
Elliptical Perturbations for Differential Privacy

Matthew Reimherr ∗
Department of Statistics

Pennsylvania State University
University Park, PA 16802
mreimherr@psu.edu

Jordan Awan †
Department of Statistics

Pennsylvania State University
University Park, PA 16802

awan@psu.edu

Abstract

We study elliptical distributions in locally convex vector spaces, and determine
conditions when they can or cannot be used to satisfy differential privacy (DP).
A requisite condition for a sanitized statistical summary to satisfy DP is that the
corresponding privacy mechanism must induce equivalent probability measures
for all possible input databases. We show that elliptical distributions with the
same dispersion operator, C, are equivalent if the difference of their means lies
in the Cameron-Martin space of C. In the case of releasing finite-dimensional
summaries using elliptical perturbations, we show that the privacy parameter ε
can be computed in terms of a one-dimensional maximization problem. We apply
this result to consider multivariate Laplace, t, Gaussian, and K-norm noise. Sur-
prisingly, we show that the multivariate Laplace noise does not achieve ε-DP in
any dimension greater than one. Finally, we show that when the dimension of the
space is infinite, no elliptical distribution can be used to give ε-DP; only (ε, δ)-DP
is possible.

1 Introduction

Infinite dimensional objects and parameters arise commonly in nonparametric statistics, shape anal-
ysis, and functional data analysis. Several recent works have made strides towards extending tools
for differential privacy (DP) to handle such settings. Some of the first results in this area were given
in Hall et al. (2013), with a particular emphasis on Gaussian perturbations and point-wise releases of
statistical summaries represented as univariate functions. This work was extended to more general
Banach and Hilbert space based summaries by Mirshani et al. (2017), which included protections for
public releases based on path level summaries, nonlinear transformations of functional summaries,
and full function releases as well. However, Gaussian perturbations are not always satisfactory since
they cannot be used to achieve pure DP (ε-DP), which requires heavier tailed distributions. Rather,
for pure DP, the most popular distribution is the Laplace mechanism, whose tails are “just right" for
achieving DP in finite dimensional summaries (Dwork et al., 2006).

When one moves from univariate to multivariate settings, generalizing the Laplace mechanism is
not as simple as generalizing the Gaussian. Often, when the Laplace mechanism is used in mul-
tivariate settings, iid Laplace random variables are used. However, this approach fails to capture
the multivariate dependence structure of the data or parameter of interest. Furthermore, in infinite
dimensional settings, adding iid noise is usually not an option if one wishes to remain in a particular
function space. To address these issues, we study the use of elliptical distributions to satisfy DP,
which allow for a dispersion operator and are closely related to Gaussian distributions. Elliptical
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processes offer a nice option for designing DP mechanisms for multivariate and infinite-dimensional
data as they allow for the customization of both the tail behavior and dependence structure, which
can be tailored to the problem at hand. Recently Bun and Steinke (2019) explored several alterna-
tive univariate distributions for achieving privacy such as Cauchy, Student’s T, Laplace Log-Normal,
Uniform Log-Normal, and Arsinh-Normal, which can be extended to elliptical distributions.

We are interested in releasing a sanitized version of a statistic T : D → X, where D is a metric
space, representing the space of possible input databases, D, and X is a locally convex vector space.
To achieve differential privacy, we will release T̃ = T (D)+σX , where σ is a positive scalar, andX
is a random element of X. In particular, we considerX which are drawn from elliptical distributions,
of which the multivariate Laplace and Gaussian distributions are special cases. Most linear spaces
are locally convex vector spaces, including all Hilbert Spaces, Banach Spaces, Frechet spaces, and
product spaces of normed vector spaces, meaning that our results will hold quite broadly.

We consider the setting where the statistical summary and privacy mechanism are truly infinite
dimensional, meaning that the problem cannot be embedded into a finite dimensional subspace
where multivariate privacy tools can be used. There are both interesting mathematical and practical
motivations for this perspective. First, our setting can be viewed as a limit of multivariate problems;
if one has privacy over the full infinite dimensional space, then this ensures that the noise is well
behaved when releasing multivariate summaries, regardless of how many are released. Second, one
does not need to ensure that every database uses the same finite dimensional subspace, allowing
practitioners to use whatever methods and summaries they prefer. And third, our setting is very
convenient when addressing multiple queries. In particular, one does not need to spend a fraction of
the privacy budget for every query. Instead, the amount spent for each subsequent query decreases
dramatically, eventually leveling out to a maximum ε or (ε, δ). To accomplish this, one does not
need to “store” the infinite dimensional noise, instead, we can generate as much of the noise as is
needed for a particular query while conditioning on any noise values generated for prior queries.

