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1 Method of Evaluation

For a more precise evaluation of our proposed method, we can define a measurement by checking
how many of the Pareto front solutions satisfy the preference-order constraints. Based on Algorithm
3, we can calculate the percentage of solutions that satisfy the preference-order constraints by
using the gradients of the actual synthetic functions at iteration t. In real-world problems, we may
use the gradients of the trained Gaussian Process to evaluate the compliance of Pareto front with
preference-order constraints.

It is noteworthy to mention that our function evaluations are expensive, and hence, throwing away
evaluations during post-processing is undesirable. Our approach, in contrast, samples such that
most of the function evaluations would have desirable characteristics, and hence, would be efficient.
Considering Figure 1, given a preference-order constraint as “stability of f0 being more important
than f1” in Schaffer function N. 1, i.e. ||∂f0∂x || ≤ ||

∂f1
∂x ||, Figure 1 (a) illustrates the Pareto front

obtained by a plain multi-objective optimisation (with no constraints). After the Pareto solutions
are found (in 20 iterations), using the derivatives of the trained Gaussian Processes (actual objective
functions are black-box), we can post process the obtained Pareto front based on the stability of
solutions. Figure 1 (a) shows that only 6

18 of these solutions have actually met the preference-order
constraints. Whereas Figure 1 (b) shows that 16

16 of the obtained Pareto front solutions by MOBO-PC
(in the same 20 iterations) have met the preference-order constraints.

In general, our experimental results show 98.8% of solutions found for Schaffer function N. 1 after
20 iterations comply with constraints. As for Poloni’s two objective function, 86.3% of the solutions
follow the constraints after 200 iterations and finally for Viennet 3D function, this number is 82.5%.

Given that the prior knowledge is not provided in [2], the obtained results for their method with same
experimental design and same number of iterations are 47.2% for Schaffer function N. 1, 29.6% for
Poloni’s two objective function and 19.3% for Viennet 3D function respectively. This gap explains
the importance of the prior knowledge about hyperboxes for their method. The reported numbers are
averaged over 10 independent runs. Table 1 summarises the obtained results.
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Figure 1: (a) Illustrates a naive approach of post-processing in which almost 50% of the solutions are
not complying with preference-order constraints and must be disregarded. (b) Shows an obtained
Pareto front by MOBO-PC. All of the obtained solutions are complying with the preference-order
constraints based on the derivative of the trained Gaussian Processes.

Table 1: Percentage of the Pareto front solutions complying with preference-order constraints in
different synthetic functions.

Schaffer
function

N. 1
Poloni Viennet 3D

MOBO-PC 98.8% 86.3% 82.5%

MOBO-RS 47.2% 29.6% 19.3%

2 Proofs

Theorem 1 Let I = (0, 1, . . . , Q|Q ∈ Zm\{0}) be an (ordered) preference tuple. Define SI as per
definition 1. Then SI is a polyhedral (finitely-generated) proper cone (excluding the origin) that may
be represented using either a polyhedral representation:

SI =
{
s ∈ Rm|aT(i)s ≥ 0∀i ∈ Zm

}
\ {0} (1)

or a generative representation:

SI =
{ ∑

i∈Zm

ciã(i)
∣∣ c ∈ R̄m

+

}
\ {0} (2)

where ∀i ∈ Zm:

a(i) =

{
1√
2

(ei − ei+1) if i ∈ ZQ

ei otherwise

ã(i) =

{ 1√
i+1

∑
l∈Zi+1

el if i ∈ ZQ+1

ei otherwise

and e0, e1, . . . , em−1 are the Euclidean basis of Rm.

Proof: The polyhedral representation follows directly from consideration of the constraints si ≥ 0,
from which we derive the constraints aT(i)s = si ≥ 0 ∀i /∈ ZQ; and the constraints sk ≥ sk+1

∀k ∈ ZQ, from which we derive the constraints aT(k)s = sk − sk+1 ≥ 0 ∀k = 0, 1, . . . , Q − 1.
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Moreover SI ∪ {0} ⊂ R̄m
+ is constructed by restricting R̄m

+ using half-space constraints, so SI ∪ {0}
is a proper cone.

The generative representation follows from the fact that a proper conic polyhedra is positively spanned
by it’s extreme directions (ã(i)) - i.e. the intersections of the hyperplanes aT(i)s = 0. So ∀i ∈ Zm, ã(i)
must satisfy:

ãT(i)a(j) = 0 ∀j 6= i (3)

There are six cases that are possible combinations of i and j. We show how (3) holds in all the
conditions.

1. i ∈ {0, 1, . . . , Q− 1} and j ∈ {Q,Q + 1, . . . ,m− 1}: considering theorem 1, ãT(i)a(j) =

ãT(i)ej = 0. Therefore ã(i)j = 0. Which implies ã(i)Q = ã(i)Q+1 = . . . = ã(i)m−1 = 0.

2. i ∈ {0, 1, . . . , Q − 1} and j ∈ {0, 1, . . . , Q − 1}\{i}: based on theorem 1, ãT(i)a(j) =

ãT(i)
1√
2
(ej − ej+1) = 1√

2
(ãT(i)j − ãT(i)j+1) = 0. Therefore ã(i)j = ã(i)j+1. Hence ã(i)0 =

ã(i)1 = . . . = ã(i)i and ã(i)i+1 = ã(i)i+2 . . . = ã(i)Q = 0. Which results in ã(i) =
1√
i+1

∑
l∈Zi+1

el.

