
A Motivational Examples

A.1 ADAPTIVE-SAMPLING does not work for weakly submodular functions

To demonstrate why adding sets at each iteration can perform badly compared to adding single
elements, we construct a weakly submodular function where greedy can achieve the optimal value
and the performance of adding sets of elements to the solution set can be poor. The construction is a
slight variant of the one in [EDFK17].

We have a ground set consisting of two types of elements, N = {U, V }, where U = {ui}ki=1 and
V = {vi}ki=1. For every subset S ✓ N , u(S) = |S \ U | and v(S) = |S \ V |. Now, we define the
following set function

f(S) = min{2 · u(S) + 1, 2 · v(S)}, 8S ✓ N.

For cardinality constraint k, we can see that the optimal solution is k.
Lemma 11. f is nonnegative, monotone and 0.5-weakly submodular [EDFK17].

For simplicity, assume the number of rounds r = 1. We now show why ADAPTIVE SAMPLING
performs poorly. In the first step, ADAPTIVE SAMPLING will filter out elements with low marginal
contributions. Since f(ui) = 0 and f(vi) = 1 for all i, by standard concentration bounds, elements
of U will be filtered out and only elements in V will remain. Now, the algorithm attempts to add a
set of k elements into the solution set. Since all subsets of V have a value of 1, the algorithm can
only achieve a value of 1 even when the optimal value is k. As k increases, this algorithm performs
arbitrarily poorly.

A.2 Existing adaptive algorithms fail for differentially submodular functions

ADAPTIVE-SAMPLING [BRS19a] for submodular functions does not guarantee termination for
differentially submodular functions. The filtering step that removes elements with low individual
marginal contribution does not guarantee the marginal contribution of the set of “good” elements is
larger than the threshold value as in the submodular case. For differentially submodular functions,
the algorithm may result in an infinite while loop, where “bad” elements are filtered out, but no
combination of remaining elements adds sufficient value to the solution set. We show two examples.

We use the construction defined in the previous section f(S) = min{2 · u(S) + 1, 2 · v(S)}. While
f(S) is weakly submodular, we note that it is not differentially submodular. Consider the case where
S = {u1} and A = {vi}ni=1, then

P
a2A fS(a) = n, but fS(A) = 1. However, we can show a

modified function is differentially submodular on small set sizes, which is sufficient for our example.
Let f 0

(S) = f(S) where |S|  2, then f 0 is 0.25-differentially submodular. This construction
demonstrates a simple case of how adaptive sampling on submodular functions fails for differentially
submodular functions.
Lemma 12. f 0 is 0.25-differentially submodular.

Proof. We can use the lower bound from weak submodularity of f from Lemma 11, which holds for
f 0: X

a2A

f 0
S(a) � 0.5 · f 0

S(A)

With our modification, we can now lower bound by marginal contributions:

f 0
S(A) � 1

|A\S| ·
X

a2A

f 0
S(a) � 0.5 ·

X

a2A

f 0
S(a)

which shows that f 0 is 0.25-differentially submodular.

We now show that ADAPTIVE-SAMPLING does not guarantee termination for differentially submodu-
lar functions.
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For simplicity, let ✏ = 0. We wish to select k elements to achieve the optimal solution of k by adding
2 elements at a time to the solution set using ADAPTIVE-SAMPLING on f 0

(S). We note that DASH
reduces to ADAPTIVE-SAMPLING when ↵ = 1.

To survive the filtering step, each element must have a marginal contribution of 1. Since f 0
(vi) = 1

and f 0
(ui) = 0 for all i, only elements in V are labeled as “good” by the algorithm. The elements in

U are filtered out. Then the algorithm attempts to add 2 elements from V into the solution set and
expects that the marginal contribution of the set has value 2 for termination (for ↵ = 1). However,
this is not the case, as f 0

(vi [ vj) = 1 and ADAPTIVE-SAMPLING enters an infinite while loop by
failing to find a set with large enough marginal contribution.

