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S1 Proof of Theorem 2.1

In this section, we provide a proof for Theorem 2.1 in the main paper.

We will introduce another notation, pkl , for prototypes of a particular class: here, k represents the
class identity of the prototype and l is the index of that prototype among all the prototypes of class k.
In this way, the prototypes of class k can be easily denoted as: Pk = {pkl }

mk

l=1.

Theorem 2.1 Let h ◦ gp ◦ f be a ProtoPNet. For each k, l, we use bkl to denote the value of the
l-th prototype for class k before the projection of pkl to the nearest latent training patch of class k,
and use akl to denote its value after the projection. Let x be an input image that is correctly classified
by the ProtoPNet before the projection, zkl = arg minz̃∈patches(f(x)) ‖z̃− bkl ‖2 be the nearest patch
of f(x) to the prototype pkl before the projection (i.e., bkl ), and c be the correct class label of x.

Suppose that:

(A1) zkl is also the nearest latent patch to prototype pkl after the projection (akl ), i.e., zkl =
arg minz̃∈patches(f(x)) ‖z̃− akl ‖2;

(A2) there exists some δ with 0 < δ < 1 such that:

(A2a) for all incorrect classes’ prototypes k 6= c and l ∈ {1, ...,mk}, we have ‖akl −
bkl ‖2 ≤ θ‖zkl − bkl ‖2 −

√
ε, where we define θ = min

(√
1 + δ − 1, 1− 1√

2−δ

)
(ε comes from the

prototype activation function gpj
defined in Section 2.1);

(A2b) for the correct class c and for all l ∈ {1, ...,mc}, we have ‖acl −bcl ‖2 ≤ (
√

1 + δ−
1)‖zcl − bcl ‖2 and ‖zcl − bcl ‖2 ≤

√
1− δ;

(A3) the number of prototypes is the same for each class, which we denote by m′.
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(A4) for each class k, the weight connection in the fully connected last layer h between a class
k prototype and the class k logit is 1, and that between a non-class k prototype and the class k logit is
0 (i.e., w(k,j)

h = 1 for all j with pj ∈ Pk and w(k,j)
h = 0 for all j with pj 6∈ Pk).

Then after projection, the output logit for the correct class c can decrease at most by ∆max =
m′ log((1 + δ)(2− δ)), and the output logit for every incorrect class k 6= c can increase at most by
∆max. If the output logits between the top-2 classes are at least 2∆max apart, then the projection of
prototypes to their nearest latent training patches does not change the prediction of x.

Proof. For any class k, let Lk(x, {pkl }m
′

l=1) denote its output logit for input image x with the values
of class k prototypes being {pkl }m

′

l=1. By Assumption (A4),

Lk(x, {pkl }m
′

l=1) =

m′∑
l=1

log

(
‖zkl − pkl ‖22 + 1

‖zkl − pkl ‖22 + ε

)
.

Let ∆k denote the change of the output logit of class k as a result of the projection of prototypes
{pkl }m

′

l=1 to their nearest latent training patches. This gives

∆k = Lk(x, {akl }m
′

l=1)− Lk(x, {bkl }m
′

l=1)

=

m′∑
l=1

(
log

(
‖zkl − akl ‖22 + 1

‖zkl − akl ‖22 + ε

)
− log

(
‖zkl − bkl ‖22 + 1

‖zkl − bkl ‖22 + ε

))

=

m′∑
l=1

log

(
‖zkl − akl ‖22 + 1

‖zkl − bkl ‖22 + 1
· ‖z

k
l − bkl ‖22 + ε

‖zkl − akl ‖22 + ε

)
.

For each class k ∈ {1, ...,K} and its prototypes l ∈ {1, ...,m′}, let

Ψk
l =
‖zkl − akl ‖22 + 1

‖zkl − bkl ‖22 + 1
· ‖z

k
l − bkl ‖22 + ε

‖zkl − akl ‖22 + ε
.

(Correct class) We now derive a lower bound of Ψc
l for the l-th prototype of the correct class c.

From the second inequality in (A2b), we have

‖zcl − acl ‖22 + 1

‖zcl − bcl ‖22 + 1
≥ 1

‖zcl − bcl ‖22 + 1
≥ 1

2− δ
. (1)

Now we want to lower-bound ‖z
c
l−b

c
l ‖

2
2+ε

‖zc
l−a

c
l ‖

2
2+ε

which is the second term in Ψc
l . We shall now prove

‖zcl − bcl ‖22 + ε

‖zcl − acl ‖22 + ε
≥ 1

1 + δ
. (2)

First, by the triangle inequality, we know ‖zcl − acl ‖2 ≤ ‖zcl − bcl ‖2 + ‖acl − bcl ‖2. As a result, we
know

‖zcl − bcl ‖22 + ε

‖zcl − acl ‖22 + ε
≥ ‖zcl − bcl ‖22 + ε

(‖zcl − bcl ‖2 + ‖acl − bcl ‖2)2 + ε
.

Then by (A2b), we have

‖acl − bcl ‖2 ≤ (
√

1 + δ − 1)‖zcl − bcl ‖2,
which implies

‖acl − bcl ‖2 + ‖zcl − bcl ‖2 ≤
√

1 + δ‖zcl − bcl ‖2.

Squaring both sides of the above inequality, we have

(‖acl − bcl ‖2 + ‖zcl − bcl ‖2)2 ≤ (1 + δ)‖zcl − bcl ‖22.

2



Adding ε to both sides of the equation, we obtain

(‖acl − bcl ‖2 + ‖zcl − bcl ‖2)2 + ε ≤ (1 + δ)‖zcl − bcl ‖22 + ε ≤ (1 + δ)‖zcl − bcl ‖22 + (1 + δ)ε.

Rearranging, we have
‖zcl − bcl ‖22 + ε

(‖zcl − bcl ‖2 + ‖acl − bcl ‖2)2 + ε
≥ 1

1 + δ
.

Now we obtain the desired result:

‖zcl − bcl ‖22 + ε

‖zcl − acl ‖22 + ε
≥ ‖zcl − bcl ‖22 + ε

(‖zcl − bcl ‖2 + ‖acl − bcl ‖2)2 + ε
≥ 1

1 + δ
.

Combining inequalities (1) and (2), we have

Ψc
l =
‖zcl − acl ‖22 + 1

‖zcl − bcl ‖22 + 1
· ‖z

c
l − bcl ‖22 + ε

‖zcl − acl ‖22 + ε
≥ 1

(1 + δ)(2− δ)
.

This means that the change of the output logit of class c as a result of the prototype projection {pcl }m
′

l=1
to their nearest latent training patches satisfies

∆c =

m′∑
l=1

log Ψc
l ≥

m′∑
l=1

log

(
1

(1 + δ)(2− δ)

)
= m′ log

(
1

(1 + δ)(2− δ)

)
,

or equivalently,

−∆c ≤ −m′ log

(
1

(1 + δ)(2− δ)

)
= m′ log((1 + δ)(2− δ)).

