
Provably Powerful Graph Networks

Haggai Maron∗ Heli Ben-Hamu∗ Hadar Serviansky∗ Yaron Lipman
Weizmann Institute of Science

Rehovot, Israel

Abstract

Recently, the Weisfeiler-Lehman (WL) graph isomorphism test was used to mea-
sure the expressive power of graph neural networks (GNN). It was shown that the
popular message passing GNN cannot distinguish between graphs that are indistin-
guishable by the 1-WL test (Morris et al., 2018; Xu et al., 2019). Unfortunately,
many simple instances of graphs are indistinguishable by the 1-WL test.
In search for more expressive graph learning models we build upon the recent
k-order invariant and equivariant graph neural networks (Maron et al., 2019a,b)
and present two results:
First, we show that such k-order networks can distinguish between non-isomorphic
graphs as good as the k-WL tests, which are provably stronger than the 1-WL
test for k > 2. This makes these models strictly stronger than message passing
models. Unfortunately, the higher expressiveness of these models comes with a
computational cost of processing high order tensors.
Second, setting our goal at building a provably stronger, simple and scalable
model we show that a reduced 2-order network containing just scaled identity
operator, augmented with a single quadratic operation (matrix multiplication) has a
provable 3-WL expressive power. Differently put, we suggest a simple model that
interleaves applications of standard Multilayer-Perceptron (MLP) applied to the
feature dimension and matrix multiplication. We validate this model by presenting
state of the art results on popular graph classification and regression tasks. To the
best of our knowledge, this is the first practical invariant/equivariant model with
guaranteed 3-WL expressiveness, strictly stronger than message passing models.

1 Introduction

Graphs are an important data modality which is frequently used in many fields of science and
engineering. Among other things, graphs are used to model social networks, chemical compounds,
biological structures and high-level image content information. One of the major tasks in graph
data analysis is learning from graph data. As classical approaches often use hand-crafted graph
features that are not necessarily suitable to all datasets and/or tasks (e.g., Kriege et al. (2019)), a
significant research effort in recent years is to develop deep models that are able to learn new graph
representations from raw features (e.g., Gori et al. (2005); Duvenaud et al. (2015); Niepert et al.
(2016); Kipf and Welling (2016); Veličković et al. (2017); Monti et al. (2017); Hamilton et al. (2017a);
Morris et al. (2018); Xu et al. (2019)).

Currently, the most popular methods for deep learning on graphs are message passing neural networks
in which the node features are propagated through the graph according to its connectivity structure
(Gilmer et al., 2017). In a successful attempt to quantify the expressive power of message passing
models, Morris et al. (2018); Xu et al. (2019) suggest to compare the model’s ability to distinguish
between two given graphs to that of the hierarchy of the Weisfeiler-Lehman (WL) graph isomorphism

∗Equal contribution

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

tests (Grohe, 2017; Babai, 2016). Remarkably, they show that the class of message passing models
has limited expressiveness and is not better than the first WL test (1-WL, a.k.a. color refinement). For
example, Figure 1 depicts two graphs (i.e., in blue and in green) that 1-WL cannot distinguish, hence
indistinguishable by any message passing algorithm.

Figure 1: Two graphs not
distinguished by 1-WL.

The goal of this work is to explore and develop GNN models that possess
higher expressiveness while maintaining scalability, as much as possible.
We present two main contributions. First, establishing a baseline for ex-
pressive GNNs, we prove that the recent k-order invariant GNNs (Maron
et al., 2019a,b) offer a natural hierarchy of models that are as expressive
as the k-WL tests, for k ≥ 2. Second, as k-order GNNs are not practical
for k > 2 we develop a simple, novel GNN model, that incorporates
standard MLPs of the feature dimension and a matrix multiplication layer.
This model, working only with k = 2 tensors (the same dimension as
the graph input data), possesses the expressiveness of 3-WL. Since, in
the WL hierarchy, 1-WL and 2-WL are equivalent, while 3-WL is strictly
stronger, this model is provably more powerful than the message passing
models. For example, it can distinguish the two graphs in Figure 1. As far as we know, this model is
the first to offer both expressiveness (3-WL) and scalability (k = 2).