However, DASH will terminate. By adding a factor of ↵2 to lower the threshold, DASH accepts the
set of 2 elements in V and successfully adds these 2 elements into the solution set. The algorithm
leverages the fact that differential submodularity both lower bounds the elements that are added into
the set and upper bounds the values of elements that are filtered out.

In another more concrete example, we show that after individual elements are filtered out, there is no
set of elements that will pass the ADAPTIVE-SAMPLING threshold to be added into the solution set.
This results in an infinite while loop.

Consider the following variables in the context of the R2, goodness-of-fit objective (See Appendix F
for more details):

y = [

1 0 0 0

]

>

x1 = [

0 1 0 0

]

>

x2 = [

0 0 1 0

]

>

x3 = [

0 0 0 1

]

>

x4 =

hq
1
2

q
1
2 0 0

i>

x5 =

hq
1
2 0

q
1
2 0

i>

x6 =

hq
1
2 0 0

q
1
2

i>

We wish to choose two features xi that best estimate y (and maximize R2). We can see that the
optimal solution of R2

= 1 is achieved by three different 2-subsets: (x1,x4), (x2,x5), (x3,x6). For
x1,x2,x3, the marginal contribution is R2

= 0. For x4,x5,x6, R2
=

1
2 .

For simplicity, let ✏ = 0, r = 1 and f(O) = 1. ADAPTIVE-SAMPLING will first filter out x1,x2,x3

because the marginal contribution is less than 1
2 . Then it will attempt to select 2 elements from

x4,x5,x6 to comprise the solution set. The while loop will only terminate once it finds a 2-subset
where the marginal contribution is larger or equal to 1. However, due to the non-submodular properties
of the objective, even though the bad elements were filtered out, the marginal contribution of any
2-subset from x4,x5,x6 does not achieve the necessary threshold value. The R2 of any 2-subset
from x4,x5,x6 is 2

3 . As an example, let us calculate the marginal contribution of x4 and x5.

R2
4,5 = (y

>
X4,5)(X

>
4,5X4,5)

�1
(X

>
4,5y)

=

4

3

hq
1
2

q
1
2

i 
1 � 1

2� 1
2 1

�2

4

q
1
2q
1
2

3

5
=

2

3

< 1

Thus, ADAPTIVE-SAMPLING will enter an infinite while loop and never terminate.

We note that greedy achieves the optimal solution by first selecting a feature from x4,x5,x6 in the
first iteration and then selecting the second feature from x1,x2,x3.
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B Notions of Approximate Submodularity

In this section, we discuss related work on notions of non-submodularity and their theoretical
guarantees on choosing a set of size k to comprise the solution set. Our definition differs from
these notions in three aspects and allows for parallelization. Specifically, 1) we bound the marginal
contribution of the objective function f and not just the function value and 2) we consider the
marginal contribution of sets of elements instead of a singleton and 3) we allow the flexibility of
being bound by two different submodular functions. These alterations are necessary for the proof of
our low-adaptivity algorithm.

Krause et al. [KC10] define approximate submodularity with parameter ✏ � 0 as functions that
satisfy an additive approximate diminishing returns property, i.e. 8S ✓ T ✓ N\a it holds that
fS(a) � fT (a) � ✏. SDSMA applied to functions with this additive property inherits an additive
guarantee of f(S) � (1� 1/e)f(O)� k✏.

Das and Kempe [DK11] define the submodularity ratio with parameter � � 0 to quantify how
close a function is to submodularity, where � = minS,A

P
a2A

f
S

(a)

f
S

(A) . Elenberg et al. [EKD+18]
extend their work and lower bound the submodularity ratio using strong concavity and smoothness
parameters for generalized linear models. SDSMA applied to functions with this property inherits
a guarantee of f(S) � (1 � 1/e�)f(O). Because � is difficult to compute on a real dataset
(only possible using brute force), Bian et al. [BBKT17] introduce the Greedy submodularity ratio
�G

= minA:|A|=k,St

P
a2A

f
S

t

(a)

f
S

t

(A) , where St is the set chosen by the greedy algorithm at step t.