3. i ∈ {Q + 1, Q + 2, . . . ,m− 1} and j ∈ {Q,Q + 1, . . . ,m− 1}\{i}: likewise, ãT(i)a(j) =

ãT(i)ej = ãT(i)j = 0. Hence ã(i)Q = ã(i)Q+1 = . . . = ã(i)m−1 = 0, excluding ã(i)i, where
ã(i)i 6= 0 since j 6= i.

4. i ∈ {Q + 1, Q + 2, . . . ,m − 1} and j ∈ {0, 1, . . . , Q − 1}\{i}: we know ãT(i)a(j) =

ãT(i)
1√
2
(ej − ej+1) = 0. Likewise ã(i)0 = ã(i)1 = . . . = ã(i)Q = 0.

5. i = Q and j ∈ {Q + 1, . . . ,m − 1}: Since i 6= j, then j ∈ {Q + 1, Q + 2, . . . ,m − 1}.
Hence ãT(i)a(j) = ãT(i)ej = ã(i)j = 0. Therefore ã(i)Q+1 = . . . = ã(i)m−1 = 0.

6. i = Q and j ∈ {0, 1, . . . , Q− 1}: By defining i = Q, we know that i 6= j, hence ãT(i)a(j) =

ãT(i)
1√
2
(ej −ej+1) = 1√

2
(ãT(i)j − ãT(i)j+1) = 0, which implies ã(i)0 = ã(i)1 = . . . = ã(i)Q,

or likewise ã(i) = 1√
Q+1

∑
l∈ZQ+1

el.

�

Corollary 1 Let I = (0, 1, . . . , Q|Q ∈ Zm\{0}) be an (ordered) preference tuple. Define S⊥I as per
definition 1. Using the notation of theorem 1, v ∈ S⊥I if and only if v = 0 or ∃i 6= k ∈ Zm such that
sgn(ãT(i)v) 6= sgn(ãT(k)v), where sgn(0) = 0.

Proof: By definition of S⊥I , v ∈ S⊥I if ∃s ∈ SI such that sTv = 0. This is trivially true of v = 0.
Otherwise, using the generative representation of SI, there must exist c ∈ R̄m

+\{0} such that s =∑
i ciã(i). Hence v ∈ S⊥I \{0} only if there exists c ∈ R̄m

+\{0} such that sTv =
∑

i ci(a
T
(i)v) = 0

which, as c 6= 0, is only possible if ∃i, k ∈ Zm such that sgn(ãT(i)v) 6= sgn(ãT(k)v). �

3 Experiments

3.1 Poloni’s two objective function

The results of our algorithm on Poloni’s two objective function [1]. Figure 3b shows more stable
results for f0 than f1. Likewise, in figure 3c stability of solutions in f1 is favored over f0.

3.2 Progress of MOBO-PC

The calculation of hypervolume in MOBO-PC relies on both values of the weights for the Pareto
front points and also the improved volume. That will result in favoring solutions complying with
the constraints and assign them higher weights comparing to other Pareto front solutions. But if the
amount of volume to be improved is insignificant, the acquisition function favors solutions with
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Figure 2: Illustration of the progress of MOBO-PC on Schaffer function N. 1.
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Figure 3: Obtained solutions for Poloni’s two objective function. 3a shows the full Pareto front. 3b
illustrates the obtained solutions with s0 > s1 preference-order constraint on stability. And 3c shows
the results of s1 > s0 or more stable solutions for f1.

lesser compliance with constraints but more possibility to increase the amount of volume -i.e. the
region with most compliance with constraints is well explored and occupied with many Pareto front
solutions, so the amount of hypervolume improvement drops due to the small amount of improvement
in the volume despite of higher weights for the solutions in that region. Hence, the algorithm will then
look for more diverse solutions that can increase the amount of hypervolume, that is the solutions
which are more diverse and less stable. Figure 2 illustrates how acquisition function favors the points
with higher weights at the first, and then lean towards the more unexplored regions with higher
amount of hypervolume improvement.

4 Simple Crash Study

4.0.1 Summary

This problem concerns a collision in which a simplified vehicle moving at constant velocity crashes
into a pole. The input parameters vary the strength of the bumper and hood of the car. During the
crash, the front portion of the car deforms. The design goal is to maximise the crashworthiness of the
vehicle. If the car is too rigid, the passenger experiences injury due to excessive forces during the
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Figure 4: Obtained solutions for Simple Crash Study.

impact. If the car is not rigid enough, the passenger may be crushed as the front of the car intrudes
into the passenger space. This dataset is available in https://bit.ly/2FWNXQS.

4.0.2 Input Variables

• tbumper is the mass of the front bumper bar. Range of tbumper is between 1 and 5.
• thood is the mass of the front, hood and underside of the bonnet. Range of thood is between 1 and

5.

4.0.3 Output Responses

• Intrusion is the intrusion of the car frame into the passenger space. This is computed from the
change in the separation of two points, one on the front of the car (Node #167) and one of the roof
(Node #432). Lower intrusion is better. Increasing the mass of the hood and bumper will reduce
the intrusion.

• HIC is the head injury coefficient. This is computed from the maximum deceleration during the
collision. Lower HIC is better. Increasing the mass of the hood and bumper will increase the HIC.

• Mass is the combined mass of the front structural components. Lower mass is better.

In our experiment, we are using HIC as f0 and Mass as f1 to be minimised simultaneously.

Figure 4 shows the obtained results for this problem. Figure 4a illustrates full Pareto front, as 4b and
4c demonstrates our obtained results based on the defined preference-order constraints. Figure 4b
shows that the Pareto front points are more stable in f0 (HIC) than f1 (Mass). As for figure 4c Pareto
front solutions are in favor of stability for f1 and more diversity for f0.
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