We also provide a surprising result showing that ε-DP can only be achieved for a finite number of
summaries or point-wise evaluations; in infinite dimensions no elliptical perturbation is capable of
achieving ε-DP over the full function space, one can only achieve (ε, δ)-DP. This is in stark contrast
with what is known from the univariate or multivariate literature on DP.

While elliptical distributions are being used more frequently in statistics and machine learning (e.g.
Schmidt, 2003; Frahm et al., 2003; Soloveychik and Wiesel, 2014; Couillet et al., 2016; Sun et al.,
2016; Goes et al., 2017; Ollila and Raninen, 2019), some fundamental questions regarding elliptical
distributions in function spaces remain underdeveloped. For data privacy, the question of equiva-
lence/orthogonality of elliptical measures is particularly important. In terms of data privacy, if a
perturbation in a dataset produces a private summary that is orthogonal (in a probabilistic sense) to
the old one, then the summaries cannot be differentialy private since they can be distinguished with
probability one. We show that several conditions for making this determination transfer nicely from
the Gaussian setting, but not all. While conditions on the location function remain the same, con-
ditions on the dispersion function change. Furthermore, that all elliptical measures are equivalent
or orthogonal need no longer hold without additional assumptions. Regardless, for the purposes of
privacy, determining equivalence/orthogonality based on the location is the primary requirement.

Related Work: Our general approach of adding noise from a data-independent distribution to a
summary statistic is one of the simplest and most common methods of achieving DP. This approach
was first developed using the Laplace mechanism (Dwork et al., 2006), and has since been expanded
to include a larger variety of distributions. Ghosh et al. (2009) showed that when the data is a count,
then the optimal noise adding distribution is discrete Laplace. Geng and Viswanath (2016) extended
this result to the continuous setting, developing the staircase distribution which is closely related to
discrete Laplace. In the multivariate setting, the most common solution is to add iid Laplace noise
to each coordinate (Dwork and Roth, 2014). However, Hardt and Talwar (2010) and Awan and
Slavković (2019) demonstrate that capturing the covariance structure in the data, via the K-norm
mechanism can substantially reduce the amount of noise required.

After adding noise to summary statistics, researchers have shown that many complex statistical and
machine learning tasks can be produced by post-processing, such as linear regression (Zhang et al.,
2012), maximum likelihood estimation (Karwa and Slavković, 2016), hypothesis testing (Vu and
Slavković, 2009; Gaboardi et al., 2016; Awan and Slavković, 2018), posterior inference (Williams
and Mcsherry, 2010; Karwa et al., 2016), or general asymptotic analysis (Wang et al., 2018).
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To date, the only additive mechanism in infinite-dimensions is the Gaussian mechanism, developed
by Hall et al. (2013) and Mirshani et al. (2017). However, there has been other work on developing
privacy tools for these spaces. Awan et al. (2019) show that the exponential mechanism (McSherry
and Talwar, 2007) can be used in arbitrary Hilbert spaces, by integrating with respect to a fixed
probability measure such as a Gaussian process. An alternative approach proposed by Alda and
Rubinstein (2017) uses Bernstein polynomial approximations to release private functions. Recently,
Smith et al. (2018) utilized the techniques of Hall et al. (2013) to develop private Gaussian process
regression. Similar to the pufferfish approach (Kifer and Machanavajjhala, 2014), they assume that
the predictors are public, and use the known covariance structure to tailor the noise distribution.

Organization: In Section 2, we review the necessary background on locally convex vector spaces,
elliptical distributions, and differential privacy. In Section 3, we study the equivalence and orthog-
onality of elliptical measures, and give a condition that ensures that two elliptical measures are
equivalent. In Section 4, we investigate using elliptical perturbations to achieve DP. First, we con-
sider the finite dimensional case in Section 4.1, and in Theorem 3 we give a condition for elliptical
perturbations to satisfy ε-DP as well as a method of computing ε. In Section 4.2 we show that if the
dimension of the space is infinite, then no elliptical perturbation can satisfy ε-DP. In fact, we show
that every elliptical distribution can only achieve (ε, δ)-DP for a positive δ. We give short proof
sketches throughout the document, with detailed proofs left to the Supplementary Material.

2 Elliptical Distributions

Elliptical distributions, whether over Rd or a more general vector space can be defined in a variety
of equivalent ways. Intuitively, an elliptical distribution is one in which its density contours form
hyperellipses. However, this presupposes that the measure is absolutely continuous with respect to
Lebesgue measure. Thus, it is often useful in multivariate settings to use alternative definitions that
are more easy to generalize, but which are equivalent to the shape of the density contours when they
exist. This is not unique to elliptical measures, such alternative definitions are often useful when
working with infinite dimensional objects (e.g. Bosq, 2000). Throughout, we focus our attention on
an arbitrary, real, locally convex vector space (from here on LCS), X, but we will restrict ourselves
to simpler spaces (e.g. Banach, Hilbert, or Euclidean spaces) as needed or for illustration. For
ease of reference, recall the following concepts from functional analysis (see Rudin (1991) for an
introduction).

