties
of the RKHS using spherical harmonics. When the data distribution is also uniform on the sphere, or
absolutely continuous w.r.t. the uniform distribution, our obtained eigenvalues are closely related to
those of integral operators for learning problems, which can determine, e.g., non-parametric rates
of convergence (e.g., [14, 23]) as well as degrees-of-freedom quantities for kernel approximation
(e.g., [7, 43]). Such quantities often depend on the eigenvalue decay of the integral operator, which
can be obtained from µk after taking multiplicity into account. This is also related to the rate
of convergence of gradient descent in the lazy training regime, which depends on the minimum
eigenvalue of the empirical kernel matrix in [16, 20, 21].

We now provide sufficient conditions for a function f : Sp−1 → R to be in H, as well as rates of
approximation of Lipschitz functions on the sphere, adapting results of [6] (specifically Proposition 2
and 3 in [6]) to our NTK setting.

6

Corollary 6 (Sufficient condition for f ∈ H). Let f : Sp−1 → R be an even function such that all
i-th order derivatives exist and are bounded by η for 0 ≤ i ≤ s, with s ≥ p/2. Then f ∈ H with
‖f‖H ≤ C(p)η, where C(p) is a constant that only depends on p.

Corollary 7 (Approximation of Lipschitz functions). Let f : Sp−1 → R be an even function such
that f(x) ≤ η and |f(x)− f(y)| ≤ η‖x− y‖, for all x, y ∈ S

p−1. There is a function g ∈ H with
‖g‖H ≤ δ, where δ is larger than a constant depending only on p, such that

sup
x∈Sp−1

|f(x)− g(x)| ≤ C(p)η

(

δ

η

)−1/(p/2−1)

log

(

δ

η

)

.

For both results, there is an improvement over κ1, for which Corollary 6 requires s ≥ p/2 + 1
bounded derivatives, and Corollary 7 leads to a weaker rate in (δ/η)−1/(p/2) (see [6, Propositions 2
and 3] with α = 1). These results show that in the over-parameterized regime of the NTK, training
multiple layers leads to better approximation properties compared to only training the last layer,
which corresponds to using κ1 instead of κ. In the different regime of “convex neural networks”
(e.g., [6, 45]) where neurons can be selected with a sparsity-promoting penalty, the approximation
rates shown in [6] for ReLU networks are also weaker than for the NTK in the worst case (though the
regime presents benefits in terms of adaptivity), suggesting that perhaps in some situations the “lazy”
regime of the NTK could be preferred over the regime where neurons are selected using sparsity.

Homogeneous case. When inputs do not lie on the sphere S
p−1 but in R

p, the NTK for two-layer
ReLU networks takes the form of a homogeneous dot-product kernel (3), which defines a different
RKHS H̄ that we characterize below in terms of the RKHS H of the NTK on the sphere.

Proposition 8 (RKHS of the homogeneous NTK). The RKHS H̄ of the kernel K(x, x′) =
‖x‖‖x′‖κ(〈x, x′〉/‖x‖‖x′‖) on R

p consists of functions of the form f(x) = ‖x‖g(x/‖x‖) with g ∈
H, where H is the RKHS on the sphere, and we have ‖f‖H̄ = ‖g‖H.

Note that while such a restriction to homogeneous functions may be limiting, one may easily obtain
non-homogeneous functions by considering an augmented variable z = (x⊤, R)⊤ and defining
f(x) = ‖z‖g(z/‖z‖), where g is now defined on the p-sphere S

p. When inputs are in a ball of
radius R, this reformulation preserves regularity properties (see [6, Section 3]).

3.3 Smoothness with other activations

In this section, we look at smoothness of two-layer networks with different activation functions.
Following the derivation for the ReLU in Section 2.1, the NTK for a general activation σ is given by

Kσ(x, x
′) = 〈x, x′〉Ew∼N (0,1)[σ

′(〈w, x〉)σ′(〈w, x′〉)] + Ew∼N (0,1)[σ(〈w, x〉)σ(〈w, x′〉)].
We then have the following the following result.