For multiplicative bounds, Horel et al. [HS16] define ✏-approximately submodular functions where
f is approximately submodular if there exists a submodular function g s.t. (1� ✏)g(S)  f(S) 
(1 + ✏)g(S), 8S ✓ N . In this definition, the function is approximated pointwise by a submodular
function, not its marginals as in differential submodularity. Gupta et al. [GPB18] define a similar
property on the marginals of the function where f is �-approximately submodular if there exists a
submodular function g s.t. (1 � �)gS(a)  fS(a)  (1 + �)gS(a), 8S ✓ N, a /2 S. Differential
submodularity generalizes this definition so that the functions that bound the objective can differ.
This is necessary in cases where the objective function contains a diversity factor.

C Relationship to PRAM

The PRAM model is a generalization of the RAM model with parallelization. It represents an
idealized model that can execute instructions in parallel with any number of processors in a shared
memory machine. In this framework, the notion of depth is closely related to the one of adaptivity
that we discuss in this paper. The depth of a PRAM model is the number of parallel steps in an
algorithm or the longest chain of dependencies. The area of designing low-depth algorithms have
been extensively studied. Our results extend to the PRAM model, similarly to the results of the
original adaptive sampling algorithm for submodular maximization. For more detail, please see
Appendix A.2.2 of [BS18b].

D Bayesian Experimental Design Details

In Bayesian experimental design, we would like to select a set of experiments to optimize some
statistical criterion. Specifically, the Bayesian A-optimality criterion is used to maximally reduce the
variance in the posterior distribution over the parameters.

More formally, let n experimental stimuli comprise the matrix X 2 Rd⇥n, where each experimental
stimuli xi 2 Rd is a column in X. We can select a set S ✓ N of stimuli and denote this as
XS 2 Rd⇥|S|. Let ✓ 2 Rd be the parameter vector in the linear model yS = X

T
S✓ + w, where

w ⇠ N (0,�2
I) is noise from a Gaussian distribution, yS is the vector of dependent variables, and

✓ ⇠ N (0,⇤�1
),⇤ = �2

I is the prior that takes the form of an isotropic Gaussian. Then,


yS

✓

�
⇠ N (0,⌃),⌃ =


�2

I+X

T
S⇤

�1
XS X

T
S⇤

�1

⇤

�1
XS ⇤

�1

�

which implies ⌃✓|y
S

= (⇤+ ��2
XSX

T
S )

�1.
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Now, we can define our A-optimality objective as

fA-opt(S) = Tr(⌃✓)� Tr(⌃✓|y
s

= Tr(⇤

�1
)� Tr((⇤+ ��2

XSX
T
S )

�1
) (4)

To regularize for diverse experiments, we can formulate the problem as follows

max

S:|S|k
fA-div(S) = fA-opt(S) + d(S),

where d : 2

N ! R+ is a “diverse" submodular function promoting regularization.

Krause et al. [KSG08] has shown that the Bayesian A-optimality objective is not submodular and
Bian et al. [BBKT17] has shown that submodularity ratio of the objective can be lower bounded.
With the traditional greedy algorithm, we get a 1 � 1/e� approximation guarantee, where � �

�2

kXk2(�2+��2kXk2) [BBKT17].

E Missing Proofs from Section 3

E.1 Proof of Corollary 7

Proof. In the case where there is no diversity regularization term, the concavity and smoothness
parameters correspond to the sparse eigenvalues of the covariance matrix, i.e., mk = �min(k) and
Mk = �max(k) [EKD+18].

Thus, by Theorem 6, we can also write the bounds for fS(A) in terms of eigenvalues �
min

(s)
�
max

(t)
˜fS(A) 

fS(A)  �
max

(s)
�
min

(t)
˜fS(A), where ˜fS(A) =

P
a2A fS(a). With gS(A) =

�
min

(s)
�
max

(t)
˜fS(A) and hS(A) =

�
max

(s)
�
min

(t)
˜fS(A), we get that that the objective is a ( �min

(t)
�
max

(t) )
2-differentially submodular function. Since

2k � t, we get the desired result.

