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1 Proofs

1.1 L-lag unbiased estimators

Our motivation for Theorem 2.5 comes from recent works on unbiased MCMC estimators using
couplings [7, 5]. In particular, extending the unbiased estimator from [7] that corresponds to a lag
L = 1, we first construct the L-lag estimator with an arbitrary L ≥ 1 as

H
(L)
t (X,Y ) := h(Xt) +

⌈
τ(L)−L−t

L

⌉∑
j=1

h(Xt+jL)− h(Yt+(j−1)L). (1)

where h ∈ H, chains (Xt)t≥0, (Yt)t≥0 marginally have the same initial distribution π0 and Markov
transition kernel K on (Rd,B(Rd)) with invariant distribution π, and they are jointly following the
L-lag coupling algorithm (Algorithm 1 in the main paper). As an aside, following [7] we also include
the corresponding time-averaged L-lag estimator:

H
(L)
k:m(X,Y ) :=

1

m− k + 1

m∑
t=k

H
(L)
t (X,Y ) (2)

=
1

m− k + 1

m∑
t=k

h(Xt) +
1

m− k + 1

m∑
t=k

⌈
τ(L)−L−t

L

⌉∑
j=1

h(Xt+jL)− h(Yt+(j−1)L).

(3)

Following the proof technique for the 1-lag estimator in [7], we first prove an unbiasedness result for
H

(L)
t (X,Y ). By linearity the unbiasedness of H(L)

k:m(X,Y ) follows.

Proposition 1.1. Under the Assumptions 2.2, 2.3 and 2.4 of the main article, H(L)
t (X,Y ) has

expectation EX∼π[h(X)], finite variance, and finite expected computing time.

Proof. The proof is nearly identical to those in [13, 5, 7] and related articles, and is only reproduced
here for completeness. Let t = 0 without loss of generality. Otherwise start the chains at πt rather
than π0. Secondly, we can focus on the component-wise behaviour of H(L)

0 (X,Y ) and assume h
takes values in R without loss of generality. For simplicity of notation we drop the (L) superscript
and write H0(X,Y ) to denote H(L)

0 (X,Y ).

Define ∆0 = h(X0), ∆j = h(XjL) − h(Y(j−1)L) for j ≥ 1, and Hn
0 (X,Y ) :=

∑n
j=0 ∆j . By

Assumption 2.3, E[τ (L)] <∞, so the computation time has finite expectation. When (1+j)L ≥ τ (L),
∆j = 0 by faithfulness (Assumption 2.4). As τ (L)

a.s.
< ∞, this implies Hn

0 (X,Y )
a.s.→ H0(X,Y ) as

n→∞.
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We now show that (Hn
0 (X,Y ))n≥0 is a Cauchy sequence in L2, the space of random variable with

finite first two moments, by showing

sup
n′≥n

E[
(
Hn′

0 (X,Y )−Hn
0 (X,Y )

)2
] →
n→∞

0.

This follows by direct calculation. Firstly by Cauchy–Schwarz,

E[
(
Hn′

0 (X,Y )−Hn
0 (X,Y )

)2
] =

n′∑
s=n+1

n′∑
t=n+1

E[∆s∆t] ≤
n′∑

s=n+1

n′∑
t=n+1

E[∆2
s]

1/2E[∆2
t ]

1/2.

By Hölder’s inequality with p = 1 + η/2, q = (2 + η)/η and Assumptions 2.2 - 2.3, for any η > 0,

E[∆2
t ] = E[∆2

t1(τ (L) > (1 + t)L)] ≤ E[∆2+η
t ]

1
1+η/2E[1(τ (L) > (1 + t)L)]

η
2+η

< D
1

1+η/2 (Cδt)
η

2+η .

where E[∆2+η
t ] ≤ E[MH(XtL, Y(t−1)L)2+η] ≤ D follows from Assumptions 2.2. Overall this

implies E[
(
Hn′

0 (X,Y ) −Hn
0 (X,Y )

)2
] ≤ C̃δ̃n for some C̃ > 0, δ̃ ∈ (0, 1) for all n ≥ 0. Hence

(Hn
0 (X,Y ))n≥0 is a Cauchy sequence in L2, and has finite first and second moments. Recall that

Cauchy sequences are bounded, so we can apply the dominated convergence theorem to get,

E[H0(X,Y )] = E[ lim
n→∞

Hn
0 (X,Y )] = lim

n→∞
E[Hn

0 (X,Y )].

