
A Proofs

Proof of Lemma 1. Let us start by writing the left hand side of (13) as∫
S×A

|ρ(s, a)− ρθ(s, a)| dsda = (1− γ)

∫
S×A

∣∣∣∣∣
∞∑
t=0

γt
(
ptπ(s, a)− ptθ(s, a)

)∣∣∣∣∣ dsda (24)

Using the triangle inequality, we upper bound the previous expression as∫
S×A

|ρ(s, a)− ρθ(s, a)| dsda ≤ (1− γ)

∞∑
t=0

γt
∫
S×A

∣∣ptπ(s, a)− ptθ(s, a)
∣∣ dsda. (25)

Notice that to complete the proof it suffices to show that the right hand side of the previous ex-
pression is bounded by ε/(1 − γ). We next work towards that end, and we start by bounding the
difference |ptπ(s, a)− ptθ(s, a)|. Notice that this difference can be upper bounded using the triangle
inequality as∣∣ptπ(s, a)− ptθ(s, a)

∣∣ ≤ ptπ(s) |π(a|s)− πθ(a|s)|+ πθ(a|s)
∣∣ptπ(s)− ptθ(s)

∣∣ . (26)

Since πθ is an ε-approximation of π, it follows from Definition 1 that∫
S×A

ptπ(s) |π(a|s)− πθ(a|s)| dsda ≤ ε
∫
S
ptπ(s) ds = ε, (27)

where the last equality follows from the fact that ptπ(s) is a density. We next work towards bounding
the integral of the second term in (26). Using the fact that πθ(a|s) is a density, it follows that∫

S×A
πθ(a|s)

∣∣ptπ(s)− ptθ(s)
∣∣ dsda =

∫
S

∣∣ptπ(s)− ptθ(s)
∣∣ ds. (28)

Notice that the previous difference is zero for t = 0 and for any t > 0 it can be upper bounded by∫
S

∣∣ptπ(s)− ptθ(s)
∣∣ ds ≤ ∫

S

∫
S×A

p(s|s′, a′)
∣∣pt−1π (s′, a′)− pt−1θ (s′, a′)

∣∣ dsds′da′
=

∫
S×A

∣∣pt−1π (s′, a′)− pt−1θ (s′, a′)
∣∣ ds′da′ (29)

Combining the bounds derived in (25), (27), (29) we have that

(1− γ)

∞∑
t=0

γt
∫
S×A

∣∣(ptπ(s, a)− ptθ(s, a)
)∣∣ dsda ≤

(1− γ)

∞∑
t=0

γtε+ (1− γ)

∞∑
t=1

γt
∫
S×A

∣∣(pt−1π (s, a)− pt−1θ (s, a)
)∣∣ dsda. (30)

Notice that the first term on the right hand side of the previous expression is the sum of the geometric
multiplied by 1− γ. Hence we have that (1− γ)

∑∞
t=0 γ

tε = ε. The second term on the right hand
side of the previous expression is in fact the same as the term on the left hand side of the expression
multiplied by the discount factor γ. Thus, rearranging the terms, the previous expression implies
that

(1− γ)

∞∑
t=0

γt
∫
S×A

∣∣(ptπ(s, a)− ptθ(s, a)
)∣∣ dsda ≤ ε

1− γ . (31)

This completes the proof of the Lemma.

Proof of Theorem 2. Notice that the dual functions d(λ) and dθ(λ) associated to the problems (PI)
and (PII) respectively are such that for every λ we have that dθ(λ) ≤ d(λ). The latter follows from
the fact that the set of maximizers of the Lagrangian for the parametrized policies is contained in
the set of maximizers of the non-parametrized policies. In particular, this holds for λ? the solution
of the dual problem associated to (PI). Hence we have the following sequence of inequalities

D? = d(λ?) ≥ dθ(λ?) ≥ D?
θ , (32)
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where the last inequality follows from the fact that D?
θ is the minimum of (DII). The zero duality

gap established in Theorem 1 completes the proof of the upper bound forD?
θ . We next work towards

proving the lower bound for D?
θ . Let us next write the dual function of the parametrized problem

(DII) as

dθ(λ) = d(λ)−
(

max
π∈P(S)

L(π, λ)−max
θ∈Rp

Lθ(θ, λ)

)
(33)

Let π? , argmaxπ∈P(S) L(π, λ) and let θ? be an ε-approximation of π?. Then, by definition of the
maximum it follows that

dθ(λ) ≥ d(λ)− (L(π?, λ)− Lθ(θ?, λ)) (34)

We next work towards a bound for L(π?, λ)−Lθ(θ?, λ). To do so, notice that we can write the dif-
ference in terms of the occupation measures where ρ? and ρ?θ are the occupation measures associated
to the the policies π? and the policy πθ?

