
Figure 3: More results in the same setting as Fig. 1 (regression data)

6 Additional Experimental Results
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Figure 4: More results in the same setting as Fig. 1 (classification data)
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7 Proofs

7.1 Proof of Lem. 1

The following result is helpful for establishing Lem. 1.
Lemma 8. If rwtw(u) is Jacobian-transpose of tw(u) with respect to w, then

rwTw(u)>rwTw(u) = I(1 + kuk2
2
).

Proof. We use the notation rwTw(u) = dTw(u)
>

dw , meaning that (rwTw(u))ij =
dTw(u)j

dwi
.

Each row of rwtw(u) consists of the partial derivative of tw(u) with respect to one component of
w. Thus, the product is

(rwTw(u))> (rwTw(u)) =

X

i

✓
d

dwi
T (u)

◆✓
d

dwi
T (u)

◆>

=

X

i

ai(u)ai(u)
>.

We can calculate these components as

✓
d

dmi
Tw(u)

◆✓
d

dmi
Tw(u)

◆>
= eie

>
i

✓
d

dSij
Tw(u)

◆✓
d

dSij
Tw(u)

◆>
= (ujei) (ujei)

>

= u2

jeie
>
i

Adding the components up, we get that

(rwTw(u))> (rwTw(u)) =

X

i

✓
d

dmi
Tw(u)

◆✓
d

dmi
Tw(u)

◆>
+

X

i,j

✓
d

dSij
Tw(u)

◆✓
d

dSij
Tw(u)

◆>

=

X

i

eie
>
i +

X

i,j

u2

jeie
>
i

= I(1 + kuk2
2
).

The following is the main Lemma.

Lemma 1. For any w and u, krwf(Tw(u))k2
2
= krf(Tw(u))k2

2

⇣
1 + kuk2

2

⌘
.

Proof. Using Lemma Lem. 8, we can show that

krwf(Tw(u))k2
2

= krwTw(u) rf(Tw(u))k2
2

= rf(Tw(u))>rwTw(u)>rwTw(u) rf(Tw(u))

= rf(Tw(u))>
⇣
I(1 + kuk2

2
)

⌘
rf(Tw(u))

= krf(Tw(u))k2
2

⇣
1 + kuk2

2

⌘
.

13



7.2 Proof of Lem. 2

A few distributional properties are needed before proving Lem. 2.
Lemma 9. Suppose that u = (u1, · · · , ud) is random variable over Rd

with zero-mean iid compo-

nents. Then

E uu> = E[u2
1
]I

E kuk2
2

= dE[u2
1
]

E u(1 + kuk2
2
) = 1 E[u3

1
]

E uu>uu> =
�
(d� 1)E[u2

1
]
2
+ E[u4

1
]
�
I.

Proof. (E uu>) Take any pair of indices i and j. Then,
�
E uu>

�
ij

= E uiuj . If i 6= j this is zero.
Otherwise it is E u2

1
. Thus, E uu> = E[u2

1
]I.

(E kuk2
2
) This follows from the previous result as

E kuk2
2
= E tr uu> = trE uu> = trE[u2

1
]I = dE[u2

1
].

(E u(1+kuk2
2
)) If x and y are independent, E xy = (E x)(E y). Thus, since the first and third moments

of ui are zero,

E u(1 + kuk2
2
)i = E ui(1 +

dX

j=1

u2j )

= E[ui] + E[u3i ] +
X

j 6=i

E[ui]E[u2j ]

= E[u3i ].

(E uu>uu>) It is useful to represent this term as
�
E uu>uu>

�
ij

= E uiuj kuk22
= E uiuj

X

k

u2k.

First, suppose that i 6= j. Then this is
�
E uu>uu>

�
ij

= E uiuj
X

k

u2k

= E uiuj

0

@u2i + u2j +
X

k 62{i,j}

u2k

1

A .

= 0.

This is zero since ui, uj and uk are independent, and each term contains at least one of ui or uj to the
first power. Since E ui = 0, the full expectation is zero.

On the other hand, suppose that i = j. Then this is

�
E uu>uu>

�
ii

= E u2i

0

@u2i +
X

k 6=i

u2k

1

A

= E

0

@u4i + u2i
X

k 6=i

u2k

1

A

= E[u4
1
] + (d� 1)E[u2

1
]
2

If we put this together, we get that
E uu>uu> =

�
(d� 1)E[u2

1
]
2
+ E[u4

1
]
�
I.