This means that the worst decrease of the output logit of class c as a result of prototype projection is
m′ log((1 + δ)(2− δ)), as desired.

(Wrong Class) We now derive an upper bound of Ψk,l for the l-th prototype of any incorrect class

k 6= c. We shall first give an upper bound of ‖z
k
l −a

k
l ‖

2
2+1

‖zk
l −b

k
l ‖

2
2+1

. We show

‖zkl − akl ‖22 + 1

‖zkl − bkl ‖22 + 1
≤ 1 + δ. (3)

Using the triangle inequality, we obtain

‖zkl − akl ‖22 + 1

‖zkl − bkl ‖22 + 1
≤ (‖zkl − bkl ‖2 + ‖akl − bkl ‖2)2 + 1

‖zkl − bkl ‖22 + 1
. (4)

By Assumption (A2a), we have

‖akl − bkl ‖2 ≤ (
√

1 + δ − 1)‖zkl − bkl ‖2 −
√
ε ≤ (

√
1 + δ − 1)‖zkl − bkl ‖2,

which then gives

(‖zkl − bkl ‖2 + ‖akl − bkl ‖2)2 ≤ (‖zkl − bkl ‖2 + (
√

1 + δ − 1)‖zkl − bkl ‖2)2

= (
√

1 + δ‖zkl − bkl ‖2)2

= (1 + δ)‖zkl − bkl ‖22.
(5)

Using the inequality (5), we obtain

(‖zkl − bkl ‖2 + ‖akl − bkl ‖2)2 + 1

‖zkl − bkl ‖22 + 1
≤ (1 + δ)‖zkl − bkl ‖22 + 1

‖zkl − bkl ‖22 + 1

≤ (1 + δ)‖zkl − bkl ‖22 + 1 + δ

‖zkl − bkl ‖22 + 1

= 1 + δ.

(6)
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Combining inequalities (4) and (6), we have the desired result

‖zkl − akl ‖22 + 1

‖zkl − bkl ‖22 + 1
≤ 1 + δ.

Now we derive an upper bound for ‖z
k
l −b

k
l ‖

2
2+ε

‖zk
l −a

k
l ‖

2
2+ε

. In particular, we show

‖zkl − bkl ‖22 + ε

‖zkl − akl ‖22 + ε
≤ 2− δ. (7)

By the triangle inequality, we have

‖zkl − akl ‖2 ≥ (‖zkl − bkl ‖2 − ‖akl − bkl ‖2).

Additionally, (A2a) implies ‖zkl −bkl ‖2−‖akl −bkl ‖2 > 0, so we can square both sides of the above
inequality and get:

‖zkl − bkl ‖22 + ε

‖zkl − akl ‖22 + ε
≤ ‖zkl − bkl ‖22 + ε

(‖zkl − bkl ‖2 − ‖akl − bkl ‖2)2 + ε
≤
(

‖zkl − bkl ‖2 +
√
ε

‖zkl − bkl ‖2 − ‖akl − bkl ‖2

)2

. (8)

We now only need to upper bound ‖zk
l −b

k
l ‖2+

√
ε

‖zk
l −b

k
l ‖2−‖a

k
l −b

k
l ‖2

. Again, using Assumption (A2a), we have

‖akl − bkl ‖2 ≤
(

1− 1√
2− δ

)
‖zkl − bkl ‖2 −

√
ε.

Rearranging, we have:

1√
2− δ

‖zkl − bkl ‖2 +
√
ε ≤ ‖zkl − bkl ‖2 − ‖akl − bkl ‖2,

which leads us to conclude

1√
2− δ

‖zkl − bkl ‖2 +

√
ε√

2− δ
≤ 1√

2− δ
‖zkl − bkl ‖2 +

√
ε ≤ ‖zkl − bkl ‖2 − ‖akl − bkl ‖2.

The above inequality yields

‖zkl − bkl ‖2 +
√
ε

‖zkl − bkl ‖2 − ‖akl − bkl ‖2
≤
√

2− δ. (9)

Combining inequalities (8) and (9), we establish the desired inequality

‖zkl − bkl ‖22 + ε

‖zkl − akl ‖22 + ε
≤ (
√

2− δ)2 = 2− δ.

Inequalities (3) and (7) then give us

Ψk
l =
‖zkl − akl ‖22 + 1

‖zkl − bkl ‖22 + 1
· ‖z

k
l − bkl ‖22 + ε

‖zkl − akl ‖22 + ε
≤ (1 + δ)(2− δ).

This means that the change of the output logit of class k 6= c as a result of the projection of prototypes
pkl to their nearest latent training patches satisfies

∆k =

m′∑
l=1

Ψk
l ≥

m′∑
l=1

log((1 + δ)(2− δ)) = m′ log((1 + δ)(2− δ)).

Since the increase of the output logit of class k is exactly ∆k, we conclude that the worst increase
of the output logit of class k 6= c as a result of prototype projection is m′ log((1 + δ)(2 − δ)), as
desired.
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Finally, let ∆max = m′ log((1 + δ)(2− δ)). Suppose that the output logit Lc(x|bcl ) of the correct
class c before prototype projection is at least 2∆max higher than the output logit Lk(x|bkl ) of any
other class k 6= c, i.e.,

Lc(x, {bcl }m
′

l=1) ≥ Lk(x, {bkl }m
′

l=1) + 2∆max, ∀k 6= c

Since the output logit of the correct class c satisfies

Lc(x, {acl }m
′

l=1) ≥ Lc(x, {bcl }m
′

l=1)−∆max,

while the output logit of any incorrect class k 6= c satifies

Lk(x, {akl }m
′

l=1) ≤ Lk(x, {bkl }m
′

l=1) + ∆max,

consequently, we have for any k 6= c,

Lc(x, {acl }m
′

l=1) ≥ Lc(x, {bcl }m
′

l=1)−∆max

≥ Lk(x, {bkl }m
′

l=1) + 2∆max −∆max

= Lk(x, {bkl }m
′

l=1) + ∆max

≥ Lk(x, {akl }m
′

l=1).

Hence, in this case, the input image x will still be correctly classified as class c.

Interpretation of Theorem 2.1
Theorem 2.1 is presented in a general way in terms of the choice for δ. However, to get a concrete
feeling of the assumption, we can for simplicity set δ = 9

16 .

Then (A2a) becomes ‖akl − bkl ‖2 ≤ (1− 4√
23

)‖zkl − bkl ‖2 −
√
ε. And (1− 4√

23
) ≈ 0.17, while

(A2b) becomes ‖acl − bcl ‖2 ≤ 1
4‖z

c
l − bcl ‖2 and ‖zcl − bcl ‖2 ≤

√
7

4 .