Finally, note that by a telescoping sum argument and Assumption 2.2,

lim
n→∞

E[Hn
0 (X,Y )] = lim

n→∞
E[h(Xn)] = EX∼P [h(X)].

as required. Therefore, in general H(L)
t (X,Y ) has expectation EX∼π[h(X)], finite variance, and a

finite expected computing time.

1.2 Proof of Theorem 2.5

Proof. We consider the L-lag estimate in (1). Under Assumptions 2.2, 2.3 and 2.4, by Proposition
1.1 H(L)

t (X,Y ) is an unbiased estimator of EX∼π[h(X)], for any h ∈ H. Then,

dH(πt, π) = sup
h∈H
|EX∼π[h(X)]− E[h(Xt)]|

= sup
h∈H

∣∣∣E[
⌈
τ(L)−L−t

L

⌉∑
j=1

h(Xt+jL)− h(Yt+(j−1)L)
]∣∣∣

≤ E

[ ⌈ τ(L)−L−t
L

⌉∑
j=1

MH(Xt+jL, Yt+(j−1)L)

]
.

The inequality above stems from 1) the triangle inequality applied d(τ (L) − L− t)/Le times, and 2)
the bound |h(x)− h(y)| ≤MH(x, y) assumed in the main article. We see that increasing the lag L
reduces the number of applications of the triangle inequality performed above, which explains the
benefits of increasing L.

1.3 Bias of Sequential Monte Carlo samplers

For an SMC sampler [4] with N particles targeting π, let (wn, ξn)Nn=1 be the particle approximation
of π, so that weighted averages

∑N
n=1 w

nh(ξn) are consistent approximations of
∫
h(x)π(dx) as

N →∞ under some assumptions, e.g. [14]. We consider a particle ξ drawn among (ξn)Nn=1 with
probabilities (wn)Nn=1, and we denote by q(N) the marginal distribution of ξ. Our goal is to formulate
an upper bound on the total variation distance between q(N) and π for fixed N , which is a way of
studying the non-asymptotic bias of SMC samplers.
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To use the proposed machinery, we embed the SMC sampler in an MCMC algorithm, following [1].
The particle independent MH (PIMH) algorithm operates as follows. Initially an SMC sampler is
run, from which a particle ξ0 is drawn (marginally from q(N)), as well as a normalizing constant
estimator Ẑ0 [4]. We can think of the state of the chain as the pair (ξ0, Ẑ0). At each iteration t ≥ 1,
a new SMC sampler is run and generates (ξ?, Ẑ?). With probability min(1, Ẑ?/Ẑt−1), the new
state of the chain is set to (ξ?, Ẑ?), otherwise it remains at (ξt−1, Ẑt−1). It is shown in [1] that
this algorithm corresponds to a standard Metropolis–Hastings algorithm with independent proposals
upon introducing some auxiliary variables. Therefore under some conditions, the generated chain
is such that ξt goes to π as t→∞. We assume throughout that our three assumptions hold, which
corresponds to assumptions on the performance of the SMC sampler in the present setting.

Next consider an L-lag coupling of such a PIMH algorithm as proposed in [9] and described in
Algorithm 11. In this setting, we can characterize the distribution of the coupling time. In particular,

τ (L) − (L− 1)
∣∣ẐL−1 ∼ Geometric(α(ẐL−1)), (4)

where the Geometric distribution is parameterized to take integers values greater than or equal to
1, and α(Ẑ) := E

[
min(1, Ẑ?/Ẑ)

∣∣Ẑ] is the acceptance probability of the PIMH chain from a state
with normalizing constant estimate Ẑ. Using a monotonicity property of IMH [3], [9, Proposition
8] presents this result for 1-Lag couplings of PIMH, and (4) is a simple generalization to L-lag
couplings; we refer to [9] for the explicit assumptions being made. Assuming that Theorem 2.5
applies, we consider the initial time t = 0 and obtain

dTV (q(N), π) ≤ E
[⌈τ (L) − L

L

⌉]
= E

[
E
[⌈τ (L) − (L− 1)− 1

L

⌉∣∣∣ẐL−1]]
= E

[ 1− α(ẐL−1)

