
Optimal Sparse Decision Trees: Supplementary Material

A Branch and Bound Algorithm

Algorithm 1 shows the structure of our approach.

B Equivalent Points Bound

When multiple observations captured by a leaf in dsplit have identical features but opposite labels, then no tree,
including those that extend dsplit, can correctly classify all of these observations. The number of misclassifications
must be at least the minority label of the equivalent points.

For data set {(xn, yn)}Nn=1 and a set of features {sm}Mm=1, we define a set of samples to be equivalent if they
have exactly the same feature values, i.e., (xi, yi) and (xj , yj) are equivalent if 1

M

∑M
m=1 1[cap(xi, sm) =

cap(xj , sm)] = 1. Note that a data set consists of multiple sets of equivalent points; let {eu}Uu=1 enumerate
these sets. For each observation xi, it belongs to a equivalent points set eu. We denote the fraction of data with
the minority label in set eu as θ(eu), e.g., let eu = {xn : ∀m ∈ [M ], 1[cap(xn, sm) = cap(xi, sm)]}, and
let qu be the minority class label among points in eu, then

θ(eu) =
1

N

N∑
n=1

1[xn ∈ eu]1[yn = qu]. (9)

We can combine the equivalent points bound with other bounds to get a tighter lower bound on the objective
function. As the experimental results demonstrate in §4, there is sometimes a substantial reduction of the
search space after incorporating the equivalent points bound. We propose a general equivalent points bound
in Proposition B.1. We incorporate it into our framework by proposing the specific equivalent points bound in
Theorem B.2.
Proposition B.1 (General equivalent points bound). Let d = (dun, δun, dsplit, δsplit,K,H) be a tree, then
R(d,x,y) ≥

∑U
u=1 θ(eu) + λH .

Algorithm 1 Branch-and-bound for learning optimal decision trees.

Input: Objective function R(d,x,y), objective lower bound b(dun,x,y), set of features
S = {sm}Mm=1, training data (x,y) = {(xn, yn)}Nn=1, initial best known tree d0 with objec-
tive R0 = R(d0,x,y); d0 could be obtained as output from another (approximate) algorithm,
otherwise, (d0, R0) = (null, 1) provides reasonable default values. The initial value of δsplit is the
majority label of the whole dataset.
Output: Provably optimal decision tree d∗ with minimum objective R∗

(dc, Rc)← (d0, R0) . Initialize best tree and objective
Q← queue( [ ((), (), (), δsplit, 0, 0) ] ) . Initialize queue with empty tree
while Q not empty do . Stop when queue is empty

d = (dun, δun, dsplit, δsplit,K,H)← Q.pop( ) . Remove tree d from the queue
if b(dun,x,y) < Rc then . Bound: Apply Theorem 3.1

R← R(d,x,y) . Compute objective of tree d
if R < Rc then . Update best tree and objective

(dc, Rc)← (d,R)
end if
for every possible combination of features to split dsplit do

. Branch: Enqueue dun’s children
split dsplit and get new leaves dnew
for each possible subset d′split of dnew do

d′un = dun ∪ (dnew \ d′split)

Q.push( (d′un, δ
′
un, d

′
split, δ

′
split,K

′, H ′) )
end for

end for
end if

end while
(d∗, R∗)← (dc, Rc) . Identify provably optimal solution
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Recall that in our lower bound b(dun,x,y) in (5), we leave out the misclassification errors of leaves we are
going to split `0(dsplit, δsplit, x,y) from the objective R(d,x,y). Incorporating the equivalent points bound in
Theorem B.2, we obtain a tighter bound on our objective because we now have a tighter lower bound on the
misclassification errors of leaves we are going to split, 0 ≤ b0(dsplit,x,y) ≤ `0(dsplit, δsplit,x,y).

Theorem B.2 (Equivalent points bound). Let d be a tree with leaves dun, dsplit and lower bound b(dun,x,y),
then for any tree d′ ∈ σ(d) whose prefix d′un ⊇ dun,

R(d′,x,y) ≥ b(dun,x,y) + b0(dsplit,x,y), where (10)

b0(dsplit,x,y) =
1

N

U∑
u=1

N∑
n=1

cap(xn, dsplit) ∧ 1[xn ∈ eu]1[yn = qu]. (11)

C Upper Bounds on Number of Leaves

During the branch-and-bound execution, the current best objective Rc implies an upper bound on the maximum
number of leaves for those trees we still need to consider.

Theorem C.1 (Upper bound on the number of leaves). For a dataset with M features, consider a state space of
all trees. Let L(d) be the number of leaves of tree d and let Rc be the current best objective. For all optimal
trees d∗ ∈ argmindR(d,x,y)

L(d∗) ≤ min
(
bRc/λc , 2M

)
, (12)

where λ is the regularization parameter.