• A set, X, is called a vector space if it is closed under addition and scalar multiplication (and
those operations are well defined).

• A vector space, X, is called a topological vector space, if it is equipped with a topology
under which addition and scalar multiplication are continuous.

• A topological vector space X is called locally convex if its topology is generated by a
separated family of semi-norms, {pα : α ∈ I}, where I is an arbitrary index set and
separated means that for all nonzero x ∈ X there exists α ∈ I such that pα(x) 6= 0. A base
for the topology is given by sets of the form Aα,ε = {x ∈ X : pα(x) < ε}.

• The topological dual, X∗, is the collection of all continuous linear functionals on X.

The assumption that the seminorms are separated is not always included in the definition, but is
equivalent to assuming that the space is Hausdorff. Recall that a topology defines the open sets, a
collection of subsets that is closed under uncountable unions, finite intersections, and contains both
X and ∅. We use this level of generality to include as many settings as possible into our framework.
In particular, all finite dimensional Euclidean spaces, normed vector spaces, Hilbert Spaces, Banach
Spaces, and Frechet spaces are types of LCS. In addition, uncountable product spaces of normed
spaces, which are often used in the mathematical foundations of stochastic processes, are LCS as
well (when equipped with the product topology). To find practical examples of spaces that are not
locally convex spaces, one either has to consider nonlinear spaces, such as manifolds, or equip a
space with an “odd" metric (such as Lp for p < 1).
Example 1 (LCS Examples). The definition of LCS in terms of seminorms is perhaps unintuitive
at first, but can be motivated by product spaces such as R[0,1] = {f : [0, 1]→ R}. The space R[0,1]

is in a sense “too large” to accommodate a norm, but it is easy to define a family of semi-norms
that measure the magnitude of the function coordinate-wise. Here α ∈ I := [0, 1] and we define
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pα(f) = |f(α)|. Note that for any particular α, pα is not a norm, since pα(f−g) = 0 does not imply
that f = g. However, the entire collection of semi-norms separates points since pα(f − g) = 0 for
all α ∈ [0, 1] implies that f = g.

It is easy to see that any normed space fits the definition of LCS. For C[0, 1], we set I = {1} and
define p1(f) = supt∈[0,1] |f(t)|, and for L2[0, 1] we set I = {1} and define p1(f) =

∫
f2(t)dt.

When working with a LCS one commonly uses one of two σ-algebras. The Borel σ-algebra, B, is the
smallest σ-algebra that contains the open sets. The cylinder σ-algebra, C, is the smallest σ-algebra
that makes all continuous linear functionals measurable. In general we have C ⊆ B, but these two
σ-algebras are not equal unless the space has additional structure, e.g. separable Banach spaces.
This creates complications in infinite dimensional settings. For example, the technical theory for
stochastic processes often starts with product spaces such as R[0,1]. There, the two sigma algebras
are not the same, which is an issue for privacy as one desires privacy over B, not just C. This
is because only the events in the chosen σ-algebra are protected, and a larger σ-algebra offers a
stronger privacy guarantee. More importantly, C does not contain most sets of interest, including
continuous functions, linear functions, polynomials, constant functions, etc. (Billingsley, 1979,
Problem 36.6). To overcome this challenge, Mirshani et al. (2017) used Cameron-Martin theory, to
obtain DP over all of B through careful use of densities in infinite dimensional spaces. This theory
is built upon Gaussian processes; however, we will show that several of their key results, especially
those needed for privacy, extend directly to elliptical distributions. Throughout this paper, we assume
X is equipped with its Borel σ-algebra when discussing measures, measurability, and DP.

Often it is convenient to define probability measures over abstract spaces in terms of their character-
istic functionals (i.e. Fourier transforms), which uniquely determine measures in any LCS.
Definition 1 (Fang, 2017). A measure, P , over a locally convex space X is called elliptical if and
only if its characteristic functional, P̃ : X∗ → C, has the form

P̃ (g) =

∫
X

exp{ig(x)} dP (x) = eig(µ)φ0(C(g, g)),

where µ ∈ X, C is a symmetric, positive definite, continuous bilinear form on X∗ ×X∗, and φ0 is a
positive definite function over R, which is continuous at 0 and satisfies φ0(0) = 1.