1− (1− α(ẐL−1))L

]
,

as required. Note that in the first inequality we used the fact that the total variation distance between
some marginals of two multivariate distributions is less than the total variation distance between the
joint distributions. The final equality follows from noting that for G ∼ Geometric(p) and integers
m ≥ 0, n > 0,

E
[⌈G−m

n

⌉]
=

∞∑
k=0

P
(⌈G−m

n

⌉
> k

)
=

∞∑
k=0

P
(G−m

n
> k

)
=

(1− p)m

1− (1− p)n
.

2 Couplings of MCMC algorithms

In this section, all the algorithms used in our examples are presented. These are constructions used
in recent work on unbiased MCMC estimation with couplings, e.g. [7, 6, 9]. All scripts in R are
available at https://github.com/niloyb/LlagCouplings.

We first describe algorithms to sample from maximal couplings. We then describe algorithms to
sample meeting times corresponding to various couplings of MCMC algorithms.

Maximal Couplings. To construct L-lag couplings, the pair of chains needs to meet exactly whilst
preserving their respective marginal distributions. This can be achieved using maximal coupling
[8, 12], which we present below in Algorithm 1. Given variables X ∼ P , Y ∼ Q, Algorithm 1
samples jointly from (X,Y ) such that the marginal distributions of X and Y are preserved and X
equals Y with maximal probability. It requires sampling from the distributions of X and Y and
evaluating the ratio of their probability density functions. Below P and Q denote distributions of X
and Y ; p and q denote the respective probability density functions.

For the particular case when P = N (µ1,Σ), Q = N (µ2,Σ), we can use a reflection-maximal cou-
pling [7, 2] which has deterministic computational cost. This also samples jointly from (X,Y ) such
that the marginal distributions of X,Y are preserved and X equals Y with maximal probability. This
is given in Algorithm 2 below, where s denotes the probability density function of a d-dimensional
standard Normal. Note that in the case Ẏ = Ẋ + z below, we get an event {X = Y } as required.
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Algorithm 1: A maximal coupling of P and Q
Sample X ∼ P , and W ∼ U(0, 1)
if p(X)W ≤ q(X) then set Y = X and return (X,Y )
else sample Y ∗ ∼ q and W ∗ ∼ U(0, 1) until q(Y ∗)W ∗ > p(Y ∗). Set Y = Y ∗ and return (X,Y )

Algorithm 2: A reflection-maximal coupling of N (µ1,Σ) and N (µ2,Σ)

Let z = Σ−1/2(µ1 − µ2) and e = z/‖z‖. Sample Ẋ ∼ N (0d, Id), and W ∼ U(0, 1)

if s(Ẋ)W ≤ s(Ẋ + z) then Set Ẏ = Ẋ + z

else Set Ẏ = Ẋ − 2(eT Ẋ)e

Set X = Σ1/2Ẋ + µ1, Y = Σ1/2Ẏ + µ2, and return (X,Y )

When random variables X,Y have discrete distributions P = (p1, . . . , pN ), Q = (q1, . . . , qN ) on a
finite state space, we can perform a maximal coupling with deterministic computation cost. This is
given in Algorithm 3. First, we define C = (c1, . . . , cN ) as cn = (pn ∧ qn)/S for n ∈ {1, . . . , N}
with S =

∑N
n=1(pn ∧ qn). The notation a ∧ b stands for the minimum of a and b. We then define P ′

and Q′ as p′n = (pn − pn ∧ qn)/(1− S), and q′n = (qn − pn ∧ qn)/(1− S). These P ′ and Q′ are
probability vectors and computing them takes O(N) operations. Note that the total variation distance
between P and Q is equal to 1− S, and that P ′ and Q′ have disjoint supports.