14



Lemma 2. Let u ⇠ s for s standardized with u 2 Rd
and Eu⇠s u4i = . Then for any z̄,

E kTw(u)� z̄k2
2

�
1 + kuk2

2

�
= (d+ 1) km� z̄k2

2
+ (d+ ) kCk2F .

Proof. We simply split the expectation up and calculate each part.

E kTw(u)� z̄k2
2

⇣
1 + kuk2

2

⌘
= E kCu+m� z̄k2

2

⇣
1 + kuk2

2

⌘

= E
⇣
kCuk2

2
+ 2(m� z̄)>Cu+ km� z̄k2

2

⌘⇣
1 + kuk2

2

⌘

E kCuk2
2

⇣
1 + kuk2

2

⌘
= E kCuk2

2
+ E kCuk2

2
kuk2

2

E kCuk2
2

= E tr u>C>Cu

= trC>C E uu>

= trC>C E[u2
1
]I

= E[u2
1
] trC>C

E kCuk2
2
kuk2

2
= E tr u>C>Cuu>u

= trC>C E uu>uu>

= trC>C
�
(d� 1)E[u2

1
]
2
+ E[u4

1
]
�
I

=
�
(d� 1)E[u2

1
]
2
+ E[u4

1
]
�
trC>C

E kCuk2
2

⇣
1 + kuk2

2

⌘
=

�
E[u2

1
] + (d� 1)E[u2

1
]
2
+ E[u4

1
]
�
trC>C

E(m� z̄)>Cu
⇣
1 + kuk2

2

⌘
= (m� z̄)>C Eu

⇣
1 + kuk2

2

⌘

= (m� z̄)>C 1 E[u3
1
]

= 0

E km� z̄k2
2
(1 + kuk2

2
) = km� z̄k2

2
E(1 + kuk2

2
)

= km� z̄k2
2
(1 + dE[u2

1
]).

Adding all this up gives that

E kTw(u)� z̄k2
2

⇣
1 + kuk2

2

⌘
=
�
1 + dE[u2

1
]
�
km� z̄k2

2
+
�
E[u2

1
] + (d� 1)E[u2

1
]
2
+ E[u4

1
]
�
kCk2F .

In the case that the variance is one, this becomes

E kTw(u)� z̄k2
2

⇣
1 + kuk2

2

⌘
= (d+ 1) km� z̄k2

2
+
�
d+ E[u4

1
]
�
kCk2F .
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7.3 Proof of Thm. 7

Theorem 7. For any symmetric matrices M1, · · · ,MN and vectors z̄1, · · · , z̄N , there are functions

f1, · · · , fN such that (1) fn is Mn-matrix-smooth and has a stationary point at z̄n and (2) if s is

standardized with u 2 Rd
and E u4i = , then for g =

1

⇡(n)rfn(Tw(u)),

trV kgk2
2
�

NX

n=1

1

⇡(n)

⇣
d kMn(m� z̄n)k22 + (d+ � 1) kMnCk2F

⌘
.

Proof. First, take any matrix M and vector z̄. Define

f(z) =
1

2
(z � z̄)>M(z � z̄).

We can calculate that

l(w) = E
z⇠qw

1

2
(z � z̄)>M(z � z̄)

= E
z⇠qw

1

2
z>Mz � E

z⇠qw
z̄>Mz + E

z⇠qw

1

2
z̄>M z̄

= E
z⇠qw

1

2
trMzz> � z̄>Mm+

1

2
z̄>M z̄

=
1

2
trM(mm>

+ CC>
)� z̄>Mm+

1

2
z̄>M z̄

=
1

2
m>Mm+

1

2
trMCC> � z̄>Mm+

1

2
z̄>M z̄

=
1

2
(m� z̄)>M(m� z̄) +

1

2
trMCC>.

Thus, we have that

dl

dm
= M(m� z̄)

dl

dC
= MC

If we add up components, we get that

kE gk2
2
= krl(w)k2

2
= kM(m� z̄)k2

2
+ kMCk2F .