Definition 1 implies that the distribution of P is uniquely determined by knowing µ, C, and φ0. The
object µ denotes the center of the distribution; we will say a distribution is centered if µ = 0. The
object C is often called the covariance or dispersion operator. In general, C can either be identified
as an operator or bilinear form (in fact a (0, 2) tensor). We avoid introducing extra notation we will
let C(g) denote the operator version and C(f, g) the bilinear form.

We begin by presenting a second characterization of elliptical measures. This is a well known result,
but we are unaware of a reference for this level of generality. We cite Fang (2017), which covers the
multivariate case, but the proof is the same for general LCS.
Theorem 1 (Fang, 2017). Let X ∈ X be an elliptically distributed random variable. Then there
exists a mean zero Gaussian process Z ∈ X with covariance operator C, an element µ ∈ X, and a
strictly positive random variable V ∈ R+, that is independent of Z, and satisfies X L

= µ+ V Z.

This result is often phrased as “every elliptical distribution is a scalar mixture of Gaussian pro-
cesses." While it is, of course, a fascinating result in its own right, it also provides a simple method
of generating and simulating from arbitrary elliptical distributions.

Due to this corollary, we will index every elliptical measure using µ, C, and the mixing distribution
of V , which we will denote as ψ, and use the notation E(µ,C, ψ). Equivalently, we could index
using the φ0 from Definition 1, but our results in Section 3 are easier to present in terms of ψ.

We conclude by stating a general definition of DP, which makes sense over any measurable space,
though we state it here for LCS. The concept of differential privacy was first introduced in Dwork
et al. (2006) and Dwork (2006). Over time researchers have worked to make the definition more
precise and flexible, such as Wasserman and Zhou (2010) who state it in terms of conditional distri-
butions. For a general, axiomatic treatment of formal privacy, see Kifer et al. (2012).
Definition 2. Let (D, d) be a metric space and {PD : D ∈ D} be a family of probability measures
over a locally convex topological vector space X. We say the family achieves (ε, δ)-differential
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privacy if for any d(D,D′) ≤ 1 and any measurable A, we have

PD(A) ≤ eεPD′(A) + δ. (1)

Intuitively, D represents the universe of possible input databases. One then refers to {PD : D ∈ D}
as the privacy mechanism. The most common setting when discussing DP is when D is a product
space and the metric is the Hamming distance. However, the Hamming distance (which counts
differences in coordinates) is insensitive to the magnitude of the difference between two inputs D
and D′, thus one may wish to consider alternatives and so we take the more general approach. As
discussed earlier, while DP can be defined with any σ-algebra, we assume that X is equipped with
the Borel σ-algebra as it offers more intuitive guarantees. We refer to (ε, δ)-DP as approximate DP
when δ > 0 and as pure-DP when δ = 0. When using pure DP, we often just write ε-DP.

Another way of viewing ε-DP (that is, taking δ = 0) is through the equivalence/orthogonality of
probability measures. As was discussed in Awan et al. (2019), in an ε-DP mechanism the individual
measures that make up the mechanism are all equivalent in a probabilistic sense (meaning they agree
on the zero sets). Conversely, if the measures are orthogonal then the mechanism cannot even be
(ε, δ)-DP. This perspective was used in Mirshani et al. (2017) for the case of Gaussian mechanisms.
However, the corresponding theory for elliptical distributions is less developed. In the next section
we extend several fundamental results of Gaussian processes to elliptical distributions.

3 Equivalence and Orthogonality of Elliptical Measures

A classic result from probability theory is that any two Gaussian processes are either equivalent or
orthogonal (that is, as probability measures they either agree on the zero sets or concentrate their
mass on disjoint sets). Recall that by the Radon-Nikodym theorem, if two measures are equivalent
then there exists a density of one with respect to the other (and vice versa). What we will now show
is that this property, to a degree, extends to any elliptical family. Furthermore, we will show that
the conditions for establishing this equivalence/orthogonality are nearly the same as for Gaussian
processes. We begin with a fairly simple yet surprisingly useful technical lemma.

Lemma 1. Let (Ω,F , P ) be a probability space. Let X1 : Ω → X and X2 : Ω → X denote two
random elements of X, and let T 1 : Ω → R and T 2 : Ω → R be two random variables. Let P i
denote the probability measure over X induced byXi and letQi denote the measure over R induced
by T i. Let P it denote the conditional measure of Xi given T i = t. If Q1 and Q2 are equivalent and
P 1
t and P 2

t are equivalent for almost all t (wrt Q1) then so are P 1 and P 2.

