
Supplement to: Invert to Learn to Invert

Anonymous Author(s)
Affiliation
Address
email

A Reverse Computation of Invertible Layer1

1

1
1

1
1

1

1

1

1

1
W WTr()

a) b) c) d) e)

Figure 1: Illustration of our invertible layer. a)-d): Computational steps of the invertible layer. a)
data x; b) x′ = Ux; c) y′; d) y = U>y′; e) Latent space y after unsupervised maximum likelihood
training of a single invertible layer on data from a).

For completeness, we repeat here the computational steps of our invertible layer:2

x′ = Ux (1)

y′
1 = x′

1 (2)

y′
2 = x′

2 + G(x′
1) (3)

y = U>y′ (4)
where x′ = (x′

1,x
′
2) and y′ = (y′

1,y
′
2), U is an orthogonal 1 × 1 convolution, and G is any3

(non-)linear function.4

The reverse computation then takes the form:5

y′ = Uy (5)

x′
2 = y′

2 − G(y′
1) (6)

x′
1 = y′

1 (7)

x = UTx′ (8)

And the total derivatives of intermediate layers are given by6

ȳ′ = U>ȳ (9)

x̄′
2 = ȳ′

2 (10)

x̄′
1 = ȳ′

1 +

(
∂G
∂y′

1

)>

ȳ′
2 (11)

x̄ = Ux̄′ (12)

where x̄′ = (x̄′
1, x̄′

2) and ȳ′ = (ȳ′
1, ȳ

′
2), and we use the same notation as in Gomez et al. [1] for7

the total derivative.8

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.



B Details on model architectures and training9

For the RIM we used a similar model as in Lønning et al. [2]. The model consists of three convolu-10

tional layers and two gated recurrent units (GRU) [3] with 64 hidden channels each. The structure is11

(Conv2D(kernel=5× 5), GRU(kernel=1× 1),Conv2D(kernel=3× 3,dilation=2),GRU(kernel=1× 1),12

Conv2D(kernel=3 × 3, bias=False)), with output size of 2 channels for the real and imaginary13

component, respectively. During training the loss was averaged across all times steps.14

For the i-RIM, we chose similar architectures for the 2D and 3D models, respectively. The models15

consist of 10 invertible layers at each time step, no parameter sharing was done across time steps,16

the loss was only evaluated on the last time step. The downsampling blocks at each time step were17

(d=(1,1,2,2,4,4,2,2,1,1),k=(8,8,32,32,128,128,32,32)). The only difference between 2D and 3D model18

was that the former used 2D convolutions and the latter used 3d convolutions.19

During training we used the Adam optimizer [4]. We chose a learning rate of 1e − 3 for the 2D20

models, and a learning rate of 1e− 3 for the 3D i-RIM. The learning rate was halved every 10 epochs.21

All models were trained in data parallel mode using 4 GPUs (Nvidia Tesla V100-PCIE-16GB) in22

Pytorch. For the RIM we chose batch size 4. This is because only a single image fits into each GPU23

during training. For the i-RIM 2D we used batch size 32, and for the i-RIM 3D we used batch size 4.24

For evaluation we had to run the i-RIM 3D on a Nvidia Tesla V100-PCIE-32GB graphics card.25

Pytorch and CuDNN produce a large memory overhead when input data has varying size. Since26

all test volumes differ vastly in size, we always ran into out-of-memory issues with a Nvidia Tesla27

V100-PCIE-16GB. We will investigate this issue in the future.28

C Evaluating of Memory Consumption29

We evaluated memory consumption on a single GPU in Pytorch with mini-batch size 1. In order to30

measure memory consumption we used the function31

torch.cuda.max_memory_allocated()32

After each mini-batch we reset the maximum memory allocated with33

torch.cuda.reset_max_memory_allocated()34

To evaluate memory consumption during training, we ran 10 mini-batches and recorded the maximum35

allocated memory after each back-propagation step. We report the minimum of all 10 values which36

excludes outliers. We use the same approach for evaluating memory consumption during test, but this37

time the model is set to evaluation mode, and no back-propagation is performed.38

References39

[1] Aidan N Gomez, Mengye Ren, Raquel Urtasun, and Roger B Grosse. The reversible40

residual network: Backpropagation without storing activations. In I. Guyon, U. V.41

Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Ad-42

vances in Neural Information Processing Systems 30, pages 2214–2224. Curran Associates,43

Inc., 2017. URL http://papers.nips.cc/paper/6816-the-reversible-residual-44

network-backpropagation-without-storing-activations.pdf.45

[2] Kai Lønning, Patrick Putzky, Matthan WA Caan, and Max Welling. Recurrent inference ma-46

chines for accelerated mri reconstruction. In (1st Medical Imaging with Deep Learning (MIDL)47

conference.48

[3] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical Evaluation49

of Gated Recurrent Neural Networks on Sequence Modeling. dec 2014.50

[4] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd51

International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May52

7-9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.53

2

http://papers.nips.cc/paper/6816-the-reversible-residual-network-backpropagation-without-storing-activations.pdf
http://papers.nips.cc/paper/6816-the-reversible-residual-network-backpropagation-without-storing-activations.pdf
http://papers.nips.cc/paper/6816-the-reversible-residual-network-backpropagation-without-storing-activations.pdf
http://arxiv.org/abs/1412.6980

	Reverse Computation of Invertible Layer
	Details on model architectures and training
	Evaluating of Memory Consumption