The requirement of ‖zcl−bcl ‖2 ≤
√

7
4 is empirically always satisfied on our learned models. Regarding

the relationship between ‖acl − bcl ‖2 and ‖zcl − bcl ‖2, we can see that the requirement is tighter on
the incorrect classes than the correct class. This is because for the wrong classes, we would expect
that there exists no latent patch representation of the class-c image x that is very close to non-class-c
prototypes. On the other hand, because our projection update pushes every non-class-c prototype to
the closest representation from its own class, the distance ‖acl − bcl ‖2 is generally much smaller than
‖zcl − bcl ‖2. From this, we see that the assumptions made in the theorem are reasonable.

When the conditions are met, this theorem provably guarantees that the classifier’s decision does not
become worse on a large region in the image domain.

S2 A probabilistic interpretation of ProtoPNet

In this section, we give a probabilistic interpretation of our ProtoPNet model’s inference process.

We can think of the image classification problem as a conditional probability estimation problem,
in which our goal is to estimate the conditional distribution P (Y = k | X = x), for all k ∈
{1, ...,K}, for all x ∈ X (X is the image domain). We can rewrite this classification problem into
a class-conditional density estimation problem for each class k using Bayes Theorem:

P (Y = k | X = x) =
P (X = x | Y = k)P (Y = k)∑K
c=1 P (X = x | Y = c)P (Y = c)

.

However, learning a class-conditional density over the image space X for every class k is a more
daunting task than the classification problem. As a result, we make a reasonable assumption here
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to shift the density estimation problem from the image space to a latent space. This will make the
learning more tractable.

To introduce this assumption, we first provide our notations. We denote the domain of latent patches
(equivalently, the domain of prototypes) to be Ω. In this probabilistic derivation, we will treat the
parameters wconv of our ProtoPNet’s convolutional layers f and the prototypes P =

⋃K
k=1{pkl }

mk

l=1
as distribution parameters from a frequentist perspective – that is, these parameters will not be
considered random. A more rigorous way to write the class-conditional probability would be:
P (X = x | Y = k;wconv,P), but this formalism will be dropped as this dependence is ubiquitous
and clear.

We now define a set of functions {fkl }, fkl : X → Ω, where

for all x ∈ X , fkl (x) := arg min
z∈patches(f(x))

‖z− pkl ‖2.

We assume that for any image x ∈ X and for any prototype pkl , there exists only one latent patch
z ∈ patches(f(x)) that is closest to the prototype pkl (in L2-distance). Under this assumption, we
can think of fkl (x) as the (single) closest latent patch of the image x to the prototype pkl , so that we
clearly have fkl (x) ∈ Ω.

Since wconv and the prototypes pkl are deterministic parameters of the distribution, each function fkl
is deterministic and well-defined. We can now use X to denote the random variable over the image
domain X . Then fkl (X), as a function of a random variable, is also a random variable.

We now write the class density over the image space as a product of two conditional probabilities:
P (X = x | Y = k)

=1 · P (X = x | Y = k)

=P (fk1 (X) = fk1 (x), ..., fkmk
(X) = fkmk

(x) | X = x, Y = k) · P (X = x | Y = k)

=P (fk1 (X) = fk1 (x), ..., fkmk
(X) = fkmk

(x),X = x | Y = k)

=P (X=x|fk
1 (X)=fk

1 (x),...,fk
mk

(X)=fk
mk

(x),Y=k)·P (fk
1 (X)=fk

1 (x),...,fk
mk

(X)=fk
mk

(x)|Y=k).

The derivation from the second to the third line uses the fact that if we know the value of X being x,
then the values of fkl (X) must be fkl (x) with probability of 1. Now we are ready to introduce our
assumption to simplify the density estimation:

Assumption (i)
∀x ∈ X , ∀a, b ∈ {1, ...,K},

P (X = x | fa1 (X) = fa1 (x), ..., fama
(X) = fama

(x), Y = a)

= P (X = x | f b1(X) = f b1(x), ..., f bmb
(X) = f bmb

(x), Y = b).

This assumption says that for any given image x, the probability of X being of value x given all of
its closest latent patches to prototypes of class k and the fact that the image is indeed of class k is
the same for every single class k ∈ {1, ...,K}. We can roughly think of this assumption as: for any
class, knowing an unknown image’s closest latent patches to prototypes of that class and the fact that
unknown image actually belongs to that class gives us the same level of uncertainty about the true
value of the image.

A more restrictive but simpler case of Assumption (i) is to believe in additional that:
P (X = x | f c1(X) = f c1(x), ..., f cmc

(X) = f cmc
(x), Y = c) =

P (X = x | f c1(X) = f c1(x), ..., f cmc
(X) = f cmc

(x)),

∀c ∈ {1, ...,K}.
This additional assumption means that the closest latent patches to prototypes of class c gives us
enough information about the image’s pixel values, so that the additional knowledge of the image’s
actual class c does not change our uncertainty about those pixel values. Then Assumption (i) becomes
the same as saying:

P (X = x | fa1 (X) = fa1 (x), ..., fama
(X) = fama

(x)) =

P (X = x | f b1(X) = f b1(x), ..., f bmb
(X) = f bmb

(x)),

∀a, b ∈ {1, ...,K}.

6



Combining Assumption (i) with Bayes Theorem, the class-conditional densities over the image space
X can now be reduced to the class-conditional densities over the space Ωmk (the Cartesian product
of the space of latent patches):

P (Y = k | X = x) =
P (fk1 (X) = fk1 (x), ..., fkmk

(X) = fkmk
(x) | Y = k) · P (Y = k)∑K

c=1 P (f c1(X) = f c1(x), ..., f cMc
(X) = f cMc

(x) | Y = c) · P (Y = c)
.

Alternatively, we can write

∀k ∈{1, ...,K},
P (Y = k | X = x) ∝ P (fk1 (X) = fk1 (x), ..., fkmk

(X) = fkmk
(x) | Y = k) · P (Y = k).

To simplify the joint distribution of random variables fk1 (X), fk2 (X), ..., fkmk
(X) over Ωmk , we make

the second assumption in our derivation:

Assumption (ii)

for all x ∈ X ,

P (fk1 (X) = fk1 (x), ..., fkmk
(X) = fkmk

(x) | Y = k) =

mk∏
l=1

P (fkl (X) = fkl (x) | Y = k).

This assumption is not claiming that the random variables {fkl (X)} are independent over the entire
space of Ωmk – these are only independent in the subspace {(zk1 , ..., zkmk

) ∈ Ωmk : there exists x ∈
X such that zk1 = fk1 (x), ..., zkmk

= fkmk
(x)}. Assumption (ii) allows us to factorize the joint

distribution of {fkl (X)} into a product of class-conditional densities of individual random variables.