Algorithm 3: A maximal coupling of P = (p1, . . . , pN ), Q = (q1, . . . , qN )

Sample U ∼ U(0, 1)
if U < S then Sample X from C, define Y = X and return (X,Y )
else Sample X from P ′, Y from Q′ independently, and return (X,Y )

2.1 Random walk Metropolis–Hastings

We couple a pair of random walk Metropolis–Hastings chains in Sections 2.2.1 and 2.2.2 using
Algorithm 4 with step sizes σMH = 0.5 and σMH = 1 respectively. We could also modify the
algorithm to use more general proposal kernels q(·, ·), provided that we can sample from a maximal
coupling of q(x, ·) and q(y, ·) for any pair x, y.

Algorithm 4: Gaussian random walk Metropolis–Hastings
Input: lag L ≥ 1, random walk step size σMH

Output: meeting time τ (L); chains (Xt)0≤t≤τ(L) , (Yt)0≤t≤τ(L)−L
Initialize: generate X0 ∼ π0 and Y0 ∼ π0
for t = 1, . . . , L do

Sample proposal X∗ ∼ N (Xt−1, σ
2
MH)

Sample U ∼ U(0, 1)

if U ≤ π(X∗)
π(Xt−1)

, then set Xt = X∗ ; else set Xt = Xt−1

end
for t > L do

Sample proposals X∗ ∼ N (Xt−1, σ
2
MH), Y ∗ ∼ N (Yt−1−L, σ

2
MH) jointly using maximal (or

reflection-maximal) coupling
Sample U ∼ U(0, 1)

if U ≤ π(X∗)
π(Xt−1)

, then set Xt = X∗ ; else set Xt = Xt−1

if U ≤ π(Y ∗)
π(Yt−1−L)

, then set Yt−L = Y ∗ ; else set Yt−L = Yt−1−L

if Xt = Yt−L then return τ (L) := t, and the chains (Xt)0≤t≤τ(L) , (Yt)0≤t≤τ(L)−L
end

4



2.2 MCMC algorithms for the Ising model

Single site Gibbs (SSG). Our implementation of single site Gibbs (SSG) scans all the sites of the
lattice systematically. We recall that the full conditionals of the Gibbs sampling updates are Bernoulli
distributed; we denote by p(β,X−i) the conditional probability of site Xi being equal to +1 given
the other sites. The algorithm to sample meeting times is given in Algorithm 5. The SSG results in
Section 3.1 are generated using Algorithm 5 with β = 0.46.

Algorithm 5: Single Site Gibbs sampler for the Ising model
Input: lag L ≥ 1, and inverse temperature β
Output: meeting time τ (L); chains (Xt)0≤t≤τ(L) , (Yt)0≤t≤τ(L)−L
Initialize: generate X0 ∼ π0 and Y0 ∼ π0
for t = 1, . . . , L do

for site i = 1, . . . , 32× 32 do
Sample Xi,t|X−i,t ∼ Bernoulli(p(β,X−i,t))

end
end
for t > L do

for site i = 1, . . . , 32× 32 do
Sample Xi,t|X−i,t ∼ Bernoulli(p(β,X−i,t)) and
Yi,t−L|Y−i,t−L ∼ Bernoulli(p(β, Y−i,t−L)) jointly using e.g. Algorithm 3

end
if Xt = Yt−L then return τ (L) := t, and the chains (Xt)0≤t≤τ(L) , (Yt)0≤t≤τ(L)−L

end

Parallel tempering (PT). For parallel tempering, we introduce C chains denoted by x(1), . . . ,
x(C). Each chain X(c) targets the distribution πβ(c) where (β(c))Cc=1 are positive values interpreted as
inverse temperatures. In the example in Section 3.1, we have C = 12, β(1) = 0.3, β(C) = 0.46, and
the intermediate β(c) are equispaced. The frequency of proposed swap moves is denoted by ω and set
to 0.02. This is in no way optimal, see [11] for practical tuning strategies. Our implementation of a
coupled PT algorithm is given below in Algorithm 6.

Note that in the case of parallel tempering, meetings occur when all the C pairs of chains have
met. This incurs a trade-off: increasing the number of chains might improve the performance of the
marginal algorithm but could also complicate the occurrence of meetings; see [11] for other trade-offs
associated with the number of chains in parallel tempering.

