
Provably Powerful Graph Networks: Supplementary
Material

Haggai Maron∗ Heli Ben-Hamu∗ Hadar Serviansky∗ Yaron Lipman
Weizmann Institute of Science

Rehovot, Israel

1 Proof of Proposition 1

Proof. First, ifX ′ = g ·X , then pα(X) = pα(X ′) for all α and therefore u(X) = u(X ′). In the
other direction assume by way of contradiction that u(X) = u(X ′) and g ·X 6= X ′, for all g ∈ Sn.
That is,X andX ′ represent different multisets. Let [X] = {g ·X | g ∈ Sn} denote the orbit ofX
under the action of Sn; similarly denote [X ′]. Let K ⊂ Rn×a be a compact set containing [X], [X ′],
where [X] ∩ [X ′] = ∅ by assumption.

By the Stone–Weierstrass Theorem applied to the algebra of continuous functions C(K,R) there
exists a polynomial f so that f |[X] ≥ 1 and f |[X′] ≤ 0. Consider the polynomial

q(X) =
1

n!

∑
g∈Sn

f(g ·X).

By construction q(g ·X) = q(X), for all g ∈ Sn. Therefore q is a multi-symmetric polynomial.
Therefore, q(X) = r(u(X)) for some polynomial r. On the other hand,

1 ≤ q(X) = r(u(X)) = r(u(X ′)) = q(X ′) ≤ 0,

where we used the assumption that u(X) = u(X ′). We arrive at a contradiction.

2 Proof of equivairance of WL update step

Consider the formal tensor Bj of dimension nk with multisets as entries:

Bj
i = {{Cl−1

j | j ∈ Nj(i)}}. (1)

Then the k-WL update step (Equation 3) can be written as

Cl
i = enc

(
Cl−1
i ,B1

i ,B
2
i , . . . ,B

k
i

)
. (2)

To show equivariance, it is enough to show that each entry of the r.h.s. tuple is equivariant. For its
first entry: (g · Cl−1)i = Cl−1

g−1(i). For the other entries, consider w.l.o.g. Bj
i :

{{(g · Cl−1)j | j ∈ Nj(i)}} = {{Cl−1
g−1(j) | j ∈ Nj(i)}} = {{Cl−1

j | j ∈ Nj(g
−1(i))}} = Bj

g−1(i).

We get that feeding k-WL update rule with g · Cl−1 we get as output Cl
g−1(i) = (g · Cl)i.

∗Equal contribution

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

3 Proof of Theorem 1

Proof. We will prove a slightly stronger claim: Assume we are given some finite set of graphs. For
example, we can think of all combinatorial graphs (i.e., graphs represented by binary adjacency
matrices) of n vertices . Our task is to build a k-order network F that assigns different output
F (G) 6= F (G′) whenever G,G′ are non-isomorphic graphs distinguishable by the k-WL test.

Our construction of F has three main steps. First in Section 3.1 we implement the initialization step.
Second, Section 3.2 we implement the coloring update rules of the k-WL. Lastly, we implement a
histogram calculation providing different features to k-WL distinguishable graphs in the collection.

3.1 Input and Initialization

Input. The input to the network can be seen as a tensor of the form B ∈ Rn2×(e+1) encoding
an input graph G = (V,E, d), as follows. The last channel of B, namely B:,:,e+1 (’:’ stands for
all possible values [n]) encodes the adjacency matrix of G according to E. The first e channels
B:,:,1:e are zero outside the diagonal, and Bi,i,1:e = d(vi) ∈ Re is the color of vertex vi ∈ V . Our
assumption of finite graph collection means the set Ω ⊂ Rn2×(e+1) of possible input tensors B is
finite as well. Next we describe the different parts of k-WL implementation with k-order network.
For brevity, we will denote by B ∈ Rnk×a the input to each part and by C ∈ Rnk×b the output.

Initialization. We start with implementing the initialization of k-WL, namely computing a coloring
representing the isomorphism type of each k-tuple. Our first step is to define a linear equivariant
operator that extracts the sub-tensor corresponding to each multi-index i: let L : Rn2×(e+1) →
Rnk×k2×(e+2) be the linear operator defined by

L(X)i,r,s,w = Xir,is,w, w ∈ [e+ 1]

L(X)i,r,s,e+2 =

{
1 ir = is
0 otherwise

for i ∈ [n]k, r, s ∈ [k].

L is equivariant with respect to the permutation action. Indeed, for w ∈ [e+ 1],

(g · L(X))i,r,s,w = L(X)g−1(i),r,s,w = Xg−1(ir),g−1(is),w = (g · X)ir,is,w = L(g · X)i,r,s,w.

For w = e+ 2 we have

(g·L(X))i,r,s,w = L(X)g−1(i),r,s,w =

{
1 g−1(ir) = g−1(is)

0 otherwise
=

{
1 ir = is
0 otherwise

= L(g·X)i,r,s,w.