In the case where there is a diversity regularization term in the objective fdiv(S) = `reg(w
(S)

)+d(S),
we have

�min(s)

�max(t)
˜fS(A) + dS(A)  (fdiv)S(A)  �max(s)

�min(t)
˜fS(A) + dS(A).

With gS(A) =

�
min

(s)
�
max

(t)
˜fS(A) + dS(A) and hS(A) =

�
max

(s)
�
min

(t)
˜fS(A) + dS(A), we get that

gS(A)/hS(A) � �
min

(s)�
min

(t)
�
max

(s)�
max

(t) � (

�
min

(t)
�
max

(t) )
2 since dS(A) � 0. Since 2k � t, this concludes

the proof.

Remark 13. Since �max(s) = 1, the upper bound of �
max

(s)
�
min

(t)
˜fS(A)  fS(A) is consistent with the

result in Lemma 2.4 from Das and Kempe [DK11] that shows that the weak submodularity ratio can
be lower bounded by �min.

E.2 Proof of Corollary 8

Proof. The first portion of the proof relies on the result from Elenberg et al. [EKD+18]. In general,
log-likelihood functions of generalized linear models (GLMs) are not RSC/RSM, but their result
shows that log-likelihood objectives are RSC/RSM with parameters m and M under mild conditions
of the feature matrix.

Our result follows directly from Theorem 6. The case where there is a diversity regularization term
then follows similarly as for Corollary 7.

E.3 Proof of Corollary 9

Proof. In the case where there is no diversity regularization term, we can upper bound the submodu-
larity ratio to prove differential submodularity.
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We first lower bound the marginal contribution of a set A to S, (fA-opt)S(A) and then upper bound
the marginal contribution of one element a to the set S, (fA-opt)S(a).

fS(A) =

dX

i=1

1

�2
+ ��2�2

i (XS)
�

dX

j=1

1

�2
+ ��2�2

i (XS[A)

=

dX

i=1

��2
[�2

i (XS[A)� �2
i (XS)]

(�2
+ ��2�2

i (XS))(�2
+ ��2�2

i (XS[A))

� (�2
+ ��2�2

max(X))

�2
dX

i=1

��2
[�2

i (XS[A)� �2
i (XS)]

= (�2
+ ��2kXk2)�2

dX

i=1

��2
[�i(XS[AX

T
S[A)� �i(XSX

T
S )]

= (�2
+ ��2kXk2)�2��2

[Tr(XS[AX
T
S[A)� Tr(XSX

T
S )]

= (�2
+ ��2kXk2)�2��2

[Tr(XSX
T
S +XAX

T
A)� Tr(XSX

T
S )]

= (�2
+ ��2kXk2)�2��2

Tr(XAX
T
A)

= (�2
+ ��2kXk2)�2

X

a2A

��2
Tr(xax

T
a )

= (�2
+ ��2kXk2)�2

X

a2A

kxak2

= ��2
(�2

+ ��2kXk2)�2|A| (5)

X

a2A

fS(a) =

X

a2A

dX

i=1

1

�2
+ ��2�2

i (XS)
�

dX

j=1

1

�2
+ ��2�2

i (XS[a)


X

a2A

1

�2
+ ��2�2

d(XS)
� 1

�2
+ ��2�2

1(XS[a)


X

a2A

1

�2
� 1

�2
+ ��2�2

1(XS[a)

=

X

a2A

��2�2
1(XS[a)

�2
(�2

+ ��2�2
1(XS[a))

= |A| ��2kXk2
�2

(�2
+ ��2kXk2) (6)

Combining (5) and (6), yields

P
a2A fS(a)

fS(A)


|A| ��2kXk2

�2(�2+��2kXk2)

��2
(�2

+ ��2kXk2)�2|A| =
kXk2(�2

+ ��2kXk2)
�2

.

Bian et al. [BBKT17] showed that the submodularity ratio can be lower bounded by
�2

kXk2(�2+��2kXk2) .

With gS(A) =

�2

kXk2(�2+��2kXk2)
˜fS(A) and hS(A) =

kXk2(�2+��2kXk2)
�2

˜fS(A), we get that that

the objective is a �2-differentially submodular function where � =

�2

kXk2(�2+��2kXk2) .