The main challenge in achieving high-order WL expressiveness with GNN models stems from the
difficulty to represent the multisets of neighborhoods required for the WL algorithms. We advocate a
novel representation of multisets based on Power-sum Multi-symmetric Polynomials (PMP) which
are a generalization of the well-known elementary symmetric polynomials. This representation
provides a convenient theoretical tool to analyze models’ ability to implement the WL tests.

A related work to ours that also tried to build graph learning methods that surpass the 1-WL expres-
siveness offered by message passing is Morris et al. (2018). They develop powerful deep models
generalizing message passing to higher orders that are as expressive as higher order WL tests. Al-
though making progress, their full model is still computationally prohibitive for 3-WL expressiveness
and requires a relaxed local version compromising some of the theoretical guarantees.

Experimenting with our model on several real-world datasets that include classification and regression
tasks on social networks, molecules, and chemical compounds, we found it to be on par or better than
state of the art.

2 Previous work

Deep learning on graph data. The pioneering works that applied neural networks to graphs are
Gori et al. (2005); Scarselli et al. (2009) that learn node representations using recurrent neural
networks, which were also used in Li et al. (2015). Following the success of convolutional neural
networks (Krizhevsky et al., 2012), many works have tried to generalize the notion of convolution
to graphs and build networks that are based on this operation. Bruna et al. (2013) defined graph
convolutions as operators that are diagonal in the graph laplacian eigenbasis. This paper resulted
in multiple follow up works with more efficient and spatially localized convolutions (Henaff et al.,
2015; Defferrard et al., 2016; Kipf and Welling, 2016; Levie et al., 2017). Other works define graph
convolutions as local stationary functions that are applied to each node and its neighbours (e.g.,
Duvenaud et al. (2015); Atwood and Towsley (2016); Niepert et al. (2016); Hamilton et al. (2017b);
Veličković et al. (2017); Monti et al. (2018)). Many of these works were shown to be instances of
the family of message passing neural networks (Gilmer et al., 2017): methods that apply parametric
functions to a node and its neighborhood and then apply some pooling operation in order to generate
a new feature for each node. In a recent line of work, it was suggested to define graph neural networks
using permutation equivariant operators on tensors describing k-order relations between the nodes.
Kondor et al. (2018) identified several such linear and quadratic equivariant operators and showed
that the resulting network can achieve excellent results on popular graph learning benchmarks. Maron
et al. (2019a) provided a full characterization of linear equivariant operators between tensors of
arbitrary order. In both cases, the resulting networks were shown to be at least as powerful as message
passing neural networks. In another line of work, Murphy et al. (2019) suggest expressive invariant
graph models defined using averaging over all permutations of an arbitrary base neural network.

2

Weisfeiler Lehman graph isomorphism test. The Weisfeiler Lehman tests is a hierarchy of
increasingly powerful graph isomorphism tests (Grohe, 2017). The WL tests have found many
applications in machine learning: in addition to Xu et al. (2019); Morris et al. (2018), this idea was
used in Shervashidze et al. (2011) to construct a graph kernel method, which was further generalized
to higher order WL tests in Morris et al. (2017). Lei et al. (2017) showed that their suggested GNN
has a theoretical connection to the WL test. WL tests were also used in Zhang and Chen (2017)
for link prediction tasks. In a concurrent work, Morris and Mutzel (2019) suggest constructing
graph features based on an equivalent sparse version of high-order WL achieving great speedup and
expressiveness guarantees for sparsely connected graphs.