The proof of Lemma 1 is in the Supplementary Material. Implicit in Lemma 1 is that the con-
ditional distributions exist. This is not an issue in our setting as the conditional distributions can
be explicitly constructed for elliptical processes, however, for general processes and spaces one
can encounter nontrivial technical problems. We refer the interested reader to Hoffmann-Jørgensen
(1972), Bogachev (1998, THM A.3.11), and Kallenberg (2006, Chapter 6) for further discussion.
Interestingly, the reverse statement is not true. That is, even if all of the conditional distributions
are orthogonal, the unconditional measures need not be orthogonal. To see this, suppose that T is
0 or 1 with equal probability. Now, assume that P 1

0 and P 1
1 are orthogonal and set P 2

0 = P 1
1 and

P 2
1 = P 1

0 . Clearly the conditional distributions are orthogonal, but not only are the unconditional
measures equivalent, they are actually the same!

Regardless, our goal is more specific; we want to establish conditions under which E(µ1, C, ψ) and
E(µ2, C, ψ) are orthogonal when they share the same ψ and C. In terms of DP, µ1 and µ2 represent
the private summary from two different databases. If ψ is a point mass, then the two measures are
Gaussian and the conditions are known. The question is, to what degree do such conditions extend
to other mixtures? Theorem 2 shows that the same conditions for Gaussian processes (with the same
covariance, but different means) apply to any elliptical family. Given Corollary 1, this may seem
obvious, but Lemma 1 implies that the matter is surprisingly delicate. For example, two Gaussian
processes with the same mean, but where one has a covariance equal to a scalar c 6= 1 multiple of
the other, are actually orthogonal (in infinite dimensions). This need not hold for arbitrary elliptical
families as the scalar can be absorbed by the mixing coefficient (and then apply Lemma 1).

Our first major result establishes a condition under which DP cannot be achieved, regardless of
the magnitude of the noise. First, let us define a subspace of X using the bilinear form C (more
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detail can be found in Bogachev (1998); Mirshani et al. (2017)). In particular, C induces an inner
product 〈·, ·〉K on the dual space X∗ given by 〈f, g〉K := C(f, g) =

∫
f(x)g(x)dP (x), where P

is a Gaussian measure with mean zero and covariance C. Then, we can view X∗ as a subspace of
L2(X, P ), the space of P -square integrable functions from X → R. By assumption, 〈·, ·〉K is a
continuous, symmetric, and positive definite bilinear form and thus a valid inner product. However,
X∗ is not complete with respect to this inner product when X is infinite dimensional, so let K denote
its completion. Finally, consider the subset H ⊂ X, such that for h ∈ H the operation Th : K → R
given by Th(g) := g(h) is continuous in the K topology. Then H is called the Cameron-Martin
space ofC (or equivalently, of the mean zero Gaussian process withC as its covariance). Intuitively,
the functionals inK are much “rougher" than those in X∗ and thus the elements of H are much more
regular than general elements of X to counter balance this. In fact, C also generates an operator
from K → H denoted as C(g) =

∫
xg(x)dP (x). Using this notation, an element h ∈ X lies in H

exactly when it equals h = C(g) for some g ∈ K. The space H is also a Hilbert space (even though
X need not be) equipped with the inner product 〈h1, h2〉H = 〈g1, g2〉K where hi = C(gi).

Theorem 2. Let P1 ∼ E(µ1, C, ψ) and P2 ∼ E(µ2, C, ψ) be two elliptical measures over a locally
convex topological vector space, X. Then the two distributions are equivalent if µ1 − µ2 resides in
the Cameron-Martin space of C and orthogonal otherwise.

Proof Sketch. For the first direction, if µ1 − µ2 resides in the Cameron-Martin space of C then it
resides in the Cameron-Martin space of vC for v > 0 since they induce equivalent norms. From
Bogachev (1998, Theorem 2.4.5 ), two Gaussian measures with the same covariance, C, are equiv-
alent if the difference of their means resides in the Cameron-Martin space of C. Thus, conditioned
on the mixture V = v, the measures are equivalent for all v. By Lemma 1, they are equivalent.

For the reverse direction we consider, without loss of generality, X1 ∼ E(0, C, ψ) versus X2 ∼
E(µ,C, ψ) where µ is not in the Cameron-Martin space of C. To see that the two measures are
orthogonal, it suffices to show that, for any fixed ε ∈ (0, 1) we can construct a measurable set A
such that P (X1 ∈ A) ≥ 1− ε while P (X2 ∈ A) ≤ ε.

To interpret Theorem 2 in the context of privacy, given a database D ∈ D, recall that a private
summary is drawn from the elliptical distribution E(µD, C, ψ). Theorem 2 then says that the mea-
sures are orthogonal (and thus no amount of noise will produce a DP summary) unless all of the
differences µD − µD′ , for any D,D′ ∈ D reside in the Cameron-Martin space of C.