In the case where there is a diversity regularization term in the objective, we can follow similar
reasoning from Corollary 7 to conclude the proof.
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F Extension to R2 Objective

F.1 Goodness of Fit

We introduce the formal definition of the R2 objective function, which is widely used to measure
goodness of fit in statistical applications.
Definition 14. [JW04] Let S ✓ N be a set of variables XS and a linear predictor ˆ

y =

P
i2S �iXi

of y, the squared multiple correlation is defined as

R2
(S) =

Var(y)� E[(y � ˆ

y)

2
]

Var(y)

where �i = (CS)
�1

bS for i 2 S.

We assume that the predictor random variables are normalized to have mean 0 and variance 1, so we
can simplify the definition above to R2

(S) = 1� E[(y � ˆ

y)

2
]. Thus, we can rephrase the definition

as R2
(S) = b

T
S (CS)

�1
bS . [JW04].

F.2 Feature Selection

Objective. For a response variable y 2 Rd, the objective is the maximization of the R2 goodness of
fit for y given the feature set S:

f(S) = R2
(S) = b

T
S (CS)

�1
bS

where b corresponds to the covariance between y and the predictors.

To define the marginal contribution of a set A to the set S of the R2 objective function, we can write
R2

S(A) = (b

S
A)

T
(C

S
A)

�1
b

S
A, where b

S is the covariance vector corresponding to the residuals of
i 2 A to S, i.e. {Res(x1,XS),Res(x2,XS), . . . ,Res(xn,XS)} and C

S
A is the covariance matrix

corresponding to the residuals. The marginal contribution of an element is R2
S(a) = (b

S
a )

T
b

S
a .

Lemma 15. The feature selection objective defined by f(S) = R2
(S) is a �

min

(CS

A

)
�
max

(CS

A

)
-differentially

submodular function such that for all S,A ✓ N ,

gS(A) =

1

�max(C
S
A)

˜fS(A)  fS(A)  1

�min(C
S
A)

˜fS(A) = hS(A),

where ˜fS(A) =

P
a2A fS(a).

Proof. The marginal contribution of set A to set S of the feature selection objective function is
defined as R2

S(A) = (b

S
A)

T
(C

S
A)

�1
b

S
A. Because we know that (CS

A)
�1 is a symmetric matrix, we

can upper and lower bound the marginals using the eigenvalues of (CS
A)

�1.

1

�max(C
S
A)

X

a2A

fS(a) =

1

�max(C
S
A)

(b

S
A)

T
b

S
A

= �min((C
S
A)

�1
)(b

S
A)

T
b

S
A

 (b

S
A)

T
(C

S
A)

�1
b

S
A

= fS(A)

 �max((C
S
A)

�1
)(b

S
A)

T
b

S
A

 1

�min(C
S
A)

(b

S
A)

T
b

S
A

=

1

�min(C
S
A)

X

a2A

fS(a)

By letting ˜fS(A) =

P
a2A fS(a), we complete the proof and show that the marginals can be bounded

by modular functions.
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Remark 16. This is a more general form of Lemma 3.3 from Das and Kempe [DK11]. Our result is
on the marginals of f and reduces to their result for S = ;.

Remark 17. If �min = �max, the matrix has one eigenvalue of multiplicity greater than 1 and
the covariance matrix is a multiple of the identity matrix. This implies the set of predictors is
uncorrelated and that the objective function for feature selection is submodular. Otherwise, we have
↵ =

�
min

�
max

< 1.

G Additional Algorithm Detail

We briefly discuss how to estimate the expectations that appear in the algorithm. We also discuss how
to estimate OPT and differential submodularity parameter ↵. For the full algorithm and details, see
Appendix A.C.2 in [BS18b].

Since we do not know the value of ER⇠U(X)[fS(R)], we can estimate it with m samples. We
first randomly select sets uniformly R1, R2, ...Rm ⇠ U(X) and compute fS(Ri). Then we can
average these calculations to estimate the expected marginal contribution. Balkanski et al. discuss
the number of samples needed to bound the error of these estimates [BS18b]. Specifically, with
m =

1
2 (

OPT
✏ )

2
log(

2
� ), then with probability at least 1� �,
�����

 
1

m

mX

i=1

f(S [Ri)� f(S)

!
� ER⇠U(X)[fS(R)]

�����  ✏

.

