
1 Acronyms

NG Number of grid cells
NP Number of place cells
x’ ∈ R2 Position in physical space
x ∈ R2 Position on the grid cell sheet (metric space)
u ∈ R2 Velocity in physical space
Gt ∈ R1×NG

+ Vector of aposteriori grid cell firing rates at time t
G′t ∈ R1×NG

+ Vector of predicted grid cell firing rates at time t
G(x) Aposteriori distribution over location in metric space (continuous version of Gt)
G′(x) Predicted distribution over location in metric space (continuous version of G′t)
P ∈ R1×NP Vector of place cell firing rates at time t
A ∈ RNP×NP Matrix of PC-PC synaptic associations (the associative structure)
B ∈ RNP×NG Matrix of PC-GC synaptic associations (the associative embedding in the metric map)
bi ∈ R2 Location of PC i in metric space
Bi(bi Belief of PC i (continuous distribution of PC-GC synaptic associations)
ψij(bi,bj) Pairwise potential (observation) between PCs i and j
mu→t(bt) Message from PC u to j

2 Overview of complete system

2.1 Anatomy of SLAM

Our model proposes a detailed mapping of the joint location-map distribution to the HPC-mEC
system:

Figure 1: Anatomy of a SLAM system. The joint location-map probability distribution (A) is
represented in the firing rates and synaptic weights within the HPB-mEC system (B).

2.2 Algorithm describing the online-offline systems’ interaction

Algorithm: Online localization and learning with prediction error initiated offline inference
1: initialize: A ∼ U(0, 1),B ∼ U(0, 1) % Initialize weight matrices
2: while k < K do: % For the duration of the simulation
3: do_movemement_update(); % Update state via path integration
4: make_observation(); % Compute PC firing
5: if εk > εmin do: % If prediction error, do offline inference
6: while any Ti < Tmin do: % Loop until cells below tension threshold
7: u=argmin(T); % Find node with max. message tension
8: compute_and_broadcast_message(u); % Broadcast message to neighbours of u
9: for t ∈ Neighbours(u) do: % Loop over neighbours of u
10: update_belief(t); % Update belief of node t
11: update_message_tension(t); % Compute change in belief od node t
12: update_PC_GC_weights(); % Do associative to metric map learning
13: update_PC_PC_weights(); % Update associative map associations
14: do_measurement_update(); % Correct state estimate
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3 Online model details

3.1 Neural implementation

In the movement movement update:

G′(xt) =

∫
T (xt|xt−1, ût) ·G(xt−1)dxt−1 (1)

the transition function is a wrapped Gaussian:

T (xt|xt−1, ût) =

∞∑
m,n=−∞

f(xt − xt−1|ût + cm,n, σ
2
PIûtI) (2)

= fW(xt − xt−1|ût, σ
2
PIûtI) (3)

Since the transition function is shared across all states in grid space and the wrapped Normal
distribution is periodic, eq. 3 can be represented as a circular convolution:

G′(xt) = fW ∗Gt (4)

When grid space is represented discretely by the firing rates of a finite population of grid cells, the
circular convolution in Eq. 4 can be equivalently represented as multiplication by a corresponding
circulant matrix, such that Eq. 4 can be further manipulated to give:

G′t = Gt−1T(ût) (5)

where T(ût) is a circulant matrix, each row containing an offset copy of the vector defined by the
wrapped Gaussian in Eq. 3. This formulation links the functional form of the movement update to
a plausible neural implementation, the convolution operation in Eq. 3 becoming a weighted sum
of projections to a separate population of ‘shifter cells’ (?). In this work we simulate the transition
function using Eq. 3, although our simulations (not included here) demonstrate that it is accurately
approximated for arbitrary movement velocities via a weighted superposition of weight matrices with
set offsets.

3.2 Generating the grid cell firing pattern

The firing pattern of a given GC (Main Text Fig. 1A) is generated by plotting the activity of the
GC against the location of the simulated agent in physical space. If there is a preserved ‘bump’ of
activity on the GC sheet (in metric space), as this bump moves according to path integration a given
GC will periodically become active and inactive. Thus, a larger grid scale corresponds to a smaller
angular velocity on the GC sheet; conversely, a larger angular velocity will cause the activity bump
to complete more ‘laps’ of the sheet for a given movement in physical space (more vertices in the
readout grid pattern).