Now, given a sequence M1, · · · ,MN and z̄1, · · · , z̄N , if we choose

fn(z) =
1

2
(z � z̄n)

>Mn(z � z̄n),

The true gradient will be

dl

dm
=

NX

n=1

Mn(m� z̄n)

dl

dC
= MnC,

16



and so, applying Jensen’s inequality,

kE gk2
2

= krl(w)k2
2

=

�����

NX

n=1

Mn(m� z̄n)

�����

2

2

+

�����

NX

n=1

MnC

�����

2

F

=

�����

NX

n=1

1

⇡(n)
⇡(n)Mn(m� z̄n)

�����

2

2

+

�����

NX

n=1

1

⇡(n)
⇡(n)MnC

�����

2

F


NX

n=1

⇡(n)

����
1

⇡(n)
Mn(m� z̄n)

����
2

2

+

NX

n=1

⇡(n)

����
1

⇡(n)
MnC

����
2

F

=

NX

n=1

1

⇡(n)

⇣
kMn(m� z̄n)k22 + kMnCk2F

⌘
.

Thm. 6 tells us that

E kgk2
2
=

NX

n=1

1

⇡(n)

⇣
(d+ 1) kMn(m� z̄n)k22 + (d+ ) kMnCk2F

⌘
.

Thus, we have that

trV kgk2
2

= E kgk2 � kE gk2

�
NX

n=1

1

⇡(n)

⇣
d kMn(m� z̄n)k22 + (d+ � 1) kMnCk2F

⌘
.
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8 Smoothness conditions for linear models

Lemma 10. Suppose that f(z) = �(a>z), and that |�00
(t)|  ✓ for all t. Then,

krf(y)�rf(z)k
2
 ✓ kak

2

��a>(y � z)
�� .

Proof. Then, we have that

krf(y)�rf(z)k
2

=
��a�0

(a>y)� a�0
(a>z)

��
2

= kak
2

���0
(a>y)� �0

(a>z)
��

= kak
2

�����

Z a>y

a>z
�00

(t)dt

�����

 ✓ kak
2

��a>(y � z)
�� .

Lemma 11. Suppose that f(z) = f0(z) + �(a>z) and that f0(z) is M0 smooth. Then, we have that

krf(y)�rf(z)k
2

= M0 ky � zk
2
+ ✓ kak

2

��a>(y � z)
�� .

Lemma 12. Suppose that f(z) =
PN

i=1
�(a>i z) and that 0  �00

(t)  ✓ for all t. Then,

krf(y)�rf(z)k
2

 kM(y � z)k
2

M = ✓
NX

i=1

aia
>
i

Proof.

krf(y)�rf(z)k
2

=

�����

NX

i=1

ai�
0
(aiy)�

NX

i=1

ai�
0
(aiz)

�����
2

=

�����

NX

i=1

ai (�
0
(aiy)� �0

(aiz))

�����
2

=

�����

NX

i=1

ai

Z a>
i y

a>
i z

�00
(t)dt

�����
2

=

�����

NX

i=1

ai
�
a>i y � a>i z

�
bi

�����
2

�✓  bi  ✓

=

�����

NX

i=1

biaia
>
i (y � z)

�����
2

 ✓

�����

 
NX

i=1

aia
>
i

!
(y � z)

�����
2

18



The final inequality is justified by the following claim:
���
PN

i=1
biaia>i (y � z)

���
2

2

is maximized over
vectors b with 0  bi  ✓ by setting bi = ✓ always. To establish this claim observe that

d

dbk

�����

NX

i=1

biaia
>
i (y � z)

�����

2

2

=
d

dbk

 
NX

i=1

biaia
>
i (y � z)

!>0

@
NX

j=1

bjaja
>
j (y � z)

1

A

=
d

dbk

NX

i=1

NX

j=1

bibj (y � z)>
�
aia

>
i aja

>
j

�
(y � z)

=
d

dbk
2

NX

j 6=k

bkbj (y � z)>
�
aka

>
k aja

>
j

�
(y � z)

+
d

dbk
b2k (y � z)>

�
aka

>
k aka

>
k

�
(y � z)

= 2

NX

j 6=k

bj (y � z)>
�
aka

>
k aja

>
j

�
(y � z)

+2bk (y � z)>
�
aka

>
k aka

>
k

�
(y � z)

= 2

NX

j=1

bj (y � z)>
�
aka

>
k aja

>
j

�
(y � z)

= 2

NX

j=1

bj tr (y � z)>
�
aka

>
k aja

>
j

�
(y � z)

= 2 tr aka
>
k

0

@
NX

j=1

bjaja
>
j

1

A (y � z) (y � z)>

= 2a>k

0

@
NX

j=1

bjaja
>
j

1

A (y � z) (y � z)> ak

Now, both
⇣PN

j=1
bjaja>j

⌘
and (y � z) (y � z)> are real symmetric positive definite matrices.