4 Achieving DP with Elliptical Perturbations

Now that we have the necessary tools in place and we know when we cannot have DP, we will now
construct a broad class of mechanisms that do achieve DP. Recall that the mechanisms will be of the
form T̃D = TD+σX, where TD := T (D) is the nonprivate statistical summary, X is a prespecified
elliptical process and σ > 0 is a fixed scalar. The exact value of σ will be set to achieve some desired
level of privacy. Gaussian perturbations (i.e. taking φ as a point mass) will not achieve ε-DP even in
finite dimensions. As is known in the literature, Gaussian perturbations have tails that are too light,
causing the probability inequality of DP to fail for sets in the tails. To fix this, it is common to use
another distribution, often the Laplace distribution, whose tails appear to be just right for achieving
DP. Interestingly, this trick does not carry over to infinite dimensional spaces. We will show that
while some elliptical distributions can achieve ε-DP for finite dimensional projections, none can
achieve it over the entire infinite-dimensional space; they can only achieve (ε, δ)-DP with δ > 0.

4.1 DP in Finite Dimensions

In this subsection, we give a criterion (Theorem 3) that establishes which elliptical distributions
satisfy ε-DP, when X = Rd. We also provide a related result (Corollary 1) for ε-DP with d-
dimensional projections of infinite dimensional summaries, which holds uniformly across the choice
of projection, for a fixed d. Elliptical distributions that can achieve ε-DP (with a fixed d) include `2-
mechanism (Chaudhuri and Monteleoni, 2009; Chaudhuri et al., 2011; Kifer et al., 2012; Song et al.,
2013; Yu et al., 2014; Awan and Slavković, 2019), and the multivariate t distribution. Interestingly,
the multivariate Laplace distribution cannot achieve ε-DP when d ≥ 2.
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Denote by Σ = {C(ei, ej)} the positive definite matrix containing the evaluations of C on the
standard basis of Rd. Then the density of T̃D = TD+σX is proportional to f(σ−2(x−TD)Σ−1(x−
TD)), where f is a decreasing positive function depending only on the dimension d and the elliptical
family for X . The omitted constants depend on Σ, but not on TD. The Cameron-Martin norm can
be expressed as ‖g‖H = g>Σ−1g. In factH = Rd, but equipped with a different norm.

Theorem 3. Assume that X = Rd and, without loss of generality, assume that that T̃D has a density
with respect to Lebesgue measure proportional to fT̃D

(x) ∝ f(σ−2(x−TD)>Σ−1(x−TD)), where
f : [0,∞)→ [0,∞] is a decreasing positive function. Set

∆ = sup
D∼D′

‖TD − TD′‖H = sup
D∼D′

‖Σ−1/2(TD − TD′)‖2.

If ∆ <∞, f(0) <∞, and
lim sup
c→∞

f((c−∆)2)

f(c2)
<∞, (2)

then T̃D satisfies ε-DP, where exp(ε) = sup
c≥σ−1∆

f((c− σ−2∆)2)

f(c2)
<∞.

The proof of Theorem 3 is based on the ratio of the densities, and is in the Supplementary Materials.
Next we apply Theorem 3 to several common distributions.
Example 2 (Independent Laplace). Independent Laplace random variables are a common
tool for achieving ε-DP. The density of this mechanism is proportional to f(x) ∝
exp

(
−
∑d
i=1 |xi − µi|/σi

)
. While it is easily proved that this mechanism can be used to sat-

isfy ε-DP, this distribution is not elliptical, since the density cannot be written as a function of
(x− µ)>Σ−1(x− µ) for any µ and Σ.

A natural idea is to use the elliptical multivariate Laplace distribution to try to achieve ε-DP for
multi-dimensional outputs. Surprisingly, the following example shows that while the tail behavior
of the multivariate Laplace is sufficient to satisfy (2), the multivariate Laplace distribution cannot be
used to achieve ε-DP when d ≥ 2, since it has a pole (i.e. goes to infinity) at its center.
Example 3 (Multivariate Laplace). A d-dimensional random variable X ∼ Laplace(µ,Σ) has
density equal to

2(2π)−d/2|Σ|−1/2
(
(x− µ)>Σ−1(x− µ)/2

)ν/2
Kν(

√
2(x− µ)>Σ−1(x− µ)),

where ν = 2−d
2 and Kν is the modified Bessel function of the second kind. This density is propor-

tional to f((x− µ)>Σ−1(x− µ)), where f(y) = (y/2)
ν/2

Kν(
√

2y). The reason this distribution
is called the multivariate Laplace distribution is that it is the only family of distributions such that
every marginal distribution is also distributed as Laplace (iid Laplace does not have this property).