Corollary C.2 (A priori upper bound on the number of leaves). For all optimal trees d∗ ∈ argmindR(d,x,y),

L(d∗) ≤ min
(
b1/2λc , 2M

)
. (13)

For any particular tree d with unchanged leaves dun, we can obtain potentially tighter upper bounds on the
number of leaves for all its child trees whose unchanged leaves include dun.

Theorem C.3 (Parent-specific upper bound on the number of leaves). Let d = (dun, δun, dsplit, δsplit,K,H) be
a tree, let d′ = (d′un, δ

′
un, d

′
split, δ

′
split,K

′, H ′) ∈ σ(d) be any child tree such that d′un ⊇ dun, and let Rc be the
current best objective. If d′un has lower bound b(d′un,x, y) < Rc, then

H ′ < min

(
H +

⌊
Rc − b(dun,x,y)

λ

⌋
, 2M

)
. (14)

Theorem C.3 can be viewed as a generalization of the one-step lookahead bound (Lemma 3.2). This is because
we can view (14) as a bound on H ′ −H , which provides an upper bound on the number of remaining splits we
may need, based on the best tree we already have evaluated.

D Upper Bounds on Number of Tree Evaluations

In this section, based on the upper bounds on the number of leaves from §C, we give corresponding upper
bounds on the number of tree evaluations made by Algorithm 1. First, in Theorem D.1, based on information
about the state of Algorithm 1’s execution, we calculate, for any given execution state, upper bounds on the
number of additional tree evaluations needed for the execution to complete. We define the number of remaining
tree evaluations as the number of trees that are currently in, or will be inserted into, the queue. We evaluate the
number of tree evaluations based on current execution information of the current best objective Rc and the trees
in the queue Q of Algorithm 1.

Theorem D.1 (Upper bound on number of remaining tree evaluations). Consider the state space of all possible
leaves formed from a set of M features, and consider Algorithm 1 at a particular instant during execution.
Denote the current best objective as Rc, the queue as Q, and the size of prefix dun as L(dun). Denoting the
number of remaining prefix evaluations as Γ(Rc, Q), the bound is:

Γ(Rc, Q) ≤
∑

dun∈Q

f(dun)∑
k=0

(3M − L(dun))!

(3M − L(dun)− k)!
, (15)

where f(dun) = min

(⌊
Rc − b(dun,x,y)

λ

⌋
, 3M − L(dun)

)
. (16)
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The corollary below is a naïve upper bound on the total number of tree evaluations during the process of
Algorithm 1’s execution. It does not use algorithm execution state to bound the size of the search space like
Theorem D.1, and it relies only on the number of features and the regularization parameter λ.
Corollary D.2 (Upper bound on the total number of tree evaluations). Define Γtot(S) to be the total number of
trees evaluated by Algorithm 1, given the state space of all possible leaves formed from a set S of M features.
For any set S of all leaves formed of M features,

Γtot(S) ≤
K∑
k=0

3M !

(3M − k)!
,where K = min(b1/2λc, 2M ).

E Permutation Bound

If two trees are composed of the same leaves, i.e., they contain the same conjunctions of features up to a
permutation, then they classify all the data in the same way and their child trees are also permutations of each
other. Therefore, if we already have all children from one permutation of a tree, then there is no benefit to
considering child trees generated from a different permutation.
Corollary E.1 (Leaf Permutation bound). Let π be any permutation of {1, . . . , H}, Let d =
(dun, δun, dsplit, δsplit,K,H) and D = (Dun,∆un, Dsplit,∆split,K,H) denote trees with leaves (p1, . . . , pH)
and Dun = (pπ(1), . . . , pπ(H)), respectively, i.e., the leaves in D correspond to a permutation of the leaves
in d. Then the objective lower bounds of d and D are the same and their child trees correspond to permutations
of each other.

Therefore, if two trees have the same leaves, up to a permutation, according to Corollary E.1, either of them
can be pruned. We call this symmetry-aware pruning. In Section §E.1, we demonstrate how this helps to save
computation.

E.1 Upper bound on tree evaluations with symmetry-aware pruning

Here we give an upper bound on the total number of tree evaluations based on symmetry-aware pruning (§E).
For every subset of K leaves, there are K! leaf sets equivalent up to permutation. Thus, symmetry-aware
pruning dramatically reduces the search space by considering only one of them. This effects the execution of
Algorithm 1’s breadth-first search. With symmetry-aware pruning, when it evaluates trees of size K, for each set
of trees equivalent up to a permutation, it keeps only a single tree.
Theorem E.2 (Upper bound on tree evaluations with symmetry-aware pruning). Consider a state space of all
trees formed from a set S of 3M leaves where M is the number of features (the 3 options correspond to having
the feature’s value be 1, having its value be 0, or not including the feature), and consider the branch-and-bound
algorithm with symmetry-aware pruning. Define Γtot(S) to be the total number of prefixes evaluated. For any
set S of 3M leaves,

Γtot(S) ≤ 1 +

K∑
k=1

Nk + C(M,k)− P (M,k), (17)

where K = min(b1/2λc, 2M ), Nk is defined in (1).