2.3 Pólya-Gamma Gibbs sampler

Algorithm 7 couples the Pólya-Gamma sampler for Bayesian logistic regression [10], as in Section
3.2 with priorN (b, B) on β for b = 0, B = 10Id. Parameters β, β̃ ∈ Rd,W, W̃ ∈ Rn+ correspond to
the vectors of regression coefficients and auxiliary variables respectively for the pair of chains. The
vector ỹ is defined as ỹ = y − 1/2, where y is the vector of responses y ∈ {0, 1}n.

In the algorithm, PG(1, c) refers to the Pólya-Gamma variable in the notation of [10]. The notation
X|rest refers to the conditional distribution of X given all the other variables. The tilde notation
refers to components of the second chain. The coupling here was also used in [7].

2.4 Hamiltonian Monte Carlo

Algorithm 8 couples Hamiltonian Monte Carlo (HMC), as used in Section 3.2. We follow the
coupling construction from [6]; see also references therein. For simplified notation, we will use
Kp(β, · ; εHMC, SHMC) to denote the leapfrog integration and the accept-reject part of HMC from
position β ∈ Rd with momentum p ∈ Rd. Here εHMC and SHMC correspond to the step size and the
number of steps respectively in the leapfrog integration scheme.
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Algorithm 6: Parallel tempering for the Ising model

Input: lag L ≥ 1, and inverse temperatures (β(c))Cc=1

Output: meeting time τ (L), chains (X
(c)
t )0≤t≤τ(L) , (Y

(c)
t )0≤t≤τ(L)−L for c = 1, . . . , C

Initialize: generate X(c)
0 ∼ π0 and Y (c)

0 ∼ π0 for each chain c = 1, . . . , C
for t = 1, . . . , L do

Sample U ∼ U(0, 1)
if U < ω then

Define X(c)
t = X

(c)
t−1 for all c = 1, . . . , C

for c = 1, . . . , C − 1 do

Swap chain states X(c)
t , X

(c+1)
t with probability min

(
1,

π
β(c)

(X
(c+1)
t )π

β(c+1) (X
(c)
t )

π
β(c)

(X
(c)
t )π

β(c+1) (X
(c+1)
t )

)
end

else
for c = 1, . . . , C do

Update X(c)
t ∼ SSG(X

(c)
t−1;β(c))

end
end

end
for t > L do

Sample U ∼ U(0, 1)
if U < ω then

Define X(c)
t = X

(c)
t−1 and Y (c)

t−L = Y
(c)
t−L−1 for all c

for c = 1, . . . , C − 1 do
Sample U (c) ∼ U(0, 1)

if U (c) ≤
π
β(c)

(X
(c+1)
t )π

β(c+1) (X
(c)
t )

π
β(c)

(X
(c)
t )π

β(c+1) (X
(c+1)
t )

, swap chain states X(c)
t , X

(c+1)
t

if U (c) ≤
π
β(c)

(Y
(c+1)
t−L )π

β(c+1) (Y
(c)
t−L)

π
β(c)

(Y
(c)
t−L)πβ(c+1) (X

(c+1)
t−L )

, swap chain states Y (c)
t−L, Y

(c+1)
t−L

end
else

for c = 1, . . . , C do
Update X(c)

t ∼ SSG(X
(c)
t−1;β(c)) and Y (c)

t−L ∼ SSG(Y
(c)
t−L−1;β(c))

jointly using coupled SSG (see Algorithm 5)
end

end
if X(c)

t = Y
(c)
t−L for c = 1, . . . , C then

return τ (L) := t, and the chains (X
(c)
t )0≤t≤τ(L) , (Y

(c)
t )0≤t≤τ(L)−L for all c.

end
end

We write K̄RWMH((β, β̃), · ; σMH) to denote the kernel of the coupled random walk Metropolis–
Hastings algorithm (Algorithm 4) with step size σMH. Mixture parameter γ corresponds to the proba-
bility of selecting kernel K̄RWMH((β, β̃), · ; σMH) from a mixture of the kernelsKp(β, · ; εHMC, SHMC)

and K̄RWMH((β, β̃), · ; σMH). The HMC results in Section 3.2 are generated using Algorithm 8 with
εHMC = 0.025, SHMC = 4, 5, 6, 7, γ = 0.05 and σMH = 0.001.