Similarly, let m =

1
2 (

OPT
✏ )

2
log(

2
� ), then for all S ✓ N and a 2 N , with probability at least 1 � �

over samples R1, ..., Rm,
�����

 
1

m

mX

i=1

f(S [Ri [ {a})� f(S [Ri\{a})
!

� ER⇠U(X)[fS[R\{a}(a)]

�����  ✏.

Thus, for m = n( OPT✏ )

2
log(

2n
� ) total samples in one round, we can get ✏-estimates for marginal

contributions. For proof details, see Lemma 6 in [BS18b]. We note that in practice, we observe
comparable terminal values compared to the greedy algorithm even with much fewer number of
samples.

To estimate OPT, we can “guess” the value of OPT and run several of these guesses in parallel. One
can set OPT 2 {(1 + ✏)i maxa2N f(a) : i 2

h
ln(n)

✏

i
}. One such value i is guaranteed to be a

(1� ✏)-approximation to OPT [BS18b]. Similarly for the differential submodularity parameter ↵, we
can guess values so that ↵ 2 {(1 + ✏)i : i 2

h
ln(n)

✏

i
} and run these guesses in parallel. In practice,

we found that the algorithm performance was not very sensitive to parameter estimates and we could
observe comparable terminal value without much parameter tuning.

H Proof of Theorem 10 for DASH

We first prove several lemmas before proving the theorem.

H.1 Proofs of Lemmas Leading to Theorem 10

We first begin by proving the following lemma to bound the marginal contribution of the optimal set
to the solution set.
Lemma 18. Let Ri ⇠ U(X) be the random set at iteration i of DASH(N,S, r, �). For all S ✓ N
and r, ⇢ > 0, if the algorithm has not terminated after ⇢ iterations, then

ER
i

[fS[([⇢

i=1Ri

)(O)] � (1� ⇢

r
)(f(O)� f(S)) (7)

Using Lemma 18, we can complete the proof for Lemma 19.
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Proof.

ER
i

[fS[([⇢

i=1Ri

)(O)] = ER
i

[fS(O [ ([⇢
i=1Ri))]� ER

i

[fS([⇢
i=1Ri)]

� f(O)� f(S)� 1

↵

⇢X

i=1

ER
i

[fS(Ri)]

� f(O)� f(S)� 1

↵
↵⇢(

1� ✏

r
(f(O)� f(S))

� (1� ⇢

r
)(f(O)� f(S))

where the first inequality follows from monotonicity and differential submodularity and the second
inequality follows from the while loop in DASH.

Lemma 19. For each iteration of DASH and for all S ✓ N and ✏ > 0, if r � 20⇢✏�1 then the
marginal contribution of the elements of X⇢ that survive ⇢ iterations satisfy

fS(X⇢) � ↵2

r
(1� ✏)(f(O)� f(S))

Proof. We want to show a bound on the marginal contribution of the elements that survive ⇢ iterations
of the algorithm. To prevent the propagation of the ↵ factor, we upper and lower bound f by two
submodular functions h and g for our analysis, excluding the queries made by the algorithm.

Let O = {o1, . . . , ok} be the optimal solutions of f and Ol = {o1, . . . , ol} be a subset of the optimal
elements in some arbitrary order. However, we define the thresholds in terms of submodular function
h. Then we define

�l := ER
i

[hS[O
l�1[([⇢

i=1Ri

\{o
l

}(ol)] (8)

� :=

1

k
ER

i

[hS[([⇢

i=1Ri

)(O)] (9)

Let r � 20⇢
✏ . Let T be the set of elements surviving ⇢ iterations in O, T ✓ X⇢, T ✓ O, where

T = {ol|�l � (1� ✏

4

)�} (10)

For ol 2 T and using differential submodularity properties,
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which shows that elements in T survive the elimination process (as they are not filtered out from set
X in the algorithm definition).