Proposition 9 (Lipschitzness for smooth activations). Assume that σ is twice differentiable and that

the quantities γj := Eu∼N (0,1)[(σ
(j)(u))2] for j = 0, 1, 2 are bounded, with γ0 > 0. Then, for x, y

on the unit sphere, the kernel mapping Φσ of Kσ satisfies

‖Φσ(x)− Φσ(y)‖ ≤
√

(γ0 + γ1)max

(

1,
2γ1 + γ2
γ0 + γ1

)

· ‖x− y‖.

The proof uses results from [19] on relationships between activations and the corresponding kernels,
as well as smoothness results for dot-product kernels in [11] (see Appendix B.3). If, for instance, we
consider the exponential activation σ(u) = eu−2, we have γj = 1 for all j (using results from [19]), so

that the kernel mapping is Lipschitz with constant
√
3. For the soft-plus activation σ(u) = log(1+eu),

we may evaluate the integrals numerically, obtaining (γ0, γ1, γ2) ≈ (2.31, 0.74, 0.11), so that the
kernel mapping is Lipschitz with constant ≈ 1.75.

4 Deep Convolutional Networks

In this section, we study smoothness and stability properties of the NTK kernel mapping for con-
volutional networks with ReLU activations. In order to properly define deformations, we consider

7

continuous signals x(u) in L2(Rd) instead of ℓ2(Zd) (i.e., we have ‖x‖2 :=
∫

‖x(u)‖2du < ∞),
following [11, 35]. The goal of deformation stability guarantees is to ensure that the data representa-
tion (in this case, the kernel mapping Φ) does not change too much when the input signal is slightly
deformed, for instance with a small translation or rotation of an image—a useful inductive bias for
natural signals. For a C1-diffeomorphism τ : Rd → R

d, denoting Lτx(u) = x(u− τ(u)) the action
operator of the diffeomorphism, we will show a guarantee of the form

‖Φ(Lτx)− Φ(x)‖ ≤ (ω(‖∇τ‖∞) + C‖τ‖∞)‖x‖,
where ‖∇τ‖∞ is the maximum operator norm of the Jacobian ∇τ(u) over Rd, ‖τ‖∞ = supu |τ(u)|,
ω is an increasing function and C a positive constant. The second term controls translation invariance,
and C typically decreases with the scale of the last pooling layer (σn below), while the first term
controls deformation stability, since ‖∇τ‖∞ measures the “size” of deformations. The function ω(t)
is typically a linear function of t in other settings [11, 35], here we will obtain a faster growth of

order
√
t for small t, due to the weaker smoothness that arises from the arc-cosine 0 kernel mappings.

Properties of the operators. In this continuous setup, P k is now given for a signal x ∈ L2 by

P kx(u) = λ(Sk)
−1/2(x(u+ v))v∈Sk

, where λ is the Lebesgue measure. We then have ‖P kx‖ =
‖x‖, and considering normalized Gaussian pooling filters, we have ‖Akx‖ ≤ ‖x‖ by Young’s
inequality [11]. The non-linear operator M is defined point-wise analogously to (8), and satisfies
‖M(x, y)‖2 = ‖x‖2+‖y‖2. We thus have that the feature maps in the continuous analog of the NTK
construction in Proposition 2 are in L2 as long as x is in L2. Note that this does not hold for some
smooth activations, where ‖M(x, y)(u)‖ may be a positive constant even when x(u) = y(u) = 0,
leading to unbounded L2 norm for M(x, y). The next lemma studies the smoothness of M , extending
results from Section 3.1 to signals in L2.