Now, we have

P (Y = k | X = x)

=
P (fk1 (X) = fk1 (x), fk2 (X) = fk2 (x), ..., fkmk

(X) = fkmk
(x) | Y = k) · P (Y = k)∑K

c=1 P (f c1(X) = f c1(x), f c2(X) = f c2(x), ..., f cmc
(X) = f cmc

(x) | Y = c) · P (Y = c)

=

[
mk∏
l=1

P (fkl (X) = fkl (x) | Y = k)

]
· P (Y = k)

K∑
c=1

{[
mc∏
l=1

P (f cl (X) = f cl (x) | Y = c)

]
· P (Y = c)

} .

Alternatively, we can write:

for all k ∈{1, ...,K},

P (Y = k | X = x) ∝

[
mk∏
l=1

P (fkl (X) = fkl (x) | Y = k)

]
· P (Y = k).

To use case-based reasoning in our model, we want our model to predict high probability for a
particular class k when it finds part(s) of the image to be semantically similar to some prototypical
part(s) of class k but almost no part of the image to be similar to prototypical parts of any other class.
The latent space of the model should ideally have the property that semantically similar image parts
will be close to each other (in L2-distance) in the latent space. As a result, we naturally want the
density of fkl (X) in the latent space Ω to satisfy

P (fkl (X) = z | Y = k) = dkl (‖z− pkl ‖2),

where dkl : [0,∞)→ [0,∞) is monotonically decreasing and satisfies
∫

Ω
dkl (‖z − pkl ‖2)dz = 1. By

this requirement, the latent distribution of random variable fkl (X) is spherically symmetrical and has
its mode at the value of the prototype pkl .

7



Plugging the individual distribution into the class probability prediction, we have

P (Y = k | X = x) =

mk∏
j=1

dkl (‖fkl (x)− pkl ‖2)

 · P (Y = k)

K∑
c=1


mc∏
j=1

dcl (‖f cl (x)− pcl ‖2)

 · P (Y = c)


. (10)

Now that the probabilistic derivation of our model is complete, it remains to show that our current
implementation can be interpreted as implementing this framework.

When the weight matrix of our ProtoPNet’s (fully-connected) last layer has value 1 between the
prototypes and the classes they represent, and value 0 everywhere else (which is approximately true
after convex optimization of the last layer), the probability prediction by the ProtoPNet for class k is
as follows:

P (Y = k | X = x) =

exp

(
mk∑
l=1

log

(
1 +

1− ε
‖fkl (x)− pkl ‖22 + ε

))
K∑
c=1

exp

(
mc∑
l=1

log

(
1 +

1− ε
‖f cl (x)− pcl ‖22 + ε

)) .

Simplifying, we have

P (Y = k | X = x) =

mk∏
l=1

‖fkl (x)− pkl ‖22 + 1

‖fkl (x)− pkl ‖22 + ε

K∑
c=1

mc∏
l=1

‖f cl (x)− pcl ‖22 + 1

‖f cl (x)− pcl ‖22 + ε

. (11)

Comparing Equations (10) and (11), we see that for our current model, we have: (1) Ω =

[0, 1]H1×W1×D; (2) P (Y = c) = 1
K , for all c ∈ {1, ...,K}; and (3) dkl (r) = Ckl · r

2+1
r2+ε . The

constant Ckl ensures that the integration over the latent domain Ω gives value of 1. When the number
of prototypes for every class is the same, the

∏mk

l=1 C
k
l will approximately cancel out in the numerator

and denominator of Equation 10, leaving us with the current expression we use for our classification
model.

Remark As we see from the above derivation, the inference of our ProtoPNet can be interpreted in a
probabilistic framework with reasonable assumptions. In fact, the framework we developed opens up
new potential choices of similiarity functions within our prototype layer. If we let Ω = RH1×W1×D,
we can for example use the Gaussian distribution for the class-conditional marginal distribution of
fkl (X) given Y = k, which in turns means that the prototype activation function will be gpj

(z) =

maxz̃∈patches(z)−‖z̃ − pj‖22. The empirical evaluation of the performance of prototype activation
functions inspired by this probabilistic framework is left as future work.

In addition, learning the prototypes pkl through stochastic gradient descent before projection can be
understood as learning the parametric modes for fkl (X)’s distribution in the space of latent patches,
and prototype projection can be understood as moving the mode of the distribution to the closest
latent patch from the training set. The effect of projection will be minimal if the distribution mode
does not move much as a result of prototype projection.

Furthermore, adding the logits of several ProtoPNet models for final prediction can also be understood
through this probabilistic interpretation. The addition of the logits can be understood as the product
of the class-conditional marginal distributions of different models’ fkl (X) given Y = k. Generally,
including more random variables fkl (X) in the joint density estimation improves the predictive
performance of our model.
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Why	is	this	bird	classfied	as	a	Baltimore	oriole?
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(a) VGG16-based ProtoPNet.
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(b) VGG19-based ProtoPNet.

Why	is	this	bird	classfied	as	a	Baltimore	oriole?

Evidence	for	this	bird	being	a	Baltimore	oriole:

Prototype Activation	map Similarity
score

Class
connection

Points
contributed

Total	points	to	Baltimore	oriole:

3.085

2.922

2.789

0.923

1.022

0.987

2.847

2.986

2.753

×

×

×

=

=

=

18.446

.	.	.	
.	.	.	

.	.	.	
.	.	.	

.	.	.	

Original	image
(box	showing	part	that
looks	like	prototype)

Training	image
where	prototype
comes	from

Evidence	for	this	bird	being	hooded	oriole:

Prototype Activation	map Similarity
score

Class
connection

Points
contributed

Original	image
(box	showing	part	that
looks	like	prototype)

Training	image
where	prototype
comes	from

.	.	.	
.	.	.	

Total	points	to	hooded	oriole:

1.253

0.859

0.795

1.052

1.075

1.102

1.318

0.923

0.876

×

×

×

=

=

=

6.920

.	.	.	
.	.	.	

.	.	.	
.	.	.	

.	.	.	
.	.	.	

.	.	.	

(c) ResNet34-based ProtoPNet.

S3 More examples of how our ProtoPNet classifies birds

In this section, we provide more examples of how our ProtoPNet classifies previously unseen images
of birds.

Figures 1 and 2 provide two examples of how our ProtoPNet (with various base architectures)
correctly classifies a previously unseen image of a bird and how our network explains its prediction.
In each of these figures, the left side presents evidence for the given bird belonging to the class with
the highest logit, and the right side presents evidence for the given bird belonging to a closely related
class. We shall give some general observations regarding the ways in which our network thinks that
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(d) ResNet152-based ProtoPNet.
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(e) DenseNet121-based ProtoPNet.
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(f) DenseNet161-based ProtoPNet.