4 Offline model details

4.1 Associative encoding in the hippocampus

Our PC-PC learning rule is based on the simple Hebbian mechanism of co-firing between cells, with
weight decay to prevent unbounded growth. We chose to implement weight decay as the square of the
weight magnitudes as opposed to the absolute magnitude for mathematical simplicity. The resulting
form of the steady-state synaptic weights is in our case equivalent to the Bhattacharyya distance ?,
which is used as a measure of the ‘discriminability’ or variance-normalized distance.

Note that the distance of the encoding of two PCs in metric space implies that the local scale of
the readout grid pattern at their corresponding locations in physical space (Fig. 2C). If all points in
physical space are perceived as nearby, one must ‘travel further’ in physical space before travelling
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Figure 2: A Spring network analogy of the associative structure of an environment. Edge ‘stiffness’
is inversely proportional to the variance in the Gaussian observation. B Offline distortions. Left:
Pairwise distances near the edges of the environment are overestimated due to undersampling when
the agent preferentially explores the middle of an environment. Colours denote the distance of the
pair of PCs i and j from the walls of the 1× 1m environment dwall =

∑
p=i,j

1
2 (min(xp, 1− xp) +

min(yp, 1− yp)). Right: Resulting local scale is proportional to the occupancy. C When the grid
scale is smaller than the size of structure being encoded, we can think of ‘wrapping’ the structure
onto the grid sheet. Here, colours denoted different tilings of the base metric tile (the Voronoi region
of a given grid cell).

one ‘period’ in the periodic metric space (i.e. on the GC sheet), equivalent to the distance between
two vertices of activity in the grid pattern.

4.2 Details of neural model implementation

Travelling waves in neural media In simulations, the travelling waves in mEC are simulated
explicitly by calculating the true probability distribution at each time-step (i.e. corresponding each
radial distance given the wave speed). However, it is known that various neural media can support
traveling waves ??. Note that in the literature, the exact phenomenon which we describe are referred
to as ‘travelling pulses’, rather than ‘travelling waves’, the latter describing an increasing region of
excitation (i.e. a propagating disc, rather than annulus).

Existing travelling pulse solutions preserve the exact shape of the initial stimulus pattern. However,
here we present a novel model of a travelling pulse which broadens with travelled distance, mirroring
the accumulation of PI error with distance travelled in all directions simultaneously (there is no
bearing/angular information encoded in the pairwise PC-PC observations). Our model is based on a
simple mechanical analogue, as used to model water-waves:

d2v
dt2

= c2∇′2 ·H[v]+ (6)

where c is the speed of wave propagation, H[·]+ is the Heaviside function and the spatial Laplacian
operator∇ = ( d

dx ,
d
dy ) is replaced by a 2D Gaussian filter with variance equal to the PI noise. It was

found empirically scaling the wave celerity c = αc′ was required to match the desired propagation
speed c, where α ≈ 0.3. The wave solution matched the probabilistic radial propagation of activity
in the algorithmic solution ? (Fig. 3B). However, we do not provide a mathematical proof of their
equivalence.

We note that the wave could also in principle be generated by the same circuitry as used to propagate
GC activity during online PI. However, whereas in the case of PI in a given direction the ‘shifter’
matrix corresponds to an offset Gaussian, in this case it would correspond to a ring with variance
proportional to its radius. Recursive convolution with this filter (multiplication by the equivalent
circulant matrix) would produce a ‘travelling wave’ rather than ‘pulse’ solution. To produce the
travelling pulse, transient inhibition would be required such that only the ‘front’ of the wave is active.
Ongoing work is investigating whether the offline and online dynamics could plausibly exist within
the same system. In theory, since replay of spatial sequences occurs at rates ∼ 20× faster ? than
physical experience, its plausible that if the timescale of the inhibition is fast, it would not affect PI
during online PI.
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Figure 3: A Illustration of belief propagation. PC A receives messages from PCs B and C. Messages
take the form of rings, describing a preferred distance about the current beliefs of B and C with
variance reflecting the confidence in the observation. The intersection of the messages uniquely
determines the location of A over time. Note that A will also be broadcasting messages back to B
and C. B Propagating messages as travelling waves in mEC. A physiologically realisti simulation of
travelling waves with a modified Laplacian diffusion kernel closely approximates the probabilistic
propagation of activity, reflecting the accumulation of PI noise in the broadening of the wave front.