Note that reflection-maximal coupling can also be used to draw the momenta in coupled Hamiltonian
Monte Carlo, as discussed in [2, 6].
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Algorithm 7: Pólya-Gamma Gibbs Coupling

Input: lag L ≥ 1, response y ∈ {0, 1}n and design matrix X ∈ Rn×d

Output: meeting time τ (L); chains (βt)0≤t≤τ(L) , (β̃t)0≤t≤τ(L)−L
Initialize: generate β0 ∼ π0 and β̃0 ∼ π0
for t = 1, . . . , L do

Sample Wt,i|rest ∼ PG(1, |xTi βt−1|) for i = 1, . . . , n

Sample βt|rest ∼ N (Σ(Wt)(X
T ỹ +B−1b),Σ(Wt)) for

Σ(Wt) = (XT diag(Wt)X +B−1)−1

end
for t > L do

Sample Wt,i|rest and W̃t−L,i| ˜rest, jointly using maximal couplings of PG(1, |xTi βt−1|) and
PG(1, |xTi β̃t−L−1|), for i = 1, . . . , n, by noting that the ratio of density functions of two
Pólya-Gamma random variables is tractable:

∀x > 0,
PG(x; 1, c1)

PG(x; 1, c2)
=

cosh(c2/2)

cosh(c1/2)
exp

(
−
(c22

2
− c21

2

)
x
)

Sample βt|rest and β̃t−L| ˜rest from a maximal coupling of

N (Σ(Wt)(X
T ỹ +B−1b),Σ(Wt)) and N (Σ(W̃t−L)(XT ỹ +B−1b),Σ(W̃t−L))

if βt = β̃t−L then return τ (L) := t, and the chains (βt)0≤t≤τ(L) , (β̃t)0≤t≤τ(L)−L.
end

Algorithm 8: Hamiltonian Monte Carlo
Input: lag L ≥ 1, mixture parameter γ ∈ (0, 1), and random walk step size σMH

Output: meeting time τ (L); chains (βt)0≤t≤τ(L) , (β̃t)0≤t≤τ(L)−L
Initialize: generate β0 ∼ π0 and β̃0 ∼ π0
for t = 1, . . . , L do

Sample momentum p∗ ∼ N (0d, Id) and sample βt ∼ Kp∗(βt−1, · ; εHMC, SHMC)
end
for t > L do

Sample U ∼ U(0, 1)
if U ≤ γ then

Sample βt, β̃t−L ∼ K̄RWMH((βt−1, β̃t−L−1), · ; σMH) using Algorithm 4
else

Sample common momentum p∗ ∼ N (0d, Id)
Sample βt ∼ Kp∗(βt−1, · ; εHMC, SHMC) and β̃t−L ∼ Kp∗(β̃t−1−L, · ; εHMC, SHMC)

end

if βt = β̃t−L then return τ (L) := t, and the chains (βt,Wt)0≤t≤τ(L) , (β̃t, W̃t)0≤t≤τ(L)−L
end

2.5 Metropolis–adjusted Langevin Algorithm

The Metropolis–adjusted Langevin Algorithm (MALA) can be coupled as in random walk Metropolis–
Hastings, as it corresponds to a particular choice of proposal distribution. For simplicity of
notation we use qσ(X, ·) ∼ N (X + 1

2σ
2∇ log π(X), σ2Id) to denote the Langevin proposal.

The MALA results in Section 3.3 are generated using Algorithm 9 with σ = d−1/6 for d =
50, 100, 200, 300, 400, 500, 600, 800, 1000.

7



Algorithm 9: MALA
Input: lag L ≥ 1, random walk step size σ
Output: meeting time τ (L); chains (Xt)0≤t≤τ(L) , (Yt)0≤t≤τ(L)−L
Initialize: generate X0 ∼ π0 and Y0 ∼ π0
for t = 1, . . . , L do

Sample proposal X∗ ∼ qσ(Xt−1, ·)
Sample U ∼ U(0, 1)

if U ≤ π(X∗)qσ(X
∗,Xt−1)

π(Xt−1)qσ(Xt−1,X∗)
, then set Xt = X∗ ; else set Xt = Xt−1

end
for t > L do

Sample proposals X∗ ∼ qσ(Xt−1, ·), Y ∗ ∼ qσ(Yt−1−L, ·) jointly via reflection-maximal
coupling of Algorithm 2