Figure 1: How our ProtoPNet correctly classifies an image of Baltimore oriole.
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(a) VGG16-based ProtoPNet.
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(b) VGG19-based ProtoPNet.
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(c) ResNet34-based ProtoPNet.
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(d) ResNet152-based ProtoPNet.
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(e) DenseNet121-based ProtoPNet.
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(f) DenseNet161-based ProtoPNet.

Figure 2: How our ProtoPNet correctly classifies an image of pied-billed grebe.
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Why	is	this	bird	classfied	as	a	Wilson's	warbler?
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(a) VGG16-based ProtoPNet.
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(b) VGG19-based ProtoPNet.
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(c) ResNet34-based ProtoPNet.
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Why	is	this	bird	classfied	as	a	Wilson's	warbler?
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(d) ResNet152-based ProtoPNet.
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(e) DenseNet121-based ProtoPNet.

Why	is	this	bird	incorrectly	classified	as	a	prothonotary
warbler,	instead	of	a	Wilson's	warbler?
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(f) DenseNet161-based ProtoPNet: this network mistakes the Wilson’s warbler as a prothonotary
warbler – the total points to Wilson’s warbler is less than that to prothonotary warbler.

Figure 3: How our ProtoPNet (correctly and incorrectly) classifies an image of Wilson’s warbler.
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the given image is similar to the prototypical cases. The detailed reasoning process of our network
has been explained in our main paper, and will not be repeated here.

Figure 1 demonstrates how our ProtoPNet (with various base architectures) correctly classifies an
image of a Baltimore oriole. In particular, every ProtoPNet is able to learn the prototypical golden
chest/abdomen of a Baltimore oriole, and is able to associate the golden chest/abdomen of the
(previously unseen) given image to the prototypical golden chest (or abdomen) of a Baltimore oriole:
for each of those prototypes that correspond to the characteristic golden chest/abdomen of a Baltimore
oriole, our network is able to pick out, on the previously unseen given image, a similar patch with
a golden chest/abdomen and highlight the golden chest/abdomen on the previously unseen bird in
its prototype activation map (e.g., the first prototype in Figure 1e (left), which corresponds to the
characteristic golden chest of a Baltimore oriole, identifies and highlights the golden chest on the
previously unseen bird). On the other hand, some of our networks also think that the the golden
abdomen of the given bird looks like the prototypical golden abdomen of a hooded oriole (e.g., the
first prototype in Figure 1a (left), which corresponds to the characteristic golden abdomen of a hooded
oriole, identifies and highlights the golden abdomen on the given bird). It is worth pointing out that
sometimes a network can “mistakenly” believe that a certain pattern in the given image looks like a
prototypical part of some class of birds: for example, the second and the third prototype in Figure
1b (left) “mistakenly” think that the wing and the chest of the given bird looks like the prototypical
head of a hooded oriole – this is, however, not too surprising because the orange-black coloration
on the wing and the chest of the given bird does look somewhat like the same coloration on the
prototypical head of a hooded oriole; however, such remote resemblance is reflected in our network
by very small similarity scores between the given image and those two prototypes (0.820 and 0.789),
which (fortunately) means that the network does not believe that the aforementioned similarity is
strong. Not surprisingly, when our ProtoPNet accumulates the evidence presented by the comparison
with all the prototypes, it sees that the evidence for the given bird being a Baltimore oriole is the
strongest, and concludes that the bird is a Baltimore oriole.

Note that sometimes a prototype can be duplicated in our network (e.g., the first and the second
prototype in Figure 1d are the same): this results from the projection of each prototype onto the closest
latent representation of training image patches from the prototype’s designated class (described in
Section 2.2: Training algorithm in the main paper) – in this case, the closest training patches to both
prototypes are the same before the projection stage, and consequently both prototypes are projected
onto the same patch in the latent space. This means that some of the learned prototypes in our network
are repeated. However, this is not a problem because we can conceptually understand the repeated
prototypes as one prototype, with its weight connection to each class in the fully connected last layer
being the sum of the weight connections of those repeated prototypes to that class. Thus, we can
understand the first and the second prototype in Figure 1d as one Baltimore oriole prototype with
class connection 0.808 + 0.808 = 1.616. This also means that the actual number of prototypes used
by our ProtoPNet is in general less than the pre-determined number of prototypes when the network
architecture is specified.

Figure 2 demonstrates how our ProtoPNet correctly classifies a previously unseen image of a pied-
billed grebe. In particular, every ProtoPNet is able to learn the prototypical head of a pied-billed
grebe, and is able to associate the head of the given bird to the prototypical head of a pied-billed
grebe: for each of those prototypes that correspond to the head of a pied-billed grebe, our network
is able to pick out, on the previously unseen image, a similar patch that contains the head of the
given bird, and also highlight the head of the given bird in its prototype activation map – this strong
resemblance is also reflected in high similarity scores between the given image and those prototypes.
This shows that our network thinks that the head of the given bird looks like the prototypical head of a
pied-billed grebe. On the other hand, each of our networks also thinks that there is some resemblance
between the neck/back of the given bird and that of a horned grebe, but such resemblance is not very
strong.

S3.1 How model combination can improve accuracy

Figures 3a through 3e demonstrates how our ProtoPNet based on VGG16, VGG19, ResNet34,
ResNet152, and DenseNet121 correctly classifies an image of a Wilson’s warbler. On the other hand,
Figure 3f shows why the DenseNet161-based ProtoPNet misclassifies the given bird as a prothonotary
warbler instead of its true identity – a Wilson’s warbler. As we can see in Figure 3f (right), the
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DenseNet161-based ProtoPNet (mistakenly) thinks that the head of the given bird is more similar to
the prototypical head of a prothonotary warbler than to that of a Wilson’s warbler: this is, for example,
shown by the first prothonotary warbler prototype (in 3f (right)) having a higher similarity score than
the first Wilson’s warbler prototype (in 3f (left)). In the end, this network finds more evidence for the
given bird being a prothonotary warbler than being a Wilson warbler, and misclassifies the bird as a
prothonotary warbler.

Here we illustrate why combining several ProtoPNet models is a good idea: it can improve prediction
accuracy while preserving interpretability. For simplicity, suppose that we combine the VGG16-based
and the DenseNet161-based ProtoPNet together, by adding the logits (i.e., the total points to different
classes) together. When the combined model makes a prediction on the Wilson’s warbler, the total
points to Wilson’s warbler becomes 19.473 + 9.744 = 29.217, while the total points to prothonotary
warbler becomes 10.234 + 12.391 = 22.625. Thus, the combined network will correctly classify
the image as a Wilson’s warbler. At the same time, adding the logits (the total points to different
classes) together in this way preserves the interpretability of our ProtoPNet model, because it is
conceptually equivalent to having a scoring sheet that makes comparison with more prototypes (in
different latent spaces) and accumulating all the evidence together into the total points for each class.