Lemma 10 (Smoothness of operator M). For two signals x, y ∈ L2(Rd), we have

‖M(x, y)−M(x′, y′)‖ ≤
√

min(‖y‖, ‖y′‖)‖x− x′‖+ ‖x− x′‖+ ‖y − y′‖. (12)

Assumptions on architecture. Following [11], we introduce an initial pooling layer A0, corre-
sponding to an anti-aliasing filter, which is necessary for stability and is a reasonable assumption given
that in practice input signals are discrete, with high frequencies typically filtered by an acquisition
device. Thus, we consider the kernel representation Φn(x) := Φ(A0x), with Φ as in Proposition 2.
We also assume that patch sizes are controlled by the scale of pooling filters, that is

sup
v∈Sk

|v| ≤ βσk–1, (13)

for some constant β, where σk–1 is the scale of the pooling operation Ak–1, which typically increases
exponentially with depth, corresponding to a fixed downsampling factor at each layer in the discrete
case. By a simple induction, we can show the following.

Lemma 11 (Norm and smoothness of Φn). We have ‖Φn(x)‖ ≤
√
n+ 1‖x‖, and

‖Φn(x)− Φn(x
′)‖ ≤ (n+ 1)‖x− x′‖+O(n5/4)

√

‖x‖‖x− x′‖.

Deformation stability bound. We now present our main guarantee on deformation stability for
the NTK kernel mapping (the proof is given in Appendix B).

Proposition 12 (Stability of NTK). Let Φn(x) = Φ(A0x), and assume ‖∇τ‖∞ ≤ 1/2. We have the
following stability bound:

‖Φn(Lτx)− Φn(x)‖ ≤
(

C(β)1/2Cn7/4‖∇τ‖1/2∞ + C(β)C ′n2‖∇τ‖∞ +
√
n+ 1

C ′′

σn
‖τ‖∞

)

‖x‖,

where C,C ′, C ′′ are constants depending only on d, and C(β) also depends on β defined in (13).

Compared to the bound in [11], the first term shows weaker stability due to faster growth with ‖∇τ‖∞,
which comes from (12). The dependence on the depth n is also poorer (n2 instead of n), however
note that in contrast to [11], the norm and smoothness constants of Φn(x) in Lemma 11 grow with n
here, partially explaining this gap. We also note that choosing small β (i.e., small patches in a
discrete setting) is more helpful to improve stability than a small number of layers n, given that C(β)
increases polynomially with β, while n typically decreases logarithmically with β when one seeks a
fixed target level of translation invariance (see [11, Section 3.2]).

8

0 1 2 3
deformation size

0.0

0.1

0.2

m
ea

n
re

la
tiv

e
di

st
an

ce

deformations
deformations + translation
same label
all labels

(a) CKN with arc-cosine 1 kernels

0 1 2 3
deformation size

0.0

0.1

0.2

0.3

m
ea

n
re

la
tiv

e
di

st
an

ce

(b) NTK

Figure 1: Geometry of kernel mapping for CKN and NTK convolutional kernels, on digit images and
their deformations from the Infinite MNIST dataset [32]. The curves show average relative distances
of a single digit to its deformations, combinations of translations and deformations, digits of the same
label, and digits of any label. See Appendix D for more details on the experimental setup.

By fixing weights of all layers but the last, we would instead obtain feature maps of the form Anxn

(using notation from Proposition 2), which satisfy the improved stability guarantee of [11]. The
question of approximation for the deep convolutional case is more involved and left for future work,
but it is reasonable to expect that the RKHS for the NTK is at least as large as that of the simpler
kernel with fixed layers before the last, given that the latter appears as one of the terms in the NTK.
This again hints at a tradeoff between stability and approximation, suggesting that one may be able to
learn less stable but more discriminative functions in the NTK regime by training all layers.

Numerical experiments. We now study numerically the stability of (exact) kernel mapping rep-
resentations for convolutional networks with 2 hidden convolutional layers. We consider both a
convolutional kernel network (CKN, [11]) with arc-cosine kernels of degree 1 on patches (correspond-
ing to the kernel obtained when only training the last layer and keeping previous layers fixed) and the
corresponding NTK. Figure 1 shows the resulting average distances, when considering collections of
digits and deformations thereof. In particular, we find that for small deformations, the distance to the
original image tends to grow more quickly for the NTK compared to the CKN, as the theory suggests
(a square-root growth rate rather than a linear one). Note also that the relative distances are generally
larger for the NTK than for the CKN, suggesting the CKN may be more smooth.