Thus, their product has real non-negative eigenvalues. This means that

d

dbk

�����

NX

i=1

biaia
>
i (y � z)

�����

2

2

� 0,

i.e. the maximizing b will set all entries to ✓.

Theorem 13. Suppose that f(z) = c
2
kzk2

2
+
PN

i=1
�(a>i z) and that 0  �00

(t)  ✓. Then,

krf(y)�rf(z)k
2

 kM(y � z)k
2

M = cI + ✓
NX

i=1

aia
>
i

19



Proof. Suppose that rf0(y)�rf0(z) = c(y � z). Then, we have that

krf(y)�rf(z)k
2

=

�����

NX

i=1

ai�
0
(aiy)�

NX

i=1

ai�
0
(aiz) + c(y � z)

�����
2

=

�����

NX

i=1

ai (�
0
(aiy)� �0

(aiz)) + c(y � z)

�����
2

=

�����

NX

i=1

ai

Z a>
i y

a>
i z

�00
(t)dt+ c(y � z)

�����
2

=

�����

NX

i=1

ai
�
a>i y � a>i z

�
bi + c(y � z)

�����
2

�✓  bi  ✓

=

�����

 
cI +

NX

i=1

biaia
>
i

!
(y � z)

�����
2



�����

 
cI + ✓

NX

i=1

aia
>
i

!
(y � z)

�����
2

.

The final inequality is justified by the following claim:
���
PN

i=1
biaia>i (y � z)

���
2

2

is maximized over
vectors b with 0  bi  ✓ by setting bi = ✓ always. To establish this claim observe that

d

dbk

�����

 
cI +

NX

i=1

biaia
>
i

!
(y � z)

�����

2

2

=
d

dbk

  
cI +

NX

i=1

biaia
>
i

!
(y � z)

!>0

@

0

@cI +
NX

j=1

bjaja
>
j

1

A (y � z)

1

A

= 2

  
cI +

NX

i=1

biaia
>
i

!
(y � z)

!>
d

dbk

 
cI +

NX

i=1

biaia
>
i

!
(y � z)

= 2 (y � z)>
 
cI +

NX

i=1

biaia
>
i

!
�
cI + bkaka

>
k

�
(y � z)

= 2 tr

 
cI +

NX

i=1

biaia
>
i

!
�
cI + bkaka

>
k

�
(y � z) (y � z)>

= 2 tr

 
cI +

NX

i=1

biaia
>
i

!
bkaka

>
k (y � z) (y � z)>

+2c tr

 
cI +

NX

i=1

biaia
>
i

!
(y � z) (y � z)>

= 2bk tr a
>
k (y � z) (y � z)>

 
cI +

NX

i=1

biaia
>
i

!
ak

+2c tr (y � z)>
 
cI +

NX

i=1

biaia
>
i

!
(y � z)

� 0.

The last inequality follows from the fact that
 
cI +

NX

i=1

biaia
>
i

!
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and
(y � z) (y � z)>

are both real, symmetric positive definite matrices.

21



9 Specific Models

9.1 Linear Model

Suppose that p(z) = N (z|0, 1

c I) and p(yi|xi, z) = N (yi|z>xi,
1

b ). Then, we have that

p(z)
Y

i

p(yi|xi, z) / exp

 
� 1

2c
kzk2 �

X

i

1

2b
(yi � z>xi)

2

!

= exp

 
� c

2
kzk2 �

X

i

b

2
(yi � z>xi)

2

!

= exp

✓
� c

2
kzk2 � b

2
ky �Xzk2

2

◆

= exp

✓
� c

2
kzk2 � b

2
kyk2

2
+ by>Xz � b

2
z>X>Xz

◆

/ exp

✓
by>Xz � 1

2
z> �bX>X + cI

�
z

◆

= exp

✓
a>z � 1

2
z>

⌃
�1z

◆

/ exp

✓
�1

2
(z � ⌃a)⌃�1

(z � ⌃a)

◆

= exp

✓
�1

2
(z � µ)⌃�1

(z � µ)

◆

⌃ =
�
bX>X + cI

��1

µ = ⌃a

=
�
bX>X + cI

��1

bX>y

=

⇣
X>X +

c

b
I
⌘�1

X>y

10 Reparameterization Stuff

10.1 Motivation

Suppose that log p(z, x) is something of the form

log p(z, x) = 1
>�(Xz).