S4 More examples of nearest prototypes of given images

In this section, we provide more examples of the nearest prototypes of given test images.

Figure 4 shows the three nearest prototypes to each of the five test bird images, from different
ProtoPNet models (with various base architectures): for each ProtoPNet, the three nearest prototypes
to a given test bird image are displayed, with prototypical parts shown in boxes, on the top row, and
the same test image with the patch closest to each prototype shown in a bounding box, is displayed
below the corresponding prototype. For a given image, we define its nearest prototype as the one that
forms the closest patch-prototype pair in the latent space, over all latent patches of the given image.
As we can see from Figure 4, the nearest prototypes for each of these test images generally come
from the same class as that of the image, and the patch that is closest to (i.e., most activated by) each
prototype also corresponds to the same semantic concept. For example, Figure 4a shows the three
nearest prototypes to a test image of a rose-breasted grosbeak, from different ProtoPNet models (with
various base architectures): as we can see, the three nearest prototypes from each of the ProtoPNet
models indeed all come from the rose-breasted grosbeak class, and moreover, the nearest prototype
from each of the ProtoPNet models corresponds to the rose breast characteristic of the species, and
the closest (i.e., most activated) patch to the prototype indeed localizes the rose breast of the given
bird. There are some exceptions: for example, the third nearest prototype from the VGG16-based
ProtoPNet for the Lincoln sparrow corresponds to the wing of a western meadowlark (see Figure
4c. This is understandable, because a Lincoln sparrow has wing stripes much like those of a western
meadowlark. Hence, it is not too surprising that the wing of the Lincoln sparrow in Figure 4c is fairly
close to the prototypical wing of a western meadowlark. This shows that the latent space learned by
our ProtoPNet does have a clustering structure, where semantically similar patches that are relevant
for classification are clustered together.

S5 More examples of nearest image patches of given prototypes

Figure 5 shows the nearest training and test image patches of three prototypes from different ProtoPNet
models (with various base architectures). The prototypes are displayed with prototypical parts shown
in bounding boxes, and the nearest training and test images to each prototype are displayed with the
patch closest to that prototype in a bounding box. As we can see, the nearest image patches to each
prototype in the figure all localize the same semantic part as the prototypical part of that prototype,
and it is generally true that the nearest patches of a prototype mostly come from those images in the
same class as that of the prototype.

16



Rose-breasted	grosbeak

Nearest	prototypes	from
VGG16-based	ProtoPNet

Nearest	prototypes	from
VGG19-based	ProtoPNet

Nearest	prototypes	from
ResNet34-based	ProtoPNet

Nearest	prototypes	from
ResNet152-based	ProtoPNet

Nearest	prototypes	from
DenseNet121-based	ProtoPNet

Nearest	prototypes	from
DenseNet161-based	ProtoPNet

(a) Nearest prototypes of the rose-breasted grosbeak from ProtoPNet models with various base
architectures.

Nearest	prototypes	from
VGG16-based	ProtoPNet

Nearest	prototypes	from
VGG19-based	ProtoPNet

Nearest	prototypes	from
ResNet34-based	ProtoPNet

Nearest	prototypes	from
ResNet152-based	ProtoPNet

Nearest	prototypes	from
DenseNet121-based	ProtoPNet

Nearest	prototypes	from
DenseNet161-based	ProtoPNet

Ringed	kingfisher

(b) Nearest prototypes of the ringed kingfisher from ProtoPNet models with various base architectures.

Lincoln	sparrow

Nearest	prototypes	from
VGG16-based	ProtoPNet

Nearest	prototypes	from
VGG19-based	ProtoPNet

Nearest	prototypes	from
ResNet34-based	ProtoPNet

Nearest	prototypes	from
ResNet152-based	ProtoPNet

Nearest	prototypes	from
DenseNet121-based	ProtoPNet

Nearest	prototypes	from
DenseNet161-based	ProtoPNet

(c) Nearest prototypes of the Lincoln sparrow from ProtoPNet models with various base architectures.
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Nearest	prototypes	from
VGG16-based	ProtoPNet

Nearest	prototypes	from
VGG19-based	ProtoPNet

Nearest	prototypes	from
ResNet34-based	ProtoPNet

Nearest	prototypes	from
ResNet152-based	ProtoPNet

Nearest	prototypes	from
DenseNet121-based	ProtoPNet

Nearest	prototypes	from
DenseNet161-based	ProtoPNet

(d) Nearest prototypes of the Kentucky warbler from ProtoPNet models with various base architec-
tures.

Cerulean	warbler

Nearest	prototypes	from
VGG16-based	ProtoPNet

Nearest	prototypes	from
VGG19-based	ProtoPNet

Nearest	prototypes	from
ResNet34-based	ProtoPNet

Nearest	prototypes	from
ResNet152-based	ProtoPNet

Nearest	prototypes	from
DenseNet121-based	ProtoPNet

Nearest	prototypes	from
DenseNet161-based	ProtoPNet

(e) Nearest prototypes of the Cerulean warbler from ProtoPNet models with various base architectures.

Figure 4: Nearest prototypes of five test images: in each group of images, the three nearest prototypes
of the corresponding test image are displayed, with prototypical parts shown in boxes, on the top
row, and the same test image with the patch closest to each prototype shown in a bounding box, is
displayed below the corresponding prototype.

S6 Accuracy on Stanford Cars, an example of how our ProtoPNet classifies
a car and nearest image patches of car prototypes

In this section, we compare the accuracy of our ProtoPNet with that of the corresponding baseline
model on the Stanford Cars dataset (see Table 1: the first number in each cell gives the mean accuracy,
and the second number gives the standard deviation, over three runs). As we can see, the test accuracy
of our ProtoPNet is comparable with that of the corresponding baseline model, and the loss of
accuracy is within 3% when we switch from the non-interpretable baseline model to our interpretable
ProtoPNet. The test accuracy of a combined network of the three ProtoPNets in Table 1 can reach
91.4%, which is on par with some state-of-the-art models on this dataset, such as B-CNN [2] (91.3%),
RA-CNN [1] (92.5%), and MA-CNN [3] (92.8%).