L(π?, λ)− Lθ(θ?, λ) =

∫
S×A

(
r0 + λ>r

)
(dρ?(λ)− dρ?θ(λ)) . (35)

Since πθ? is by definition an ε approximation of π? it follows from Lemma 1 that∫
S×A

|dρ?(λ)− dρ?θ(λ)| ≤ ε

1− γ . (36)

Using the bounds on the the reward functions we can upper bound the difference L(π?, λ) −
Lθ(θ?, λ) by

L(π?, λ)− Lθ(θ?, λ) ≤ (Br0 + ‖λ‖1Br)
ε

1− γ . (37)

Combining the previous bound with (34) we can lower bound dθ(λ) as

dθ(λ) ≥ d(λ)− (Br0 + ‖λ‖1Br)
ε

1− γ (38)

Let us next define dε(λ) = d(λ)−Brε/(1−γ) ‖λ‖1, and notice that in fact dε(λ) is the dual function
associated to Problem (PI′) with ξi = Brε/(1 − γ) for all i = 1, . . . ,m. With this definition, (38)
reduces to

dθ(λ) ≥ dε(λ)−Br0
ε

1− γ . (39)

Since the previous expression holds for every λ, in particular it holds for λ?θ , the dual solution of the
parametrized problem (DII). Thus, we have that

D?
θ ≥ dε(λ?θ)−Br0

ε

1− γ . (40)

Recall that λ?ε = argmin dε(λ), and use the definition of the dual function to lower bound D?
θ by

D?
θ ≥ max

π∈P(S)
V0(π) +

m∑
i=1

λ?ε,i

(
Vi(π)− ci −Br

ε

1− γ

)
−Br0

ε

1− γ . (41)

By definition of maximum, we can lower bound the previous expression by substituting by any
π ∈ P(S). In particular, we select π? the solution to (PI)

D?
θ ≥ V0(π?) +

m∑
i=1

λ?ε,i

(
Vi(π

?)− ci −Br
ε

1− γ

)
−Br0

ε

1− γ . (42)

Since π? is the optimal solution to (PI) it follows that Vi(π?) − ci ≥ 0 and since λ?ε,i ≥ 0 the
previous expression reduces to

D?
θ ≥ V0(π?)− (Br0 +Br ‖λ?ε‖)

ε

1− γ = P ? − (Br0 +Br ‖λ?ε‖)
ε

1− γ (43)

Which completes the proof of th result
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Proof of Proposition 2. Let λ?θ be the solution of the parametrized dual problem (DII). Then we can
write the difference of the dual function evaluated at an arbitrary λ ∈ Rm+ and λ?θ as

dθ(λ)− dθ(λ?θ) = max
θ
Lθ(θ, λ)−max

θ
Lθ(θ, λ?θ) ≤ Lθ(θ?(λ), λ)− Lθ(θ†(λ), λ?θ). (44)

It follows from Assumption 1 that there exists δ > 0 such that Lθ(θ?(λ), λ) ≤ Lθ(θ†(λ), λ) + δ,
thus we can upper bound the right hand side of the previous inequality by

Lθ(θ?(λ), λ)−Lθ(θ†(λ), λ?θ) ≤ Lθ(θ†(λ), λ)+δ−L(θ†(λ), λ?θ) = (λ− λ?θ)>
(
V (θ†(λ))− c

)
+δ.
(45)

Combining the two upper bounds completes the proof of the proposition.

Proof of Theorem 3. We start by showing the lower bound, which in fact holds for any λ. Notice
that for any λ and by definition of the dual problem it follows that dθ(λ) ≥ D?

θ . Combining this
bound with the result of Theorem 2 it follows that

dθ(λ) ≥ P ? − (Br0 + ‖λ?ε‖1Br)
ε

1− γ . (46)

To show the upper bound we start by writing the difference between the dual multiplier k + 1 and
the solution of (DII) in terms of the iteration at time k. Since λ?θ ∈ Rm+ and using the non-expansive
property of the projection it follows that

‖λk+1 − λ?θ‖2 ≤
∥∥λk − η (V (θ†(λk))− c

)
− λ?θ

∥∥2 (47)

Expanding the square and using that B =
∑m
i=1 (Bri/(1− γ)− ci)2 is a bound on the norm

squared of V (θ)− s it follows that

‖λk+1 − λ?θ‖2 ≤ ‖λk − λ?θ‖2 − 2η (λk − λ?θ)>
(
V (θ†(λk))− c

)
+ η2B. (48)

Using the result of Proposition 2 we can further upper bound the inner product in the previous
expression by the difference of the dual function evaluated at λk and λ?θ plus δ, the error in the
solution of the primal maximization,

‖λk+1 − λ?θ‖2 ≤ ‖λk − λ?θ‖2 + 2η (δ + dθ(λ
?
θ)− dθ(λk)) + η2B. (49)

Defining αk = 2(δ+dθ(λ
?
θ)−dθ(λk)) +ηB and writing recursively the previous expression yields

‖λk+1 − λ?θ‖2 ≤ ‖λ0 − λ?θ‖2 + η

k∑
j=0

αj . (50)

Since dθ(λ?θ) is the minimum of the dual function, the difference dθ(λ?θ)−dθ(λk) is always negative.
Thus, when λk is not close to the solution of the dual problem αk is negative. The latter implies
that the distance between λk and λ?θ is reduced by virtue of (50). To be formal, for any ε > 0, when
aj > −2ε we have that

dθ(λj)− dθ(λ?θ) ≤ η
B

2
+ δ + ε. (51)

Using the result of Theorem 2 we can upper bound D?
θ by P ? which establishes the neighborhood

defined in (23). We are left to show that the number of iterations required to do so is bounded by

K ≤ ‖λ0 − λ
?
θ‖

2

2ηε
. (52)

To do so, let K > 0 be the first iterate in the neighborhood (23). Formally, K = minj∈N αj > −2ε.
Then it follows from the recursion that

‖λK − λ?θ‖2 ≤ ‖λ0 − λ?θ‖2 − 2Kηε. (53)

Since ‖λK − λ?θ‖
2 is positive the previous expression reduces to 2Kηε ≤ ‖λ0 − λ?θ‖

2. Which
completes the proof of the result.
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