Proof. By Corollary C.2, K ≡ min(b1/2λc, 2M ) gives an upper bound on the number of leaves of any
optimal tree. The algorithm begins by evaluating the empty tree, followed by M trees of depth k = 1,
then N2 =

∑1
n0=1

∑2n0

n1=1M ×
(
2n0

n1

)
(M − 1)n1 trees of depth k = 2. Before proceeding to length k = 3,

we keep only N2+ C(M, 2)− P (M, 2) trees of depth k = 2, where Nk is defined in (1), P (M,k) denotes
the number of k-permutations of M and C(M,k) denotes the number of k-combinations of M . Now, the
number of length k = 3 prefixes we evaluate is N3 + C(M, 3)− P (M, 3). Propagating this forward gives
(17).

Pruning based on permutation symmetries thus yields significant computational savings of
∑K
k=1 P (M,k)−

C(M,k). For example, when M = 10 and K = 5, the number reduced due to symmetry-aware pruning is
about 35463. If M = 20 and K = 10, the number of evaluations is reduced by about 7.36891× 1011.

F Similar Support Bound

Here, we present the similar support bound to deal with similar trees. Let us say we are given two trees that are
the same except that one internal node is split by a different feature, where this second feature is similar to the
first tree’s feature. By the similar support bound, if we know that one of these trees and all its child trees are
worse (beyond a margin) than the current best tree, we can prune the other one and all of its child trees.
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Theorem F.1 (Similar support bound). Define d = (dun, δun, dsplit, δsplit,K,H) and D =
(Dun,∆un, Dsplit,∆split,K,H) to be two trees which are exactly the same but one internal node split by
different features. Let f1, f2 be the features used to split that node in d and D respectively. Let t1, t2 be the left
subtree and the right subtree under the node f1 in d, and let T1, T2 be the left subtree and the right subtree
under the node f2 in D. Denote the normalized support of data captured by only one of t1 and T1 as ω, i.e.,

ω ≡ 1

N

N∑
n=1

[¬ cap(xn, t1) ∧ cap(xn, T1) + cap(xn, t1) ∧ ¬ cap(xn, T1)]. (18)

The difference between the two trees’ objectives is bounded by ω as the following:

ω ≥ R(d,x,y)−R(D,x,y) ≥ −ω, (19)

where R(d,x,y) is objective of d and R(D,x,y) is the objective of D. Then, we have

ω ≥ min
d†∈σ(d)

R(d†,x,y)− min
D†∈σ(Dun)

R(D†,x,y) ≥ −ω. (20)

Proof. The difference between the objectives of d and D is maximized when one of them correctly classifies
all the data corresponding to ω but the other misclassifies all of them. Therefore,

ω ≥ R(d,x,y)−R(D,x,y) ≥ −ω.

Let d∗ be the best child tree of d, i .e., R(d∗,x,y) = mind†∈σ(d)R(d†,x,y), and let D′ ∈ σ(Dun)
be its counterpart which is exactly the same but one internal node split by a different feature. Because
R(D′,x,y) ≥ minD†∈σ(Dun)R(D†,x,y),

min
d†∈σ(d)

R(d†,x,y) = R(d∗,x,y) ≥ R(D′,x,y)− ω

≥ min
D†∈σ(Dun)

R(D†,x,y)− ω. (21)

Similarly, minD†∈σ(Dun)R(D†,x,y) + ω ≥ mind†∈σ(d)R(d†,x,y).

With the similar support bound, for two trees d and D as above, if we already know D and all its child
trees cannot achieve a better tree than the current optimal one, and in particular, we assume we know that
minD†∈σ(Dun)R(D†,x,y) ≥ Rc + ω, we can then also prune d and all of its child trees, because

min
d†∈σ(d)

R(d†,x,y) ≥ min
D†∈σ(Dun)

R(D†,x,y)− ω ≥ Rc. (22)

G Implementation

We implement a series of data structures designed to support incremental computation.

G.1 Data Structure of Leaf and Tree

First, we store bounds and intermediate results for both full trees and the individual leaves to support the
incremental computation of the lower bound and the objective. As a global statistic, we maintain the best
(minimum) observed value of the objective function and the corresponding tree. As each leaf in a tree represents
a set of clauses, each leaf stores a bit-vector representing the set of samples captured by that clause and the
prediction accuracy for those samples. From these values in the leaves, we can efficiently compute both the
value of the objective for an entire tree and new leaf values for children formed from splitting a leaf.

Specifically, for the data structure of leaf l, we store:

• A set of clauses defining the leaf.

• A binary vector of length N (number of data points) indicating whether or not each point is captured
by the leaf.

• The number of points captured by the leaf.

• A binary vector of length M (number of features) indicating the set of dead features. In a leaf, a
feature is dead if Theorem 3.5 does not hold.

• The lower bound on the leaf misclassification error b0(l,x,y), which is defined in (11)

• The label of the leaf.