Sample U ∼ U(0, 1)

if U ≤ π(X∗)qσ(X
∗,Xt−1)

π(Xt−1)qσ(Xt−1,X∗)
, then set Xt = X∗ ; else set Xt = Xt−1

if U ≤ π(Y ∗)qσ(Y
∗,Yt−1−L)

π(Yt−1−L)qσ(Yt−1−L,Y ∗)
, then set Yt−L = Y ∗ ; else set Yt−L = Yt−1−L

if Xt = Yt−L then return τ (L) := t, and the chains (Xt)0≤t≤τ(L) , (Yt)0≤t≤τ(L)−L
end

2.6 Unadjusted Langevin Algorithm

Unadjusted Langevin proceeds as MALA but without the MH acceptance step. Thus an algorithm
to sample meeting times for coupled ULA chains follows from the algorithm described for coupled
MALA algorithm, simply by removing the acceptance steps. As before, we use qσ(X, ·) ∼ N (X +
1
2σ

2∇ log π(X), σ2Id) to denote the Langevin proposal. The ULA results in Section 3.3 are generated
using Algorithm 10 with σ = 0.1d−1/6 for d = 50, 100, 200, 300, 400, 500, 600, 800, 1000.

Algorithm 10: ULA
Input: lag L ≥ 1, random walk step size σ
Output: meeting time τ (L); chains (Xt)0≤t≤τ(L) , (Yt)0≤t≤τ(L)−L
Initialize: generate X0 ∼ π0 and Y0 ∼ π0
for t = 1, . . . , L do

Sample Xt ∼ qσ(Xt−1, ·)
end
for t > L do

Sample Xt ∼ qσ(Xt−1, ·), Yt−L ∼ qσ(Yt−1−L, ·) jointly via reflection-maximal coupling of
Algorithm 2

if Xt = Yt−L then return τ (L) := t, and the chains (Xt)0≤t≤τ(L) , (Yt)0≤t≤τ(L)−L
end

2.7 Particle independent Metropolis–Hastings

By construction, τ (L) > L almost surely for all the above couplings. Here we describe a version of
coupled particle independent Metropolis–Hastings (PIMH) which allows coupling at the first step,
such that τ (L) = L can occur with positive probability. This coupling was introduced in [9].
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Algorithm 11: Particle independent Metropolis–Hastings
Input: lag L ≥ 1, and SMC sampler targeting π
Output: meeting time τ (L); chains (ξt, Zt)0≤t≤τ(L) , (ξ̃t, Z̃t)0≤t≤τ(L)−L where Zt, Z̃t are unbiased
estimates of the normalizing constant of π

Initialize: Sample ξ0, Z0 from the SMC sampler
for t = 1, . . . , (L− 1) do

Sample proposal ξ∗, Z∗ from the SMC sampler
Sample U ∼ U(0, 1)

if U ≤ Z∗

Zt−1
, then set ξt = ξ∗, Zt = Z∗ ; else set ξt = ξt−1, Zt = Zt−1

end
for t = L do

Sample proposal ξ∗, Z∗ from the SMC sampler
Sample U ∼ U(0, 1)

if U ≤ Z∗

ZL−1
, then set ξL = ξ∗, ZL = Z∗ ; else set ξL = ξL−1, ZL = ZL−1

Set ξ̃0 = ξ∗, Z̃0 = Z∗

end
for t > L do

Sample proposal ξ∗, Z∗ from the SMC sampler
Sample U ∼ U(0, 1)

if U ≤ Z∗

Zt−1
, then set ξt = ξ∗, Zt = Z∗ ; else set ξt = ξt−1, Zt = Zt−1

if U ≤ Z∗

Z̃t−L−1
, then set ξ̃t−L = ξ∗, Z̃t−L = Z∗ ; else set ξ̃t−L = ξ̃t−L−1, Z̃t−L = Z̃t−L−1

if ξt = ξ̃t−L, Zt = Z̃t−L then
return τ (L) := t, and the chains (ξt, Zt)0≤t≤τ(L) , (ξ̃t, Z̃t)0≤t≤τ(L)−L.

end
end
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