Now we complete the proof by showing fS(T ) is bounded by ↵2

r (1 � ✏)(f(O) � f(S)) which
effectively terminates the algorithm.

Similar to the result in Lemma 2 of Balkanski et al. [BRS19a], from properties of submodularity of g
and h, we have
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By submodularity,
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where the second and third inequalities follow from properties of submodularity. Finally,
fS(X⇢) � fS(T ) monotonicity
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We now present a lemma for the termination of the algorithm in O(log n) rounds.
Lemma 20. Let Xi and Xi+1 be the sets of surviving elements at the start and end of iteration i
of the while loop of DASH. For all S ✓ N and r, i, ✏ > 0, if the algorithm does not terminate at
iteration i, then

|Xi+1| < |Xi|
1 + ✏/2

Proof. We consider Ri \Xi+1 to bound the number of surviving elements in Xi+1. To prevent the
propagation of the ↵ factor, we can bound the function f by its submodular bounds.
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where the first and fourth inequalities are due to differential submodularity.

Since the elements are discarded from the while loop of the algorithm, we can bound E[fS(Ri \
Xi+1)] using monotonicity so that

E[fS(Ri \Xi+1)]  E[fS(Ri)] < ↵2
(1� ✏)(f(O)� f(S))/r. (14)

Combining (13) and (14) yields
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1
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E[fS(Ri)] � |Xi+1|

r|Xi| (1 + ✏/2)(1� ✏)(f(O)� f(S))

We can conclude that |Xi+1| < |Xi|/(1 + ✏/2) by simplifying that above inequality.

Lemma 21. For all S ✓ N , if r � 20✏�1
log(1+✏/2)(n) then DASH(N,S, r, �) terminates after at

most O(log n) rounds.

Proof. If the algorithm has not terminated after log1+✏/2(n) rounds, then, by Lemma 21, at most k/r
elements survived ⇢ = log1+✏/2(n) iterations. By Lemma 19, the set of surviving elements satisfies
fS(X⇢) � ↵2

r (1� ✏)(f(O)� f(S)). Since there are only k/r surviving elements, R = X⇢ and

fS(R) = fS(X⇢) � ↵2

r
(1� ✏)(f(O)� f(S))

H.2 Proof of Theorem 10

Proof. We prove the theorem by induction. From Lemma 21, we know
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r
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By subtracting f(O), this is equivalent to
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By induction and rearranging, we have
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By setting i = r and rearranging, we have
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I Additional Detail for Experiments

I.1 Experimental Setup

All algorithms were implemented in Python 3.6. Experiments on third-party datasets were conducted
on AWS EC2 C4 with 2.9 GHz Intel Xeon E5-2666 v3 Processors on 16 or 36 cores. Experiments on
synthetic datasets ran on 3.1 GHz Intel Core i7 processors on 8 cores.
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I.2 Datasets

This section details the generation of synthetic data and the real clinical and biological datasets we
used for experiments. D1 and D2 are used in linear regression and Bayesian experimental design
applications and D3 and D4 are used in logistic regression for classification applications.

• D1: Synthetic Dataset for Regression and Experimental Design. We generated 500

features by sampling from a multivariate normal distribution. Each feature is normalized to
have mean 0 and variance 1. Furthermore, features have a covariance of 0.4 to guarantee
differential submodularity. To generate our response variable y, we sample the coefficient
� ⇠ U(�2, 2) for a subset of size 100 from the feature set and compute y after adding a
small noise term to the coefficients. Our goal is to select features that have coefficients of
large magnitude and accurately predict the response variable y.
We generated the dataset for experimental design similarly. We generated 256 features
and 1024 samples by sampling from a multivariate normal distribution. Each feature is
normalized to have mean 0 and variance 1. Features have a covariance of 0.8. Each row is
then normalized to have `2 norm of 1;

• D2: Clinical Dataset for Regression and Experimental Design. We used a publicly
available dataset with 53,500 samples from 74 patients with 385 features and want to select
a smaller set of features that can accurately predict the location on the axial axis from an
image of the brain slice. For experimental design, we sample 1000 rows from the dataset to
comprise our sample space and normalize rows to have `2 norm of 1;