Since L is linear and equivariant it can be represented as a single linear layer in a k-order net-
work. Note that L(B)i,:,:,1:(e+1) contains the sub-tensor of B defined by the k-tuple of vertices
(vi1 , . . . , vik), and L(B)i,:,:,e+2 represents the equality pattern of the k-tuple i, which is equivalent
to the equality pattern of the k-tuple of vertices (vi1 , . . . , vik). Hence, L(B)i,:,:,: represents the
isomorphism type of the k-tuple of vertices (vi1 , . . . , vik). The first layer of our construction is
therefore C = L(B).

3.2 k-WL update step

We next implement Equation 3. We achieve that in 3 steps. As before let B ∈ Rnk×a be the input
tensor to the the current k-WL step.

First, apply the polynomial function τ : Ra → Rb, b =
(
n+a−1
a−1

)
entrywise to B, where τ is defined

by τ(x) = (xα)|α|≤n (note that b is the number of multi-indices α such that |α| ≤ n). This gives
Y ∈ Rnk×b where Yi,: = τ(Bi,:) ∈ Rb.

Second, apply the linear operator

Cj
i,r := Lj(Y)i,r =

n∑
i′=1

Yi1,··· ,ij−1,i′,ij+1,...,ik,r, i ∈ [n]k, r ∈ [b].

2

Lj is equivariant with respect to the permutation action. Indeed, Lj(g · Y)i,r =

n∑
i′=1

(g·Y)i1,··· ,ij−1,i′,ij+1,...,r =

n∑
i′=1

Yg−1(i1)··· ,g−1(ij−1),i′,g−1(ij+1),...,r = Lj(Y)g−1(i),r = (g·Lj(Y))i,r.

Now, note that

Cj
i,: = Lj(Y)i,: =

n∑
i′=1

τ(Bi1,··· ,ij−1,i′,ij+1,...,ik,:) =
∑

j∈Nj(i)

τ(Bj,:) = u(X),

whereX = Bi1,...,ij−1,:,ij+1,...,ik,: as desired.

Third, the k-WL update step is the concatenation: (B,C1, . . . ,Ck).

To finish this part we need to replace the polynomial function τ with an MLP m : Ra → Rb. Since
there is a finite set of input tensors Ω, there could be only a finite set Υ of colors in Ra in the input
tensors to every update step. Using MLP universality (Cybenko, 1989; Hornik, 1991) , let m be
an MLP so that ‖τ(x)−m(x)‖ < ε for all possible colors x ∈ Υ. We choose ε sufficiently small
so that for all possible X = (Bj | j ∈ Nj(i)) ∈ Rn×a, i ∈ [n]k, j ∈ [k], v(X) =

∑
i∈[n]m(xi)

satisfies the same properties as u(X) =
∑

i∈[n] τ(xi) (see Proposition 1), namely v(X) = v(X ′)

iff ∃g ∈ Sn so that X ′ = g ·X . Note that the ’if’ direction is always true by the invariance of the
sum operator to permutations of the summands. The ’only if’ direction is true for sufficiently small
ε. Indeed, ‖v(X)− u(X)‖ ≤ nmaxi∈[n] ‖m(xi)− τ(xi)‖ ≤ nε, since xi ∈ Υ. Since this error
can be made arbitrary small, u is injective and there is a finite set of possibleX then v can be made
injective by sufficiently small ε > 0.

3.3 Histogram computation

So far we have shown we can construct a k-order equivariant network H = Ld ◦ σ ◦ · · · ◦ σ ◦ L1

implementing d steps of the k-WL algorithm. We take d sufficiently large to discriminate the graphs
in our collection as much as k-WL is able to. Now, when feeding an input graph this equivariant
network outputs H(B) ∈ Rnk×a which matches a color H(B)i,: (i.e., vector in Ra) to each k-tuple
i ∈ [n]k.

To produce the final network we need to calculate a feature vector per graph that represents the
histogram of its k-tuples’ colors H(B). As before, since we have a finite set of graphs, the set of
colors in H(B) is finite; let b denote this number of colors. Let m : Ra → Rb be an MLP mapping
each color x ∈ Ra to the one-hot vector in Rb representing this color. Applying m entrywise after
H , namely m(H(B)), followed by the summing invariant operator h : Rnk×b → Rb defined by
h(Y)j =

∑
i∈[n]k Yi,j , j ∈ [b] provides the desired histogram. Our final k-order invariant network is

F = h ◦m ◦ Ld ◦ σ ◦ · · · ◦ σ ◦ L1.

4 Proof of Theorem 2

Proof. The second claim is proved in Lemma 1. Next we construct a network as in Equation 6
distinguishing a pair of graphs that are 3-WL distinguishable. As before, we will construct the
network distinguishing any finite set of graphs of size n. That is, we consider a finite set of input
tensors Ω ⊂ Rn2×(e+2).