5 Discussion

In this paper, we have studied the inductive bias of the “lazy training” regime for over-parameterized
neural networks, by considering the neural tangent kernel of different architectures, and analyzing
properties of the corresponding RKHS, which characterizes the functions that can be learned effi-
ciently in this regime. We find that the NTK for ReLU networks has better approximation properties
compared to other neural network kernels, but weaker smoothness properties, although these can
still guarantee a form of stability to deformations for CNN architectures, providing an important
inductive bias for natural signals. While these properties may help obtain better performance when
large amounts of data are available, they can also lead to a poorer estimation error when data is scarce,
a setting in which smoother kernels or better regularization strategies may be helpful.

It should be noted that while our study of functions in the RKHS may determine what target functions
can be learned by over-parameterized networks, the obtained networks with finite neurons do not
belong to the same RKHS, and hence may be less stable than such target functions, at least outside of
the training data, due to approximations both in the linearization (1) and between the finite neuron
and limiting kernels. Additionally, approximation of certain non-smooth functions in this regime
may require a very large number of neurons [52]. Finally, we note that while this “lazy” regime is
interesting and could partly explain the success of deep learning methods, it does not explain, for
instance, the common behavior in early layers where neurons move to select useful features in the
data, such as Gabor filters, as pointed out in [16]. In particular, such a behavior might provide better
statistical efficiency by adapting to simple structures in the data (see, e.g., [6]), something which is
not captured in a kernel regime like the NTK. It would be interesting to study inductive biases in a
regime somewhere in between, where neurons may move at least in the first few layers.

9

Acknowledgments

This work was supported by the ERC grant number 714381 (SOLARIS project), the ANR 3IA
MIAI@Grenoble Alpes, and by the MSR-Inria joint centre. The authors thank Francis Bach and
Lénaïc Chizat for useful discussions.

References

[1] Z. Allen-Zhu, Y. Li, and Y. Liang. Learning and generalization in overparameterized neural
networks, going beyond two layers. In Advances in Neural Information Processing Systems
(NeurIPS), 2019.

[2] Z. Allen-Zhu, Y. Li, and Z. Song. A convergence theory for deep learning via over-
parameterization. In Proceedings of the International Conference on Machine Learning (ICML),
2019.

[3] S. Arora, S. S. Du, W. Hu, Z. Li, R. Salakhutdinov, and R. Wang. On exact computation with
an infinitely wide neural net. In Advances in Neural Information Processing Systems (NeurIPS),
2019.

[4] S. Arora, S. S. Du, W. Hu, Z. Li, and R. Wang. Fine-grained analysis of optimization and gener-
alization for overparameterized two-layer neural networks. In Proceedings of the International
Conference on Machine Learning (ICML), 2019.

[5] K. Atkinson and W. Han. Spherical harmonics and approximations on the unit sphere: an
introduction, volume 2044. Springer Science & Business Media, 2012.

[6] F. Bach. Breaking the curse of dimensionality with convex neural networks. Journal of Machine
Learning Research (JMLR), 18(19):1–53, 2017.

[7] F. Bach. On the equivalence between kernel quadrature rules and random feature expansions.
Journal of Machine Learning Research (JMLR), 18(21):1–38, 2017.

[8] P. L. Bartlett, P. M. Long, G. Lugosi, and A. Tsigler. Benign overfitting in linear regression.
arXiv preprint arXiv:1906.11300, 2019.

[9] R. Basri, D. Jacobs, Y. Kasten, and S. Kritchman. The convergence rate of neural networks
for learned functions of different frequencies. In Advances in Neural Information Processing
Systems (NeurIPS), 2019.

[10] M. Belkin, S. Ma, and S. Mandal. To understand deep learning we need to understand kernel
learning. In Proceedings of the International Conference on Machine Learning (ICML), 2018.