• D3: Synthetic Dataset for Classification. We generated a synthetic dataset for logistic
regression using a similar methodology as the synthetic regression dataset. We select a set
of 50 true support features from a set of 200 and generate the coefficients using U(�2, 2).
However, instead of a numerical response variable, we create a two-class classification
problem by transforming the continuous y into probabilities and assigning the class label
using a threshold of 0.5. The goal is to select features to perform binary classification on the
synthetic dataset by using the log likelihood objective;

• D4: Biological Dataset for Classification. We used clinical data that contains the
presence or absence of 2,500 genes in 10,633 samples from various patients. In this 5-class
multi-classification problem, we want to select a small set of genes that can accurately
predict the site of cancer metastasis (spleen, colon, parietal peritoneum, mesenteric lymph
node, and intestine).

I.3 Benchmarks

We compared DASH to these algorithms:

• RANDOM. In one round, this algorithm randomly selects k features to create the solution
set;

• TOP-k. In one round, this algorithm selects the k features whose individual objective value
is largest;

• SDSMA. This uses the traditional greedy algorithm to select elements with the largest
marginal contribution at each round [KC10]. In each round, the algorithm adds one element
to the solution set;

• Parallel SDSMA. To compare parallel runtime between DASH and greedy, we also im-
plemented a parallelized version of the SDSMA algorithm. In each round, the algorithm
computes the marginal contribution of each element to the intermediate solution set. These
oracle queries are parallelized across multiple cores. This is especially effective in settings
where the oracle queries are computationally intensive;

• LASSO. This popular algorithm fits either a linear or logistic regression with an `1 reg-
ularization term �. It is known that for any given instance that is k-sparse there exists a
regularizer �k that can recover the k sparse features. Using LASSO to find a fixed set of fea-
tures is computationally intensive since in general, finding the regularizer is computationally
intractable [MY12] and even under smoothed analysis its complexity is at least linear in
the dimension of the problem [LS18]. We therefore used sets of values returned by LASSO
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for varying choices of regularizers and use these values to benchmark the objective values
returned by DASH and the other benchmarks.

J Observation on Worst Case Bound

In the special case of feature selection where there is no diversity term, we can get an improved
approximation guarantee of �2, where � = m/M .

We can bound the objective function f(S) by the modular function
P

a2S f(a) so that
m
M

P
a2S f(a)  f(S)  M

m

P
a2S f(a). Then, for the TOP-K algorithm, where we select the

best k elements by their value f(a), we get the following approximation guarantee.

f(S) � m

M

X

a2S

f(a) � m

M

X

o2O

f(o) � (

m

M
)

2f(O) = �2f(O)

where the first and last inequalites come from differential submodularity properties and the second
inequality follows from selecting the best k elements.
Remark 22. In the case where � = 1, f(S) is a submodular function. In the context of feature
selection, when � = 1, the features are linearly independent and one can obtain the optimal solution
by selecting the k features that have the largest marginal contributions to the empty set.

22


	Introduction
	Differential Submodularity
	Main results

	Preliminaries
	Feature Selection and A-Optimal Design are Differentially Submodular 
	Differential submodularity bounds for statistical subset selection problems

	The Algorithm
	Experiments
	Motivational Examples
	Adaptive-Sampling does not work for weakly submodular functions
	Existing adaptive algorithms fail for differentially submodular functions

	Notions of Approximate Submodularity
	Relationship to PRAM
	Bayesian Experimental Design Details
	Missing Proofs from Section 3
	Proof of Corollary 7
	Proof of Corollary 8
	Proof of Corollary 9

	Extension to R2 Objective
	Goodness of Fit
	Feature Selection

	Additional Algorithm Detail
	Proof of Theorem 10 for Dash
	Proofs of Lemmas Leading to Theorem 10
	Proof of Theorem 10

	Additional Detail for Experiments
	Experimental Setup
	Datasets
	Benchmarks

	Observation on Worst Case Bound