Table 1: Accuracy comparison on Stanford Cars
Baseline architecture Accuracy of ProtoPNet Accuracy of baseline
VGG19 87.4 ± 0.3 85.9 ± 0.2
ResNet34 86.1 ± 0.1 85.4 ± 0.1
DenseNet121 86.8 ± 0.1 89.7 ± 0.1
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Prototypes
(in	bounding	box)

Nearest	training	patches
(in	bounding	box)

Nearest	test	patches
(in	bounding	box)

(a) Nearest image patches to prototypes from VGG16-based ProtoPNet.
Prototypes

(in	bounding	box)
Nearest	training	patches

(in	bounding	box)
Nearest	test	patches
(in	bounding	box)

(b) Nearest image patches to prototypes from VGG19-based ProtoPNet.
Prototypes

(in	bounding	box)
Nearest	training	patches

(in	bounding	box)
Nearest	test	patches
(in	bounding	box)

(c) Nearest image patches to prototypes from ResNet34-based ProtoPNet.
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Prototypes
(in	bounding	box)
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(in	bounding	box)

Nearest	test	patches
(in	bounding	box)

(d) Nearest image patches to prototypes from ResNet152-based ProtoPNet.
Prototypes

(in	bounding	box)
Nearest	training	patches

(in	bounding	box)
Nearest	test	patches
(in	bounding	box)

(e) Nearest image patches to prototypes from DenseNet121-based ProtoPNet.
Prototypes

(in	bounding	box)
Nearest	training	patches

(in	bounding	box)
Nearest	test	patches
(in	bounding	box)

(f) Nearest image patches to prototypes from DenseNet161-based ProtoPNet.

Figure 5: Nearest (most activated) image patches to prototypes.
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Why	is	this	car	classfied	as	a	2012	Honda	Accord	coupe?

Evidence	for	this	car	being	a	2012	Honda	Accord	coupe:
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Evidence	for	this	car	being	a	2012	Toyota	Camry	sedan:
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Figure 6: How our ProtoPNet correctly classifies an image of 2012 Honda Accord coupe.

Prototypes
(in	bounding	box)

Nearest	training	patches
(in	bounding	box)

Nearest	test	patches
(in	bounding	box)

Figure 7: Nearest image patches to prototypes from ProtoPNet trained on Stanford Cars.

We also provide an example of how our (VGG19-based) ProtoPNet trained on Stanford Cars classifies
a previously unseen image of a 2012 Honda Accord coupe (Figure 6). In this particular example, our
network thinks that the front of the car in the given image looks a lot like the prototypical front (the
first two prototypes include the car logo) of a 2012 Honda Accord coupe, and it looks somewhat like
the prototypical front of a Toyota Camry sedan, but the similarity between the front of the given car
and the prototypical front of a 2012 Honda Accord coupe is stronger, than that between the front of
the given car and the prototypical front of a 2012 Toyota Camry sedan.

Figure 7 provide some examples of prototypes from our (VGG19-based) ProtoPNet model trained on
Stanford Cars, along with the nearest image patches to those prototypes from both the training and
the test set.
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(1)	Generate	prototype
self-activation	map

(2)	Identify	the	most
activated	image	patch

(3)	Visualize	the	prototype
using	this	image	patch

Figure 8: How to visualize a prototype.

S7 Detailed description of prototype visualization

In this section, we provide a detailed explanation of how we visualize prototypes of a trained
ProtoPNet model. Recall that after the projection of prototypes to the closest latent patch of some
training image, a prototype pj is exactly equal to some patch of the latent representation f(x), of
some training image x. Since the patch of x that corresponds to the prototype pj should be the one
that the prototype pj activates the most strongly on, we visualize the prototype pj by first obtaining
the activation map of x by the prototype pj : this can be done by forwarding x through the trained
ProtoPNet model and upsampling the activation map produced by the prototype unit gpj to the size
of the image x (Step (1) in Figure 8). After we obtain such an activation map, we can locate the patch
of x on which pj has the strongest activation by finding the high activation region in the (upsampled)
activation map (Step (2) in Figure 8). In our experiments, we define the high activation region in an
upsampled activation map as the smallest rectangular region that encloses pixels whose corresponding
activation value in the aforementioned activation map is at least 95%-percentile of all activation
values in that same map. Finally, we can visualize the prototype pj using the image patch of x that
corresponds to the high activation region (Step (3) in Figure 8).

S8 Detailed description of prototype pruning

Recall from our analysis of the nearest image patches of given prototypes, that it is generally true
that the nearest (i.e., most activated) patches of a prototype mostly come from those images in the
same class as that of the prototype. However, there are exceptions to this general observation. In our
experiments, we find that for some prototypes in a trained ProtoPNet model, the nearest (training or
test) image patches can all come from different classes. This is often the case when the prototype
corresponds to a “background” patch (e.g., a patch of the sky). This happens during the training
process because a background prototype can often be useful in distinguishing different species of
birds: for example, a prototype that corresponds to a patch of water can be useful in distinguishing
water birds from others.

In this section, we describe an algorithm for prototype pruning, that can reduce the number of
prototypes for each class, and at the same time, remove “background” prototypes automatically from
the reasoning process of our ProtoPNet. The pruning algorithm starts by first finding the k-nearest
latent patches of training images to each prototype pj . Since we know the labels of all training
images, we know the class labels of the k training images where the k-nearest latent patches to pj
come from. Out of these k training images, if less than τ (a predefined pruning threshold) of them
come from the designated class of the prototype pj , then we assume that the prototype pj most likely
corresponds to some background patch and we remove the prototype pj (along with its last layer
connections) from the ProtoPNet model. After pruning, we can again optimize the last layer (see
Section 2.2: Training algorithm) to boost accuracy further.

In our experiments, we set k = 6 and τ = 3. Table 2 shows the effect of pruning (and subsequent
optimization of the last layer) on ProtoPNet models trained on cropped bird images of CUB-200-2011,
as well as the number of prototypes pruned (recall that we used 10 prototypes per class, so there were
a total of 2000 prototypes for 200 classes before pruning). As we can see from Table 2, pruning has
little effect on the accuracy of our ProtoPNet, if it is followed by the optimization of the last fully
connected layer.

Figure 9 shows some examples of pruned prototypes and their nearest image patches from the training
and the test set. As we can see, the first pruned prototype in Figure 9 is a prototypical tree branch, the
second some prototypical background color, and the third corresponds to an image patch of sky.
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Table 2: Effect of pruning (and subsequent optimization of the last layer) on various ProtoPNet
models trained on cropped bird images of CUB-200-2011. The number of prototypes before pruning
was 2000 for each model.

Base architecture
of ProtoPNet model

Accuracy
before pruning

Accuracy
after pruning

Accuracy
after pruning and

optimizing last layer

Number of
prototypes

pruned
(k = 6, τ = 3)

VGG16 76.3 71.8 76.0 651
VGG19 78.2 74.4 78.0 666

ResNet34 79.2 79.1 79.5 345
ResNet152 78.3 78.1 78.6 266

DenseNet121 80.4 77.0 79.2 524
DenseNet161 80.1 78.3 79.9 473

Prototypes
(in	bounding	box)

Nearest	training	patches
(in	bounding	box)

Nearest	test	patches
(in	bounding	box)

Figure 9: Examples of pruned prototypes and their nearest image patches from the training and the
test set.