First, let’s check whether (2) is finite. We use the fact that Kν(z) = c exp(−z)z−1/2(1 + O(1/z))
as z →∞, where c is a constant (Abramowitz and Stegun, 1965, Chapter 9). Then

lim
c→∞

f((c−∆)2)

f(c2)
= lim
c→∞

(
c−∆

2

)ν
Kν(
√

2(c−∆))(
c
2

)ν
Kν(
√

2c)
= lim
c→∞

exp(−
√

2(c−∆))
√
c

exp(−
√

2c)
√
c−∆

= exp(
√

2∆).

We see that the tails of the multivariate Laplace distribution are heavy enough to satisfy ε-DP. How-
ever, it turns out that there is another problem in this case, which is that f(x) has a pole at x = 0.
We use the fact that for 0 < x�

√
|ν|+ 1, as x→ 0+, Kν(x) is asymptotically similar to

Kν(x) ∼

{
− log(x) if ν = 0
Γ(ν)

2 (2/x)|ν| if ν 6= 0,

where γ is a constant (Abramowitz and Stegun, 1965, Chapter 9). Then

lim
y→0+

f(y) =
(y

2

)ν/2
Kν(

√
2y) ∝ lim

y→0+


exp(−√y) if d = 1

− 1
2 log(2y) if d = 2

(y/2)ν/2( 2√
2y

)|ν| if d ≥ 3

From this, we see that the limit is finite when d = 1, but infinite when d ≥ 2. So, the multivariate
Laplace distribution cannot be used to achieve ε-DP for d ≥ 2.
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While we may have supposed that the multivariate Laplace distribution would be well suited for ε-
DP, in fact it seems that the K-norm mechanism, introduced by Hardt and Talwar (2010), is a better
generalization of the Laplace mechanism, since it is carefully tuned for privacy.
Example 4 (K-Norm Mechanism). For any norm ‖·‖K , theK-norm mechanism with mean µ draws
from the density proportional to exp(−‖x−µ‖K). For norms of the form ‖x‖ =

√
x>Σ−1x, theK-

norm mechanism is an elliptical distribution, with density is proportional to f((x−µ)>Σ−1(x−µ)),
where f(y) = exp(−√y). First note that there is no concern about poles, since f(0) is finite.

For any c ≥ ∆, we have that
exp(−

√
(c−∆)2)

exp(−
√
c2)

=
exp(−(c−∆))

exp(−c)
= exp(∆), which is constant.

This suggests that this distribution is especially suited for ε-DP.

It is well known in the DP community that Gaussian noise cannot be used to achieve ε-DP. We show
in the next example how Theorem 3 can be used to easily verify this fact.
Example 5 (Multivariate Normal). The density of a multivariate normal N(µ,Σ) has density pro-
portional to f((x− µ)>Σ−1(x− µ)), where f(y) = exp (−y/2) . If ∆ > 0, then

lim
c→∞

exp
(
− (c−∆)

2
/2
)
/ exp

(
−c2/2

)
= lim
c→∞

exp

(
1

2

(
c2 −

[
c2 − 2c∆ + ∆2

]))
=∞.

The previous result confirms that the tails of the Normal distribution are too light to achieve ε-DP.
In contrast with the previous example, we show next that the multivariate t-distribution can achieve
ε-DP, but its tails are maybe “over-kill".
Example 6 (Multivariate t-distribution). A d dimensional t random vector with degrees of freedom
ν > 1, denoted tdν(µ,Σ) has density proportional to f((x− µ)>Σ−1(x− µ)), where

f(y) = [1 + y/ν]
−(ν+d)/2

.

We check the limit: lim
c→∞

[1 + (c−∆)2/ν]−(ν+d)/2

[1 + c2/ν]−(ν+d)/2
= lim
c→∞

[
1 + c2/ν

1 + (c−∆)2/ν

](ν+d)/2

= 1.

Since the limit is finite, we know that there is a finite supremum. We solve
d

dc

[
1 + c2/ν

1 + (c−∆)2/ν

]
=

0, and find that the unique solution in [∆,∞) is c = 1
2

(
∆ +

(√
∆2 + 4ν

))
. Plugging this into[

1+c2/ν
1+(c−∆)2/ν

](ν+d)/2

gives us the value of exp(ε).

We end this subsection with a result for the original infinite dimensional problem: if X is infinite
dimensional, then Theorem 3 can be used to achieve ε-DP for a set of d linear functionals from K.
Corollary 1. Assume X is an LCS of potentially infinite dimension. Let T : D → X be a summary
with finite sensitivity ∆ <∞ with respect to an elliptical noiseX ∈ X. Then for any distinct gi ∈ K
for i = 1, . . . , d, the density of {gi(T̃D)} is proportional to f(σ−2(x − µD)Σ−1(x − µD)), where
µD = {gi(TD)}, Σ = {C(gi, gj)}, and f : [0,∞)→ [0,∞] is a monotonically decreasing function
depending on d and the elliptical family, but not the specific gi. If f(0) < ∞, and property (2) of

Theorem 3 holds, then {gi(T̃D)} satisfies ε-DP, where exp(ε) = sup
c≥σ−1∆

f((c− σ−2∆)2)

f(c2)
<∞.