3 Preliminaries
We denote a set by {a, b, . . . , c}, an ordered set (tuple) by (a, b, . . . , c) and a multiset (i.e., a set with
possibly repeating elements) by {{a, b, . . . , c}}. We denote [n] = {1, 2, . . . , n}, and (ai | i ∈ [n]) =
(a1, a2, . . . , an). Let Sn denote the permutation group on n elements. We use multi-index i ∈ [n]k to
denote a k-tuple of indices, i = (i1, i2, . . . , ik). g ∈ Sn acts on multi-indices i ∈ [n]k entrywise by
g(i) = (g(i1), g(i2), . . . , g(ik)). Sn acts on k-tensors X ∈ Rnk×a by (g · X)i,j = Xg−1(i),j , where
i ∈ [n]k, j ∈ [a].

3.1 k-order graph networks
Maron et al. (2019a) have suggested a family of permutation-invariant deep neural network models
for graphs. Their main idea is to construct networks by concatenating maximally expressive linear
equivariant layers. More formally, a k-order invariant graph network is a composition F = m ◦
h ◦ Ld ◦ σ ◦ · · · ◦ σ ◦ L1, where Li : Rnki×ai → Rn

ki+1×ai+1 , maxi∈[d+1] ki = k, are equivariant
linear layers, namely satisfy

Li(g · X) = g · Li(X), ∀g ∈ Sn, ∀X ∈ Rn
ki×ai ,

σ is an entrywise non-linear activation, σ(X)i,j = σ(Xi,j), h : Rn
kd+1×ad+1 → Rad+2 is an invariant

linear layer, namely satisfies

h(g · X) = h(X), ∀g ∈ Sn, ∀X ∈ Rn
kd+1×ad+1 ,

and m is a Multilayer Perceptron (MLP). The invariance of F is achieved by construction (by
propagating g through the layers using the definitions of equivariance and invariance):

F (g · X) = m(· · · (L1(g · X)) · · ·) = m(· · · (g · L1(X)) · · ·) = · · · = m(h(g · Ld(· · ·))) = F (X).

When k = 2, Maron et al. (2019a) proved that this construction gives rise to a model that can
approximate any message passing neural network (Gilmer et al., 2017) to an arbitrary precision;
Maron et al. (2019b) proved these models are universal for a very high tensor order of k = poly(n),
which is of little practical value (an alternative proof was recently suggested in Keriven and Peyré
(2019)).

3.2 The Weisfeiler-Lehman graph isomorphism test
Let G = (V,E, d) be a colored graph where |V | = n and d : V → Σ defines the color attached to
each vertex in V , Σ is a set of colors. The Weisfeiler-Lehman (WL) test is a family of algorithms
used to test graph isomorphism. Two graphs G,G′ are called isomorphic if there exists an edge and
color preserving bijection φ : V → V ′.

There are two families of WL algorithms: k-WL and k-FWL (Folklore WL), both parameterized
by k = 1, 2, . . . , n. k-WL and k-FWL both construct a coloring of k-tuples of vertices, that is
c : V k → Σ. Testing isomorphism of two graphs G,G′ is then performed by comparing the
histograms of colors produced by the k-WL (or k-FWL) algorithms.

We will represent coloring of k-tuples using a tensor C ∈ Σn
k

, where Ci ∈ Σ, i ∈ [n]k denotes the
color of the k-tuple vi = (vi1 , . . . , vik) ∈ V k. In both algorithms, the initial coloring C0 is defined
using the isomorphism type of each k-tuple. That is, two k-tuples i, i′ have the same isomorphism
type (i.e., get the same color, Ci = Ci′) if for all q, r ∈ [k]: (i) viq = vir ⇐⇒ vi′q = vi′r ; (ii)
d(viq) = d(vi′q); and (iii) (vir , viq) ∈ E ⇐⇒ (vi′r , vi′q) ∈ E. Clearly, if G,G′ are two isomorphic
graphs then there exists g ∈ Sn so that g · C′0 = C0.

3

In the next steps, the algorithms refine the colorings Cl, l = 1, 2, . . . until the coloring does not
change further, that is, the subsets of k-tuples with same colors do not get further split to different
color groups. It is guaranteed that no more than l = poly(n) iterations are required (Douglas, 2011).