S9 Implementation and training details

In this section, we describe the data augmentation techniques we used, as well as our choice of
hyperparameters and training details.

S9.1 Data augmentation

In our experiments on CUB-200-2011, since the dataset has only about 30 images per class, we
performed offline data augmentation using random rotation, skew, shear, distortion, and left-right flip
to enlarge the training set, so that each class has approximately 1200 training images.

In our experiments on Stanford Cars, since the dataset has only about 40 images per class, we
performed offline data augmentation using random rotation, skew, shear, and left-right flip to enlarge
the training set, so that each class has approximately 1300 training images.

S9.2 Architecture and hyperparameter choices

In our experiments on CUB-200-2011, we used the convolutional layers from VGG-16, VGG-19,
ResNet-34, ResNet-152, DenseNet-121, and DenseNet-161 (initialized with filters pretrained on
ImageNet), followed by two additional 1× 1 convolutional layers, as the convolutional part of our
ProtoPNet. The number of output channels in each of the two additional convolutional layers is
chosen to be the same as the number of channels in a prototype. For each base architecture, we chose
from three possible values: 128, 256, 512, for the number of channels in a prototype (using cross
validation): for VGG-16, VGG-19, DenseNet-121, DenseNet-161, we used 128 as the number of
channels in a prototype; for ResNet-34, we used 256 as the number of channels in a prototype; for
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1 initialize t0 ← 0; wbase ← weights pre-trained on ImageNet; wadd ← Kaiming uniform initialization (He et al., 2015);
2 ∀j: prototype pj ← Uniform([0, 1]H1×W1×D); ∀k, j: w(k,j)

h ← 1 if pj ∈ Pk, w(k,j)
h ← 0 if pj /∈ Pk;

3 while NOT(converge AND Clst < −Sep) do
/* Stage 1: SGD of layers before the last */

4 for SGD training epoch t = t0 + 1, ..., t0 +NSGD do
5 foreach batch [X,Y] from [X,Y] do
6 if t > 5 then /* Pretrained weights and biases are fixed during the warm-up period */
7 wbase ← wbase − η(t)base∇wbaseL(X,Y);
8 wadd ← wadd − η(t)add∇waddL(X,Y); P← P− η(t)p ∇PL(X,Y);
9 t0 ← t0 +NSGD;

/* Stage 2: projection of prototypes */
10 foreach prototype pj do
11 k ← class of pj ; pj ← argminz∈{z̃:z̃∈patches(f(x)) ∀(x,y)∈[X,Y] s.t. y=k} ‖z− pj‖2;

/* Stage 3: convex optimization of last layer */
12 for convex training epoch t′ = 1, ..., Nconvex do
13 foreach batch [X,Y] from [X,Y] do wh ← wh − ηconvex∇whLconvex(X,Y) ;

Figure 10: Overview of training algorithm.

ResNet-152, we used 512 as the number of channels in a prototype. We used 1 × 1 as the spatial
dimension of each prototype (i.e., H1 = 1 and W1 = 1): given that the spatial dimension of the
convolutional output for a 224× 224 image is only 7× 7, a 1× 1 prototype is already large enough
to represent a significant part of the original image in the pixel space (we want to learn prototypes
focused on specific parts). The number of prototypes can be chosen with prior domain knowledge
or hyperparameter search: we used 10 prototypes per class, because CUB-200-2011 provides (at
most) 15 part locations per image, so we believe that 10 prototypes per class should be enough to
capture a variety of bird parts. Note that the part locations (keypoint annotations) provided with the
dataset were not used by our algorithm during training – we used only image-level labels.

In our experiments on Stanford Cars, we used the convolutional layers from VGG-19, ResNet-34,
and DenseNet-121 (initialized with filters pretrained on ImageNet), followed by two additional 1× 1
convolutional layers, as the convolutional part of our ProtoPNet. We chose the number of output
channels in the additional convolutional layers, the number of channels in a prototype, and the spatial
dimension of each prototype, in the same way as we did on CUB-200-2011. We again used 10
prototypes per class, because we believe that 10 prototypes should be enough to capture different
views of a car.

S9.3 Overview of training algorithm

In the algorithm chart in Figure 10: wbase and wadd denote the parameters of the base and additional
convolutional layers; NSGD and Nconvex denote the number of training epochs in stage 1 and 3; L
and Lconvex denote the loss function of stage 1 and 3; η(t)

base, η
(t)
add, η(t)

p , ηconvex are learning rates (t
denotes epoch number). The choice of learning rates, as well as the coefficients of the terms in the
loss function, is discussed in the next section (Section S9.4).

S9.4 Training parameters

In our experiments on both CUB-200-2011 and Stanford Cars, we set the coefficient of the cluster cost
to 0.8, and the coefficient of the separation cost to 0.08 during stochastic gradient descent of layers
before the last layer, and we set the coefficient of the L1-regularization term (on the weight connection
between each prototype of class k and the logit of class k′ 6= k) to 10−4 during convex optimization
of the last layer. For the coefficient of the cluster cost and the coefficient of the separation cost, we
considered three different settings: (1, 0.1), (0.8, 0.08), (0.6, 0.06), and chose the pair (0.8, 0.08)
using cross validation. For the coefficient of the L1-regularization term, we considered 10−3, 10−4,
and 10−5, and chose 10−4 also by cross validation.

In our experiments, we started our training with a “warm-up” stage, in which we loaded and froze
the pre-trained weights and biases, and focused on training the two additional convolutional layers
and the prototype layer (without requiring each prototype to be exactly some latent training patch)
for 5 epochs. The learning rate we used in this sub-stage is 3 × 10−3. Afterward, we trained all
the convolutional layers and the prototype layer jointly, using 10−4 learning rate for those layers
that were pretrained on ImageNet, and 3× 10−3 learning rate for the two additional convolutional
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layers and the prototype layer. We reduced the learning rate by a factor of 0.1 every 5 epochs, and we
performed prototype projection and convex optimization of the last layer (for 20 iterations) every two
times we reduced the learning rate. We stopped training when training accuracy converged and the
cluster cost became smaller than the separation cost on the training set.

S9.5 Training software and platform

We implemented our ProtoPNet using PyTorch. The experiments were run on 4 NVIDIA Tesla P100
GPUs or 8 NVIDIA Tesla K80 GPUs.

Our code is available at https://github.com/cfchen-duke/ProtoPNet.

S9.6 Links to datasets

CUB-200-2011 can be downloaded from:
http://www.vision.caltech.edu/visipedia/CUB-200-2011.html

Stanford Cars can be downloaded from:
https://ai.stanford.edu/~jkrause/cars/car_dataset.html
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