• The loss of the leaf.
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• A boolean indicating whether the leaf is dead. A leaf is dead if Theorem 3.3 does not hold; we never
split a dead leaf.

We store additional information for entire trees:

• A set of leaves in the tree.

• The objective.

• The lower bound of the objective.

• A binary vector of length nl (number of leaves) indicating whether the leaf can be split, that is, this
vector records split leaves dsplit and unchanged leaves dun. The unchanged leaves of a tree are also
unchanged leaves in its child trees.

G.2 Queue

Second, we use a priority queue to order the exploration of the search space. The queue serves as a worklist,
with each entry in the queue corresponding to a tree. When an entry is removed from the queue, we use it to
generate child trees, incrementally computing the information for the child trees. The ordering of the worklist
represents a scheduling policy. We evaluated both structural orderings, e.g., breadth first search and depth
first search, and metric-based orderings, e.g., objective function, and its lower bound. Each metric produces a
different scheduling policy. We achieve the best performance in runtime and memory consumption using the
curiosity metric from CORELS [2], which is the objective’s lower bound, divided by the normalized support of
its unchanged leaves. For example, relative to using the objective, curiosity reduces runtime by a factor of two
and memory consumption by a factor of four.

G.3 Symmetry-aware Map

Third, to support symmetry-aware pruning from Corollary E.1, we introduce two symmetry aware maps – a
LeafCache and a TreeCache. The LeafCache ensures that we only compute values for a particular leave once;
the TreeCache ensures we do not create trees equivalent to those we have already explored.

A leaf is a set of clauses, each of which corresponds to an attribute and the value (0,1) of that attribute. As the
leaves of a decision tree are mutually exclusive, the data captured by each leaf is insensitive to the order of the
leaf’s clauses. We encode leaves in a canonical order (sorted by attribute indexes) and use that canonical order
as the key into the LeafCache. Each entry in the LeafCache represents all permutations of a set of clauses. We
use a Python dictionary to map these keys to the leaf and its cached values. Before creating a leaf object, we
first check if we already have that leaf in our map. If not, we create the leaf and insert it into the map. Otherwise,
the permutation already exists, so we use the cached copy in the tree we are constructing.

Next, we implement the permutation bound (Corollary E.1) using the TreeCache. The TreeCache contains
encodings of all the trees we have evaluated. Like we did for the clauses in the LeafCache, we introduce a
canonical order over the leaves in a tree and use that as the key to the TreeCache. If our algorithm produces a
tree that is a permutation of a tree we have already evaluated, we need not evaluate it again. Before evaluating a
tree, we look it up in the cache. If it’s in the cache, we do nothing; if it is not, we compute the bounds for the
tree and insert it into the cache.

G.4 Execution

Now, we illustrate how these data structures support execution of our algorithm. We initialize the algorithm
with the current best objective Rc and tree dc. For unexplored trees in the queue, the scheduling policy selects
the next tree d to split; we keep removing elements from the queue until the queue is empty. Then, for every
possible combination of features to split dsplit, we construct a new tree d′ with incremental calculation of the
lower bound b(d′un,x,y) and the objective R(d′,x,y). If we achieve a better objective R(d′,x,y), i.e., less
than the current best objective Rc, we update Rc and dc. If the lower bound of the new tree d′, combined with
the equivalent points bound (Theorem B.2) and the lookahead bound (Theorem 3.2), is less than the current best
objective, then we push it into the queue. Otherwise, according to the hierarchical lower bound (Theorem 3.1),
no child of d′ could possibly have an objective better than Rc, which means we do not push d′ queue. When
there are no more trees to explore, i.e., the queue is empty, we have finished the search of the whole space and
output the (provably) optimal tree.
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H Proof of Theorems

H.1 Proof of Theorem C.1

Proof. For an optimal tree d∗ with objective R∗,

λL(d∗) ≤ R∗ = R(d∗,x,y) = `(d∗,x,y) + λL(d∗) ≤ Rc.

The maximum possible number of leaves for d∗ occurs when `(d∗,x, y) is minimized; therefore this gives
bound (12).

For the rest of the proof, let H∗ = L(d∗) be the number of leaves of d∗. If the current best tree dc has zero
misclassification error, then

λH∗ ≤ `(d∗,x,y) + λH∗ = R(d∗,x,y) ≤ Rc = R(dc,x,y) = λH,

and thus H∗ ≤ H . If the current best tree is suboptimal, i.e., dc /∈ argmindR(d,x,y), then

λH∗ ≤ `(d∗,x,y) + λH∗ = R(d∗,x,y) < Rc = R(dc,x,y) = λH,

in which case H∗ < H , i.e., H∗ ≤ H − 1, since H is an integer.

