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(Nearly) Efficient Algorithms for the Graph Matching Problem on Correlated Random Graphs

Boaz Barak, Chi-Ning Chou, Zhixian Leli, Tselil Schramm, Yueqi Sheng

-

\_

4 Motivation

» De-anonymization (e.g., matching social networks)

Matching the users @ -G

—

» Malware détecfion (e.g., finding suspicious pétferné in a code)

d}
‘;

< Problem Formulation

& Malware-free

Containing malware

> The distance between two graphs: min |Go — m(G1)llo -

» Input model: Correlated Erdos-Rényi Graphs.

o —y Go
Erdos-Renyi graph Remove each edge Gy

I.1.d. with prob. g

» Two computational problems:

¢ Graph similarity: hypothesis testing. Given (Go, G1), distinguish
(1) correlated Erdos-Renyi and (ii) independent Erdos-Rényi.

+ Graph matching: recovery. Given (G, G1) sampled from correlated Erdos-
Rényi, find the 7™ that minimizes the distance.

d Prior Work

» Only exponential time algorithms were known, e.g., percolation.
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Jd Our Results

» Graph similarity: We give the first polynomial time algorithm.

» Graph matching: We give the first quasi-polynomial time algorithm.

Cullina & Kivayash Info-theoretic exp(O(n))
Yartseva & Grossglauser percolation exp((1 —d)n)

This work Subgraph matching nOUogn)

Mossel & Xu Seeded local statistics nO(logn) *

* The runtime does not work for all regimes. Ask me for more details!

d Our “Black Swan” Approach

» Intuition: Use a family of small graphs (a flock of black swans) as
the features to compare (Gyp, G1).

The variance of #appearance is large. v #appearance concentrates near exp.

Too many automorphismes. v" Unique automorphism.

Large overlap with other swans. v' Small overlap with other black swans.

» Difficulties: Construct a large family of black swans with the
desiring properties.
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» Graph similarity: Use the correlation of the black swan counts to
perform hypothesis testing.

¢ Let H be afamily of black swans and Xy (G)be the # of H's in G.

¢ Define the correlation polynomial:

1 | Z (Xu(Go) —EcXu(G))(Xu(G1) —EcXu(G)).

P'H(G()aGl) — TA71
M g

¢ (Correlated Erdés-Rényi): | Py (Go, G1)| is large.
¢ (Independent Correlated Erdos-Rényi): |Py(Go,G1)| is small.

» Graph matching: For each vertex v, the black swan family gives a
signature vector according to the position of v in each swan.

o (Partial assignment): The uniqueness of each swan guarantees the
signature vector from Gy and G of the same vertex being close. This holds
w.h.p. for many vertices and give a partial assignment.

¢ (Boosting): Use the partial assignment as the seeds and generate a full
permutation that matches Gy and G;.

- Future Directions

» For theorists: (i) Improve the runtime, (ii) construct black swans for
a larger range of parameters, and (iiil) computational limitation.

» For experimentalists: Can our black swan approach guide
practical algorithms for graph matching?

¢ Conference version: ¢ arXiv version:
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