Belief update The belief update ? of PC t given a message from u formally requires division of the
previous message from u to prevent ‘double-counting’ the information. This would require previous
messages to be encoded in the synaptic weights. Instead, we implemented an approximation ignoring
this previous division. We found empirically that this did not adversely affect the performance of the
system (Fig. 6B); indeed it is known that message passing mechanisms are robust to the exact form
of the belief and message computations ?.

4.3 A generative modelling view of coordinated HPC-mEC replay

The offline process of inferring the metric embedding of the associative structure in the neural
mechanism can be viewed as the simultaneous propagation of activity through two generative models:

dS
da = W (S, a) World model which describes the evolution of the true stimulus state S.

dS′

da = TC(S, a) CA3 generative model which predicts the next stimulus state, where
S′ is the predicted stimulus activity.

dG′

da = TG(G, a) mEC generative model which predicts the next grid state.

G(S) = H(S) Mapping from stimulus to grid space (the observation model).

Note that ‘generative’ in this context corresponds to the transition function defined in the main text,
and that we distinguish between the CA3 and mEC generative models with the superscripts C and M ,
respectively. The aim of the system is to minimize two quantities. The first is to match the associative
(CA3) generative model to the true observed stimulus transitions.

The second is to match the metric (mEC) generative model to the observations made by thee mapping
from stimulus to metric space. We can think of this as minimizing the cost-function:

C =
∣∣∣∣∣∣dS′
da
− dS

da

∣∣∣∣∣∣2 +
∣∣∣∣∣∣dG′
da
− dG

da

∣∣∣∣∣∣2 (7)

=
∣∣∣∣∣∣dS′
da
− dS

da

∣∣∣∣∣∣2 +
∣∣∣∣∣∣dG′
da
− dH

dS

dS

da

∣∣∣∣∣∣2 (8)

(9)

The simplest analysis of this system corresponds to case where all terms are linear:
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TC(S, a) = c c is a learned constant determining rate of change of location in the
associative generative model for a given unit of action a.

W (S, a) = g g is the movement gain, a fixed property of the world dynamics that
determines the true rate of change of the sensory stimulus.

TG(S, a) = α α is the movement through the metric generative model for a given
unit of action a.

G(S) = K0S +K1 A linear projection from stimulus to metric space, where K0 and K1

correspond to the grid scale and spatial offset, respectively.

The system above could represent an agent moving along a 1D track with a speed proportional to the
‘action’ a (g determines how far the agent travels through physical space for a given unit of action a)
and current position S. The job of the generative model is then to match the intrinsic propagation
speed c (for a given action magnitude) to the rate of change of stimulus.

Secondly, we assume a linear mapping from stimulus x′ to metric space x. Note that, if the GC
activity were to be driven purely by this linear observation model, increasing K0 here would decrease
the grid scale of the GC firing pattern and changing K1 will determine its spatial offset. As in the
associative generative model, the job of the metric generative model is to match simulated progression
through metric space to the true progression as indicated by the observation model. Substituting the
above into the cost-function, we get:

C = ||c− g||2 + ||α−K0g||2 (10)

Since g is a fixed property of the world dynamics, the associative generative model will learn c = g,
and the observation model K0 = α/g. Note that in the above case, since out models are linear we
are making the explicit assumption that distances between stimuli are Euclidean in the associative
generative model. c therefore represents the scaling of this Euclidean metric and relates to the scaling
constant outlined in the associative Hebbian learning rule in Section ??. We assume that this constant
is a physiological property of the network.

4.4 Analysis of replay sequences

States in the loop closure task were defined as angles around the track. For a single sequence
L̄ = Θs = {θ(s)1 , ..., θ

(s)
Ns
}, the mean sequence length was defined as 1

S

∑
s=1:S Ns. The mean hop

distance was defined as:
H̄ =

1

S

∑
s=1:S

∑
i=2:Ns

1

Ns
abs(|θ(s)i − θ

(s)
i−1|c) (11)

where |·|c is the circular distance (minimum of the clockwise and anticlockwise distances). Sequences
were separated within a single offline inference event by defining a maximum hop distanceHmax = 5.

5 Jensen-Shannon divergence

Tn
i = Tn−1

i + JS(bn
i ||b

n−1
i ) (12)

= Tn−1
i +

1

2

[
KL(bn

i ||m) + KL(bn−1
i ||m)

]
(13)

where m = 1
2 (bn

i + bn−1
i ).
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