[11] A. Bietti and J. Mairal. Group invariance, stability to deformations, and complexity of deep
convolutional representations. Journal of Machine Learning Research (JMLR), 20(25):1–49,
2019.

[12] J. Bruna and S. Mallat. Invariant scattering convolution networks. IEEE Transactions on pattern
analysis and machine intelligence (PAMI), 35(8):1872–1886, 2013.

[13] Y. Cao and Q. Gu. Generalization bounds of stochastic gradient descent for wide and deep
neural networks. In Advances in Neural Information Processing Systems (NeurIPS), 2019.

[14] A. Caponnetto and E. De Vito. Optimal rates for the regularized least-squares algorithm.
Foundations of Computational Mathematics, 7(3):331–368, 2007.

[15] L. Chizat and F. Bach. On the global convergence of gradient descent for over-parameterized
models using optimal transport. In Advances in Neural Information Processing Systems
(NeurIPS), 2018.

[16] L. Chizat, E. Oyallon, and F. Bach. On lazy training in differentiable programming. In Advances
in Neural Information Processing Systems (NeurIPS), 2019.

[17] Y. Cho and L. K. Saul. Kernel methods for deep learning. In Advances in Neural Information
Processing Systems (NIPS), 2009.

[18] F. Cucker and S. Smale. On the mathematical foundations of learning. Bulletin of the American
mathematical society, 39(1):1–49, 2002.

10

[19] A. Daniely, R. Frostig, and Y. Singer. Toward deeper understanding of neural networks: The
power of initialization and a dual view on expressivity. In Advances in Neural Information
Processing Systems (NIPS), 2016.

[20] S. S. Du, J. D. Lee, H. Li, L. Wang, and X. Zhai. Gradient descent finds global minima of deep
neural networks. In Proceedings of the International Conference on Machine Learning (ICML),
2019.

[21] S. S. Du, X. Zhai, B. Poczos, and A. Singh. Gradient descent provably optimizes over-
parameterized neural networks. In Proceedings of the International Conference on Learning
Representations (ICLR), 2019.

[22] C. Efthimiou and C. Frye. Spherical harmonics in p dimensions. World Scientific, 2014.

[23] S. Fischer and I. Steinwart. Sobolev norm learning rates for regularized least-squares algorithm.
arXiv preprint arXiv:1702.07254, 2017.

[24] A. Garriga-Alonso, L. Aitchison, and C. E. Rasmussen. Deep convolutional networks as shallow
gaussian processes. In Proceedings of the International Conference on Learning Representations
(ICLR), 2019.

[25] B. Ghorbani, S. Mei, T. Misiakiewicz, and A. Montanari. Linearized two-layers neural networks
in high dimension. arXiv preprint arXiv:1904.12191, 2019.

[26] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal
approximators. Neural networks, 2(5):359–366, 1989.

[27] A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization in
neural networks. In Advances in Neural Information Processing Systems (NeurIPS), 2018.

[28] J. Lee, Y. Bahri, R. Novak, S. S. Schoenholz, J. Pennington, and J. Sohl-Dickstein. Deep neural
networks as gaussian processes. In Proceedings of the International Conference on Learning
Representations (ICLR), 2018.

[29] J. Lee, L. Xiao, S. S. Schoenholz, Y. Bahri, J. Sohl-Dickstein, and J. Pennington. Wide neural
networks of any depth evolve as linear models under gradient descent. In Advances in Neural
Information Processing Systems (NeurIPS), 2019.

[30] Y. Li and Y. Liang. Learning overparameterized neural networks via stochastic gradient descent
on structured data. In Advances in Neural Information Processing Systems (NeurIPS), 2018.

[31] T. Liang and A. Rakhlin. Just interpolate: Kernel" ridgeless" regression can generalize. Annals
of Statistics, 2019.