H.2 Proof of Theorem C.3

Proof. First, note that H ′ ≥ H . Now recall that

b(dun,x,y) = `p(dun, δun,x,y) + λH

≤ `p(d′un, δ′un,x,y) + λH ′ = b(d′un,x,y),

and that `p(dun, δun,x,y) ≤ `p(d′un, δ′un,x,y). Combining these bounds and rearranging gives

b(d′un,x,y) = `p(d
′
un, δ

′
un,x,y) + λH + λ(H ′ −H)

≥ `p(dun, δun,x,y) + λH + λ(H ′ −H)

= b(dun,x,y) + λ(H ′ −H). (23)

Combining (23) with b(d′un,x,y) < Rc gives (14).

H.3 Proof of Theorem D.1

Proof. The number of remaining tree evaluations is equal to the number of trees that are currently in or will be
inserted into queue Q. For any such tree with unchanged leaves dun, Theorem C.3 gives an upper bound on the
number of leaves of a tree with unchanged leaves d′un that contains dun:

L(d′un) ≤ min

(
L(dun) +

⌊
Rc − b(dun,x,y)

λ

⌋
, 2M

)
≡ U(dun).

This gives an upper bound on the remaining tree evaluations:

Γ(Rc, Q) ≤
∑

dun∈Q

U(dun)−L(dun)∑
k=0

P (3M − L(dun), k) (24)

=
∑

dun∈Q

f(dun)∑
k=0

(3M − L(dun))!

(3M − L(dun)− k)!
,

where P (m, k) denotes the number of k-permutations of m.

H.4 Proof of Proposition D.2

Proof. By Corollary C.2, K ≡ min(b1/2λc, 2M ) gives an upper bound on the number of leaves of any optimal
tree. Since we can think of our problem as finding the optimal selection and permutation of k out of 3M leaves,
over all k ≤ K,

Γtot(S) ≤ 1 +

K∑
k=1

P (3M , k) =

K∑
k=0

3M !

(3M − k)!
.
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H.5 Proof of Theorem 3.3

Proof. Let d∗ = (dun, δun, dsplit, δsplit,K,H) be an optimal tree with leaves (p1, . . . , pH) and labels
(ŷ

(leaf)
1 , . . . , ŷ

(leaf)
H ). Consider the tree d = (d′un, δ

′
un, d

′
split, δ

′
split,K

′, H ′) derived from d∗ by deleting a
pair of sibling leaves pi → ŷ

(leaf)
i , pi+1 → ŷ

(leaf)
i+1 and adding their parent leaf pj → ŷ

(leaf)
j , therefore

d′un = (p1, . . . , pi−1, pi+2, . . . , pH , pj) and δ′un = (ŷ
(leaf)
1 , . . . , ŷ

(leaf)
i−1 , ŷ

(leaf)
i+2 , . . . , ŷ

(leaf)
H , ŷ

(leaf)
j ).

When d misclassifies half of the data captured by pi, pi+1, while d∗ correctly classifies them all, the difference
between d and d∗ would be maximized, which provides an upper bound:

R(d,x,y) = `(d,x,y) + λ(H − 1)

≤ `(d∗,x,y) + supp(pi,x) + supp(pi+1,x)

− 1

2
[supp(pi,x) + supp(pi+1,x)] + λ(H − 1)

= R(d∗,x,y) +
1

2
[supp(pi,x) + supp(pi+1,x)]− λ

= R∗ +
1

2
[supp(pi,x) + supp(pi+1,x)]− λ (25)

where supp(pi,x), supp(pi,x) is the normalized support of pi, pi+1, defined in (3), and the regularization
‘bonus’ comes from the fact that d∗ has one more leaf than d.

Because d∗ is the optimal tree, we have R∗ ≤ R(d,x,y), which combined with (25) leads to (6). Therefore,
for each child leaf pair pk, pk+1 of a split, the sum of normalized supports of pk, pk+1 should be no less than
twice the regularization parameter, i.e., 2λ.

H.6 Proof of Theorem 3.4

Proof. Let d = (d′un, δ
′
un, d

′
split, δ

′
split,K

′, H ′) be the tree derived from d∗ by deleting a pair of leaves, pi and
pi+1, and adding the their parent leaf, pj . The discrepancy between d∗ and d is the discrepancy between
(pi, pi+1) and pj : `(d,x,y)− `(d∗,x,y) = ai, where ai is defined in (7). Therefore,

R(d,x,y) = `(d,x,y) + λ(K − 1) = `(d∗,x,y) + ai + λ(K − 1)

= R(d∗,x,y) + ai − λ = R∗ + ai − λ.
This combined with R∗ ≤ R(d,x,y) leads to λ ≤ ai.