Input. We assume our input tensors have the form B ∈ Rn2×(e+2). The first e + 1 channels are
as before, namely encode vertex colors (features) and adjacency information. The e+ 2 channel is
simply taken to be the identity matrix, that is B:,:,e+2 = Id.

Initialization. First, we need to implement the 2-FWL initialization (see Section 3.2). Namely,
given an input tensor B ∈ Rn2×(e+1) construct a tensor that colors 2-tuples according to their

3

isomorphism type. In this case the isomorphism type is defined by the colors of the two nodes and
whether they are connected or not. LetA := B:,:,e+1 denote the adjacency matrix, and Y := B:,:,1:e

the input vertex colors. Construct the tensor C ∈ Rn2×(4e+1) defined by the concatenation of the
following colors matrices into one tensor:

A · Y:,:,j , (11T −A) · Y:,:,j , Y:,:,j ·A, Y:,:,j · (11T −A), j ∈ [e],

and B:,:,e+2. Note that Ci1,i2,: encodes the isomorphism type of the 2-tuple sub-graph defined by
vi1 , vi2 ∈ V , since each entry of C holds a concatenation of the node colors times the adjacency
matrix of the graph (A) and the adjacency matrix of the complement graph (11T−A); the last channel
also contains an indicator if vi1 = vi2 . Note that the transformation B 7→ C can be implemented with
a single block B1.

2-FWL update step. Next we implement a 2-FWL update step, Equation 4, which for k = 2 takes
the form Ci = enc

(
Bi,
{{

(Bj,i2 ,Bi1,j)
∣∣∣ j ∈ [n]

}})
, i = (i1, i2), and the input tensor B ∈ Rn2×a.

To implement this we will need to compute a tensor Y, where the coloring Yi encodes the multiset{{
(Bj,i2,:,Bi1,j,:)

∣∣∣ j ∈ [n]
}}

.

As done before, we use the multiset representation described in section 4. Consider the matrix
X ∈ Rn×2a defined by

Xj,: = (Bj,i2,:,Bi1,j,:), j ∈ [n]. (3)

Our goal is to compute an output tensor W ∈ Rn2×b, where Wi1,i2,: = u(X).

Consider the multi-index set
{
α | α ∈ [n]2a, |α| ≤ n

}
of cardinality b =

(
n+2a−1

2a−1

)
, and write it

in the form {(βl,γl) | β,γ ∈ [n]a, |βl|+ |γl| ≤ n, l ∈ b}. Now define polynomial maps τ1, τ2 :
Ra → Rb by τ1(x) = (xβl | l ∈ [b]), and τ2(x) = (xγl | l ∈ [b]). We apply τ1 to the features of B,
namely Yi1,i2,l := τ1(B)i1,i2,l = (Bi1,i2,:)

βl ; similarly, Zi1,i2,l := τ2(B)i1,i2,l = (Bi1,i2,:)
γl . Now,

Wi1,i2,l := (Z:,:,l · Y:,:,l)i1,i2 =

n∑
j=1

Zi1,j,lYj,i2,l =

n∑
j=1

τ1(B)j,i2,l τ2(B)i1,j,l

=

n∑
j=1

Bβl

j,i2,:
Bγl

i1,j,:
=

n∑
j=1

(Bj,i2,:,Bi1,j,:)
(βl,γl),

hence Wi1,i2,: = u(X), whereX is defined in Equation 3.

To implement this in the network we need to replace τi with MLPs mi, i = 1, 2. That is,

Wi1,i2,l :=

n∑
j=1

m1(B)j,i2,l m2(B)i1,j,l = v(X), (4)

whereX ∈ Rn×2a is defined in Equation 3.

As before, since input tensors belong to a finite set Ω ⊂ Rn2×(e+1), so are all possible multisetsX and
all colors, Υ, produced by any part of the network. Similarly to the proof of Theorem 1 we can take (us-
ing the universal approximation theorem) MLPs m1,m2 so that maxx∈Υ,i=1,2 ‖τi(x)−mi(x)‖ < ε.
We choose ε to be sufficiently small so that the map v(X) defined in Equation 4 maintains the
injective property of u (see Proposition 1): It discriminates betweenX,X ′ not representing the same
multiset.

Lastly, note that taking m3 to be the identity transformation and concatenating (B,m1(B) ·m2(B))
concludes the implementation of the 2-FWL update step. The computation of the color histogram
can be done as in the proof of Theorem 1.

References
Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of

control, signals and systems, 2(4):303–314.

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural networks,
4(2):251–257.

4

	Proof of Proposition 1
	Proof of equivairance of WL update step
	Proof of Theorem 1
	Input and Initialization
	k-WL update step
	Histogram computation

	Proof of Theorem 2