[32] G. Loosli, S. Canu, and L. Bottou. Training invariant support vector machines using selective
sampling. In Large Scale Kernel Machines, pages 301–320. MIT Press, Cambridge, MA., 2007.

[33] J. Mairal. End-to-End Kernel Learning with Supervised Convolutional Kernel Networks. In
Advances in Neural Information Processing Systems (NIPS), 2016.

[34] J. Mairal, P. Koniusz, Z. Harchaoui, and C. Schmid. Convolutional kernel networks. In Advances
in Neural Information Processing Systems (NIPS), 2014.

[35] S. Mallat. Group invariant scattering. Communications on Pure and Applied Mathematics,
65(10):1331–1398, 2012.

[36] A. Matthews, M. Rowland, J. Hron, R. E. Turner, and Z. Ghahramani. Gaussian process
behaviour in wide deep neural networks. arXiv preprint arXiv:1804.11271, 2018.

[37] S. Mei, T. Misiakiewicz, and A. Montanari. Mean-field theory of two-layers neural networks:
dimension-free bounds and kernel limit. In Conference on Learning Theory (COLT), 2019.

[38] S. Mei, A. Montanari, and P.-M. Nguyen. A mean field view of the landscape of two-layer
neural networks. Proceedings of the National Academy of Sciences, 115(33):E7665–E7671,
2018.

[39] B. Neyshabur, R. Tomioka, and N. Srebro. In search of the real inductive bias: On the role of
implicit regularization in deep learning. In Proceedings of the International Conference on
Learning Representations (ICLR), 2015.

[40] R. Novak, L. Xiao, Y. Bahri, J. Lee, G. Yang, J. Hron, D. A. Abolafia, J. Pennington, and
J. Sohl-Dickstein. Bayesian deep convolutional networks with many channels are gaussian
processes. In Proceedings of the International Conference on Learning Representations (ICLR),
2019.

11

[41] A. Pinkus. Approximation theory of the mlp model in neural networks. Acta numerica,
8:143–195, 1999.

[42] A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Advances in
Neural Information Processing Systems (NIPS), 2008.

[43] A. Rudi and L. Rosasco. Generalization properties of learning with random features. In
Advances in Neural Information Processing Systems (NIPS), 2017.

[44] S. Saitoh. Integral transforms, reproducing kernels and their applications, volume 369. CRC
Press, 1997.

[45] P. Savarese, I. Evron, D. Soudry, and N. Srebro. How do infinite width bounded norm networks
look in function space? In Conference on Learning Theory (COLT), 2019.

[46] B. Schölkopf and A. J. Smola. Learning with kernels: support vector machines, regularization,
optimization, and beyond. 2001.

[47] A. J. Smola, Z. L. Ovari, and R. C. Williamson. Regularization with dot-product kernels. In
Advances in Neural Information Processing Systems (NIPS), 2001.

[48] D. Soudry, E. Hoffer, M. S. Nacson, S. Gunasekar, and N. Srebro. The implicit bias of gradient
descent on separable data. Journal of Machine Learning Research (JMLR).

[49] F. Williams, M. Trager, C. Silva, D. Panozzo, D. Zorin, and J. Bruna. Gradient dynamics of
shallow low-dimensional relu networks. In Advances in Neural Information Processing Systems
(NeurIPS), 2019.

[50] B. Xie, Y. Liang, and L. Song. Diverse neural network learns true target functions. In
Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS),
2017.

[51] G. Yang. Scaling limits of wide neural networks with weight sharing: Gaussian process behavior,
gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760,
2019.

[52] G. Yehudai and O. Shamir. On the power and limitations of random features for understanding
neural networks. In Advances in Neural Information Processing Systems (NeurIPS), 2019.

[53] C. Zhang, S. Bengio, and Y. Singer. Are all layers created equal? arXiv preprint
arXiv:1902.01996, 2019.

[54] D. Zou, Y. Cao, D. Zhou, and Q. Gu. Stochastic gradient descent optimizes over-parameterized
deep relu networks. Machine Learning, 2019.

12