H.7 Proof of Theorem 3.5

Proof. Let d = (d′un, δ
′
un, d

′
split, δ

′
split,K

′, H ′) be the tree derived from d∗ by deleting a pair of leaves, pi with
label ŷ(leaf)

i and pi+1 with label ŷ(leaf)
i+1 , and adding the their parent leaf pj with label ŷ(leaf)

j . The discrepancy
between d∗ and d is the discrepancy between pi, pi+1 and pj : `(d,x,y) − `(d∗,x,y) = ai, where we
defined ai in (7). According to Theorem 3.4, λ ≤ ai and

λ ≤ 1

N

N∑
n=1

{cap(xn, pi) ∧ 1[ŷ
(leaf)
i = yn]

+ cap(xn, pi+1) ∧ 1[ŷ
(leaf)
i+1 = yn]

− cap(xn, pj) ∧ 1[ŷ
(leaf)
j = yn]}. (24)

For any leaf j and its two child leaves i, i+ 1, we always have
N∑
n=1

cap(xn, pi) ∧ 1[ŷ
(leaf)
i = yn] ≤

N∑
n=1

cap(xn, pj) ∧ 1[ŷ
(leaf)
j = yn],

N∑
n=1

cap(xn, pi+1) ∧ 1[ŷ
(leaf)
i+1 = yn] ≤

N∑
n=1

cap(xn, pj) ∧ 1[ŷ
(leaf)
j = yn]

which indicates that ai ≤ 1
N

∑N
n=1 cap(xn, pi) ∧ 1[ŷ

(leaf)
i = yn] and ai ≤ 1

N

∑N
n=1 cap(xn, pi+1) ∧

1[ŷ
(leaf)
i+1 = yn]. Therefore,

λ ≤ 1

N

N∑
n=1

cap(xn, pi) ∧ 1[ŷ
(leaf)
i = yn],

λ ≤ 1

N

N∑
n=1

cap(xn, pi+1) ∧ 1[ŷ
(leaf)
i+1 = yn].
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H.8 Proof of Proposition B.1

Proof. Recall that the objective is R(d,x,y) = `(d,x,y) + λH , where the misclassification error `(d,x,y)
is given by

`(d,x,y) =
1

N

N∑
n=1

K∑
k=1

cap(xn, pk) ∧ 1[ŷ
(leaf)
k 6= yn].

Any particular tree uses a specific leaf, and therefore a single class label, to classify all points within a set of
equivalent points. Thus, for a set of equivalent points u, the tree d correctly classifies either points that have
the majority class label, or points that have the minority class label. It follows that d misclassifies a number of
points in u at least as great as the number of points with the minority class label. To translate this into a lower
bound on `(d,x,y), we first sum over all sets of equivalent points, and then for each such set, count differences
between class labels and the minority class label of the set, instead of counting mistakes:

`(d,x,y)

=
1

N

U∑
u=1

N∑
n=1

K∑
k=1

cap(xn, pk) ∧ 1[ŷ
(leaf)
k 6= yn] ∧ 1[xn ∈ eu]

≥ 1

N

U∑
u=1

N∑
n=1

K∑
k=1

cap(xn, pk) ∧ 1[qu = yn] ∧ 1[xn ∈ eu].

Next, because every datum must be captured by a leaf in the tree d,
∑K
k=1 cap(xn, pk) = 1.

`(d,x,y) ≥ 1

N

U∑
u=1

N∑
n=1

1[xn ∈ eu]1[yn = qu] =

U∑
u=1

θ(eu),

where the final equality applies the definition of θ(eu) in (9). Therefore, R(d,x,y) = `(d,x,y) + λK

≥
∑U
u=1 θ(eu) + λK.

I Ablation Experiments

We evaluate how much each of our bounds contributes to OSDT’s performance and what effect the scheduling
metric has on execution. Table 2 provides experimental statistics of total execution time, time to optimum, total
number of trees evaluated, number of trees evaluated to optimum, and memory consumption on the recidivism
data set. The first row is the full OSDT implementation, and the others are variants, each of which removes a
specific bound. While all the optimizations reduce the search space, the lookahead and equivalent points bounds
are, by far, the most significant, reducing time to optimum by at least two orders of magnitude and reducing
memory consumption by more than one order of magnitude. In our experiment, although the scheduling policy
has a smaller effect, it is still significant – curiosity is a factor of two faster than the objective function and
consumes 25% of the memory consumed when using the objective function for scheduling. All other scheduling
policies, i.e., the lower bound and the entropy, are significantly worse.

J Regularized BinOCT

Since BinOCT always produces complete binary trees of given depth, we add a regularization term to the
objective function of BinOCT. In this way, regularized BinOCT (RBinOCT) can generate the same trees as
OSDT. Following the notation of [20], we provide the formulation of regularized BinOCT:

min
∑
l,c

el,c + λ
∑
l

αl s.t. (25)
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Per-bound performance improvement (ProPublica data set)
Total time Slow- Time to

Algorithm variant (s) down optimum (s)
All bounds 14.70 — 1.01
No support bound 17.11 1.16× 1.09
No incremental accuracy bound 30.16 2.05× 1.13
No accuracy bound 31.83 2.17× 1.23
No lookahead bound 31721 2157.89× 187.18
No equivalent points bound >12475 >848× —

Total #trees #trees Mem
Algorithm variant evaluated to optimum (GB)
All bounds 232402 16001 .08
No support bound 279763 18880 .08
No incremental accuracy bound 546402 21686 .08
No accuracy bound 475691 19676 .09
No lookahead bound 284651888 3078274 10
No equivalent points bound >77000000 — >64

Table 2: Per-bound performance improvement, for the ProPublica data set (λ = 0.005, cold start,
using curiosity). The columns report the total execution time, time to optimum, total number of trees
evaluated, number of trees evaluated to optimum, and memory consumption. The first row shows
our algorithm with all bounds; subsequent rows show variants that each remove a specific bound
(one bound at a time, not cumulative). All rows except the last one represent a complete execution,
i.e., until the queue is empty. For the last row (‘No equivalent points bound’), the algorithm was
terminated after running out of the memory (about ∼64GB RAM).