We have that
rz log p(z, x) = X>�0

(Xz)

and that
r2

z log p(z, x) = X>�00
(Xz)X.

If we suppose that 0  �00  ✓ (for example this is true with logistic regression with ✓ =
1

4
) then we

have that
0 � r2

z log p(z, x) � ✓X>X.

If we were to add a uniform prior, we’d have something like

cI � r2

z log p(z, x) � cI + ✓X>X.

On the other hand, for Bayesian regression, we’d have something like

✓X>X � r2

z log p(z, x) � ✓X>X

with ✓ = 1. This offers much stronger possibilities for rescaling.
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10.2 Divergence

Suppose that log p(z, x) is some distribution that is “poorly scaled”. That is, if we compute the
condition number, it is quite poor. On the other hand, it could be that for some A and b, log p(Az+b, x)
is much better-conditioned. The following lemma shows that we are free to re-scale p in whatever way
we want and then have q target that rescaled distribution. Once that’s done, we can then transform q
back to the original space.
Lemma 14. Suppose that pz(z) is some distribution and py(y) is the distribution of Az+ b, z ⇠ pz,
namely

py(y) =
1

|A|pz(A
�1

(y � b)).

Suppose that qy is some distribution which is “close” to py. If we define

qz(z) = |A| qy(Az + b),

then KL (qzkpz) = KL (qykpy) .

10.3 Concrete

Lemma 15. If B � C then A>BA � A>CA.

10.4 Proofs

Lemma 14. Suppose that pz(z) is some distribution and py(y) is the distribution of Az+ b, z ⇠ pz,
namely

py(y) =
1

|A|pz(A
�1

(y � b)).

Suppose that qy is some distribution which is “close” to py. If we define

qz(z) = |A| qy(Az + b),

then KL (qzkpz) = KL (qykpy) .

Proof. In more detail, we know that if y = T (z)then P(z = z) = P(y = T (z)) |T 0
(z)|. In our case,

we use T (z) = Az + b so we have that

pz(z, x) = py(Az + b, x) |A|

Intuitively, we should correspondingly define

qz(z) = qy(Az + b, x) |A| .

Then, we have that

E
z⇠qz

log
pz(z, x)

qz(z, x)
= E

z⇠qz
log

py(Az + b, x) |A|
qy(Az + b, x) |A|

=

Z
qz(z) log

py(Az + b, x)

qy(Az + b, x)
dz

=

Z
|A| qy(Az + b, x) log

py(Az + b, x)

qy(Az + b, x)
dz

=

Z
qy(y, x) log

py(y, x)

qy(y, x)
dy

Where in the last line we apply
Z

f(y)dy =

Z
f (T (z)) |rT (z)| dz

with f(y) = qy(y, x) log
py(y,x)
qy(y,x)

and T (z) = Az + b.
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Lemma 16. If B � C then A>BA � A>CA.

Proof. Suppose that B � C meaning that C �B is positive definite. Then note that

A>CA�A>BA = A>
(C �B)A

is also positive definite, since for any x,

x>A>
(C �B)Ax = z>(C �B)z, z = Ax.

� 0.

Thus we have that
A>BA � A>CA.

11 Gradient Variance with a Full-Covariance Quadratic

Suppose that f(z) = 1

2
(z� z̄)>M(z� z̄). What is the gradient variance? The gradient is rf(z) =

M(z � z̄). Thus, we seem to get that

E
u⇠s

krwf(Tw(u))k2
2

= E krf(Tw(u))k2
2

⇣
1 + kuk2

2

⌘

= E kM (Tw(u)� z̄)k2
2

⇣
1 + kuk2

2

⌘

= E kMCu+m�M z̄k2
2

⇣
1 + kuk2

2

⌘

= (d+ 1) km�M z̄k2
2
+
�
d+ E[u4

1
]
�
kMCk2F .

The key thing, for this to work is showing that

krf(y)�rf(z)k
2
 kM(y � z)k

2
.

Certainly, if we had a property like that, we would be in business.

Claim: If f is M -smooth in the above sense, then 1

2
z>Mz � f(z) is convex.

What does the above say about the Hessian? For very close y and z,

rf(y)�rf(z) ⇡ r2f(z)(y � z).

Thus the bound sort of says that
��r2f(z)(y � z)

��2
2
 kM(y � z)k2

2
.

Or, essentially, that
x> �r2f(z)

�2
x  x>M2x.
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