The key point of Corollary 1 is that there is a universal σ such that T̃D achieves ε-DP when evaluated
on any d linear functionals. Unfortunately, it does depend on d, and as we will see in the next section,
there is no finite σ that can guarantee ε-DP for arbitrary d when using an elliptical perturbation.

4.2 Impossibility in Infinite Dimensional Spaces

In the previous subsection we gave a condition to check whether an elliptical distribution can be
used to satisfy ε-DP in finite dimensional spaces. It is natural to suppose that a similar property
holds in infinite dimensional spaces. However, our main result in this section is that no elliptical
distribution satisfies ε-DP in infinite dimensional spaces. The intuition behind this result is that by

8



Corollary 1, any elliptical process can be expressed as a random mixture of Gaussian processes,
but in infinite dimensional spaces, the mixing variable V is actually measurable with respect to
the infinite dimensional process. That is, if one observes T̃D = TD + σX , then with probability
one, the mixing random variable V can be computed from T̃D. This is because one can pool small
amounts of information across an infinite number of dimensions estimate V (even though X still
isn’t observable). So, the noise from any elliptical distribution is equivalent (as far as privacy goes)
to adding noise from a Gaussian process, which Mirshani et al. (2017) show only satisfies (ε, δ)-DP,
a weaker notion of differential privacy than ε-DP.

Theorem 4. Consider a summary T : D → X and let T̃D = TD + σX , where X is a centered
elliptical distribution and TD := T (D). If X is infinite dimensional, the image T (D) is a not a
singleton, and C does not have finite rank, then T̃D will not achieve ε-DP for any choice of σ.

Proof Sketch. Consider functionals gi ∈ K such that C(gi, gj) = δij . The estimator Vn =
1
n

∑n
i=1 gi(T̃D)2 converges to V 2 with probability 1 as n→∞, recovering V from T̃D.

Fortunately, elliptical distributions can still achieve (ε, δ)-DP. However, we run into a bit of an odd
philosophical issue since the mixing coefficient V can be computed from f̃(D). So, the mechanism
can be viewed as drawing from a mixture of Gaussian processes, but after observing the output the
user knows exactly from which Gaussian distribution the noise came from.
Theorem 5. Let X be a centered elliptical process over X and T : D → X has sensitivity ∆. Then
for any ε > 0 and δ > 0,

T̃D = TD + σX, with σ2 ≥ 2 log(2/δ′)

ε2
∆2

achieves (ε, δ)-DP, where δ′ satisfies δ = 2MV (log(δ′/2)) and MV is the moment generating func-
tion of mixing coefficient V , as defined in Theorem 1.

In Theorem 5, δ′ represents the DP that would be achieved under the Gaussian mechanism, thus
one will end up with better privacy if δ < δ′. In addition, for δ′ ∈ (0, 1), log(δ′/2) < 0, so
MV (log(δ′/2)) is finite and all quantities are well defined. The proof of Theorem 5 is similar to the
proof of Mirshani et al. (2017, Theorem 3.3), and is in the Supplementary Materials.

5 Discussion

In this work we considered a new class of additive privacy mechanisms based on elliptical distribu-
tions. We also presented a number of foundational results concerning the equivalence/orthogonality
of elliptical distributions. These mechanisms were considered under the general assumption that the
summary resides in a locally convex space, allowing for a wide range of applications from classic
multivariate statistics to nonparametric statistics and functional data analysis. Surprisingly, we show
that while many elliptical distributions may be used for pure DP in finite dimensions, none are ca-
pable of achieving it in infinite dimensions. This is due to the close connection between Gaussian
processes and elliptical processes, and both can only achieve approximate DP in infinite dimensions.

This work also highlights the need for more tools when the statistical summaries are complex objects
such as functions. Properties that hold in finite dimensions may not hold in infinite dimensions in
some surprisingly subtle ways. Practically, this can mean that either one does not have the desired
level of protection against privacy disclosures, or that one has to add enormous amounts of noise to
achieve pure DP.

While this paper has focused on the question of whether an elliptical distribution satsfies DP, we do
not address the utility of these mechanisms. There is already evidence that elliptical distributions
are useful for different applications (i.e. Awan and Slavković, 2019; Bun and Steinke, 2019), but
further work establishing utility guarantees for elliptical distributions is needed.
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