∀n
∑
f

fn,f = 1

∀r
∑
l

lr,l = 1

∀l
∑
c

pl,c = 1

∀n, f, b ∈ bin(f) M · fn,f +
∑

r∈lr(b)

∑
l∈ll(n)

lr,l +
∑
t∈tl(b)

M · tn,t −
∑
t∈tl(b)

M ≤M

∀n, f, b ∈ bin(f) M ′ · fn,f +
∑

r∈rr(b)

∑
l∈rl(n)

lr,l −
∑
t∈tl(b)

M ′ · tn,t ≤M ′

∀n, f M ′′ · fn,f +
∑

maxt(f)<f(r)

∑
l∈ll(n)

lr,l +
∑

f(r)<mint(f)

∑
l∈rl(n)

lr,l ≤M”

∀ l, c
∑

r:Cr=c

lr,l −M ′′′ · pl ≤ el,c

∀ l
∑
r

lr,l ≤ R · αl, (26)

where 1 ≤ n ≤ N , 1 ≤ f ≤ F , 1 ≤ r ≤ R, 1 ≤ l ≤ L, 1 ≤ c ≤ C. Variables αl, fn,f , tn,t, pl,c are binary,
and el,c and lr,l are continuous (see Table 3). Compared with BinOCT, we add a penalization term λ

∑
l αl to

the objective function (25) and a new constraint (26), where λ is the same as that of OSDT, and αl = 1 if leaf l
is not empty and αl = 0 if leaf l is empty. All the rest of the constraints are the same as those of BinOCT. We
use the same notation as in the original BinOCT formulation [20].

Figure 7 shows the trees generated by regularized BinOCT and OSDT when using the same regularization
parameter λ = 0.007. Although the two algorithms produce the same optimal trees, regularized BinOCT is
much slower than OSDT. In our experiment, it took only 3.390 seconds to run the OSDT algorithm to optimality,
while the regularized BinOCT algorithm had not finished running after 1 hour.

In Figure 8, we provide execution traces of OSDT and RBinOCT. OSDT converges much faster than RBinOCT.
For some datasets, i.e., FICO and Monk1, the total execution time of RBinOCT was several times longer than
that of OSDT.
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Notation Type Definition
n index internal (non-leaf) node in the tree, 1 ≤ n ≤ N
l index leaf of the tree, 1 ≤ l ≤ L
r index row in the training data, 1 ≤ r ≤ R
f index feature in the training data, 1 ≤ f ≤ F
c index class in the training data, 1 ≤ c ≤ C
bin(f) set feature f ’s binary encoding ranges
lr(b) set rows with values in b’s lower range, b ∈ bin(f)
ur(b) set rows with values in b’s upper range
tl(b) set tn,t variables for b’s range
ll(n) set node n’s leaves under the left branch
rl(n) set node n’s leaves under the right branch
K constant the tree’s depth
N = 2K − 1 constant the number of internal nodes (not leaves)
L = 2K constant the number of leaf nodes
F constant the number of features
C constant the number of classes
R constant the number of training data rows
T constant the total number of threshold values
Tf constant the number of threshold values for feature f
Tmax constant maximum of Tf over all features f
V f
r constant feature f ’s value in training data row r
Cr constant class value in training data row r
mint(f) constant feature f ’s minimum threshold value
maxt(f) constant feature f ’s maximum threshold value
M constant minimized big-M value
fn,f binary node n’s selected feature f
tn,t binary node n’s selected threshold t
pl,c binary leaf l’s selected prediction class c
αl binary αl = 1 if leaf l is not empty
el,c continuous error for rows with class c in leaf l
lr,l continuous row r reaches leaf l
λ continuous the regularization parameter

Table 3: Summary of the notations used in RBinOCT.

priors=0

priors>3

age<26

No Yes

Yes

No

(a) RBinOCT
(accuracy: 66.223%)
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(b) OSDT
(accuracy: 66.223%)

Figure 7: The decision trees generated by Regularized BinOCT and OSDT on the Monk1 dataset.
The two trees are exactly the same, but regularized BinOCT is much slower in producing this tree.

K CART

We provide the trees generated by CART on COMPAS, Tic-Tac-Toe, and Monk1 datasets. With the same
number of leaves as their OSDT counterparts (Figure 4, Figure 6, Figure 5), these CART trees perform much
worse than the OSDT ones.
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Figure 8: Execution traces of OSDT and regularized BinOCT. OSDT converges much more quickly
than RBinOCT.