The construction of Cl from Cl−1 differs in the WL and FWL versions. The difference
is in how the colors are aggregated from neighboring k-tuples. We define two notions
of neighborhoods of a k-tuple i ∈ [n]k:

Nj(i) =
n

(i1, . . . , ij−1, i
′, ij+1, . . . , ik)

�
�
� i′ ∈ [n]

o
(1)

NF
j (i) =

�
(j, i2, . . . , ik), (i1, j, . . . , ik), . . . , (i1, . . . , ik−1, j)

�
(2)

Nj(i), j ∈ [k] is the j-th neighborhood of the tuple i used by the WL algorithm, while
NF
j (i), j ∈ [n] is the j-th neighborhood used by the FWL algorithm. Note that Nj(i) is a set of n

k-tuples, while NF
j (i) is an ordered set of k k-tuples. The inset to the right illustrates these notions

of neighborhoods for the case k = 2: the top figure shows N1(3, 2) in purple and N2(3, 2) in orange.
The bottom figure shows NF

j (3, 2) for all j = 1, . . . , n with different colors for different j.

The coloring update rules are:

WL: Cli = enc
�

Cl−1i ,
�
{{Cl−1j | j ∈ Nj(i)}}

�
�
� j ∈ [k]

� �
(3)

FWL: Cli = enc
�

Cl−1i ,
nn �

Cl−1j | j ∈ NF
j (i)

� �
�
� j ∈ [n]

oo �
(4)

where enc is a bijective map from the collection of all possible tuples in the r.h.s. of Equations (3)-(4)
to Σ.

When k = 1 both rules, (3)-(4), degenerate to Cli = enc
�

Cl−1i , {{Cl−1j | j ∈ [n]}}
�

, which will not
refine any initial color. Traditionally, the first algorithm in the WL hierarchy is called WL, 1-WL, or
the color refinement algorithm. In color refinement, one starts with the coloring prescribed with d.
Then, in each iteration, the color at each vertex is refined by a new color representing its current color
and the multiset of its neighbors’ colors.

Several known results of WL and FWL algorithms (Cai et al., 1992; Grohe, 2017; Morris et al., 2018;
Grohe and Otto, 2015) are:

1. 1-WL and 2-WL have equivalent discrimination power.
2. k-FWL is equivalent to (k + 1)-WL for k ≥ 2.
3. For each k ≥ 2 there is a pair of non-isomorphic graphs distinguishable by (k + 1)-WL but

not by k-WL.

4 Colors and multisets in networks
Before we get to the two main contributions of this paper we address three challenges that arise when
analyzing networks’ ability to implement WL-like algorithms: (i) Representing the colors Σ in the
network; (ii) implementing a multiset representation; and (iii) implementing the encoding function.

Color representation. We will represent colors as vectors. That is, we will use tensors C ∈ Rnk×a

to encode a color per k-tuple; that is, the color of the tuple i ∈ [n]k is a vector Ci ∈ Ra. This
effectively replaces the color tensors Σn

k

in the WL algorithm with Rnk×a.

Multiset representation. A key technical part of our method is the way we encode multisets in
networks. Since colors are represented as vectors in Ra, an n-tuple of colors is represented by a
matrixX = [x1, x2, . . . , xn]T ∈ Rn×a, where xj ∈ Ra, j ∈ [n] are the rows ofX . Thinking about
X as a multiset forces us to be indifferent to the order of rows. That is, the color representing g ·X
should be the same as the color representingX , for all g ∈ Sn. One possible approach is to perform
some sort (e.g., lexicographic) to the rows ofX . Unfortunately, this seems challenging to implement
with equivariant layers.

Instead, we suggest to encode a multisetX using a set of Sn-invariant functions called the Power-sum
Multi-symmetric Polynomials (PMP) (Briand, 2004; Rydh, 2007). The PMP are the multivariate

4