L Cross-validation Experiments

The difference between training and test error is probabilistic and depends on the number of observations in
both training and test sets, as well as the complexity of the model class. The best learning-theoretic bound on
test error occurs when the training error is minimized for each model class, which in our case, is the maximum
number of leaves in the tree (the level of sparsity). By adjusting the regularization parameter throughout its full
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Figure 9: Decision trees generated by CART on COMPAS, Tic-Tac-Toe, and Monk1 datasets. They
are all inferior to these trees produced by OSDT as shown in Section 4.

range, OSDT will find the most accurate tree for each given sparsity level. Figures 10-16 show the training
and test results for each of the datasets and for each fold. As indicated by theory, higher training accuacy for
the same level of sparsity tends to yield higher test accuracy in general, but not always. There are some cases,
like the car dataset, where OSDT’s almost-uniformly-higher training accuracy leads to higher test accuracy,
and other cases where all methods perform the same. In the case where all methods perform the same, OSDT
provides a certificate of optimality showing that no better training performance is possible for the same level of
sparsity.
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Figure 10: 10-fold cross-validation experiment results of OSDT, CART, BinOCT on COMPAS
dataset. Horizontal lines indicate the accuracy of the best OSDT tree in training.
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Figure 11: 10-fold cross-validation experiment results of OSDT, CART, BinOCT on FICO dataset.
Horizontal lines indicate the accuracy of the best OSDT tree in training.
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Figure 12: 10-fold cross-validation experiment results of OSDT, CART, BinOCT on Tic-Tac-Toe
dataset. Horizontal lines indicate the accuracy of the best OSDT tree in training.

24



0 2 4 6 8 10 12 14 16 18 20
Number of Leaves

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Accuracy of car Dataset (Fold 1)

OSDT-Train
OSDT-Test
CART-Train
CART-Test
BinOCT-Train
BinOCT-Test

0 2 4 6 8 10 12 14 16 18 20
Number of Leaves

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Accuracy of car Dataset (Fold 2)

OSDT-Train
OSDT-Test
CART-Train
CART-Test
BinOCT-Train
BinOCT-Test

0 2 4 6 8 10 12 14 16 18 20
Number of Leaves

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Accuracy of car Dataset (Fold 3)

OSDT-Train
OSDT-Test
CART-Train
CART-Test
BinOCT-Train
BinOCT-Test

0 2 4 6 8 10 12 14 16 18 20
Number of Leaves

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Accuracy of car Dataset (Fold 4)

OSDT-Train
OSDT-Test
CART-Train
CART-Test
BinOCT-Train
BinOCT-Test

0 2 4 6 8 10 12 14 16 18 20
Number of Leaves

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Accuracy of car Dataset (Fold 5)

OSDT-Train
OSDT-Test
CART-Train
CART-Test
BinOCT-Train
BinOCT-Test

0 2 4 6 8 10 12 14 16 18 20
Number of Leaves

0.70

0.75

0.80

0.85

0.90

0.95

1.00
Ac

cu
ra

cy
Accuracy of car Dataset (Fold 6)

OSDT-Train
OSDT-Test
CART-Train
CART-Test
BinOCT-Train
BinOCT-Test

0 2 4 6 8 10 12 14 16 18 20
Number of Leaves

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Accuracy of car Dataset (Fold 7)

OSDT-Train
OSDT-Test
CART-Train
CART-Test
BinOCT-Train
BinOCT-Test

0 2 4 6 8 10 12 14 16 18 20
Number of Leaves

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Accuracy of car Dataset (Fold 8)

OSDT-Train
OSDT-Test
CART-Train
CART-Test
BinOCT-Train
BinOCT-Test

0 2 4 6 8 10 12 14 16 18 20
Number of Leaves

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Accuracy of car Dataset (Fold 9)

OSDT-Train
OSDT-Test
CART-Train
CART-Test
BinOCT-Train
BinOCT-Test

0 2 4 6 8 10 12 14 16 18 20
Number of Leaves

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Accuracy of car Dataset (Fold 10)

OSDT-Train
OSDT-Test
CART-Train
CART-Test
BinOCT-Train
BinOCT-Test

Figure 13: 10-fold cross-validation experiment results of OSDT, CART, BinOCT on car dataset.
Horizontal lines indicate the accuracy of the best OSDT tree in training.
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Figure 14: 10-fold cross-validation experiment results of OSDT, CART, BinOCT on Monk1 dataset.
Horizontal lines indicate the accuracy of the best OSDT tree in training.
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Figure 15: 10-fold cross-validation experiment results of OSDT, CART, BinOCT on Monk2 dataset.
Horizontal lines indicate the accuracy of the best OSDT tree in training.
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Figure 16: 10-fold cross-validation experiment results of OSDT, CART, BinOCT on Monk3 dataset.
Horizontal lines indicate the accuracy of the best OSDT tree in training.
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