
A Example: Continuous-Armed Bandit

3 2 1 0 1 2 3 a

1.0

2.0

3.0

4.0

5.0 ua of TRGPPO
la of TRGPPO
1 of PPO
1 + of PPO

old(a)

Figure 1: Clipping Range of
TRGPPO (blue curve) and PPO
(orange curve) on different actions.
For TRGPPO, δ = 0.05, while for
PPO, ε = 0.2. The distribution of
old policy is πold(a) = N (a|0, 1).

In this section, we show how PPO and TRGPPO perform in
continuous action space by a simple continuous-armed ban-
dit problem. Fig. 2 (b) shows the plot of reward function
(black dashed curve). Let asubopt denote any sub-optimal ac-
tion which achieves second-highest reward; and let aopt de-
note the optimal one. The policy is a parametrized Gaussian
(orange solid curve).

Fig. 1 shows the clipping ranges for different actions in con-
tinuous action space, where dim(A) = 1. The old policy is
πold(a) = N (a|0, 1) (black curve). Note that the probability
πold(a) goes smaller as a is away from zero which the mode of
the Gaussian distribution. As the figure shows, in continuous
action space, our TRGPPO method sets larger clipping range
for action which is less likely to be chosen, while PPO sets a
constant clipping range under all actions.

Fig. 2 shows the training process of PPO on the continuous-
armed bandit problem. As can be seen, the allowable improve-
ment of π(aopt) of PPO is quite limited. It will require quite a
large number of steps for π(aopt) to peak. On the other hand, the limited improvement at π(aopt)
will prevent the policy from allocating more probability at aopt. In other words, it will explore less
at aopt. Whereas the allowable improvement at asubopt is relatively relax. This uneven restriction
may result in a growing improvement of π(asubopt) and a diminishment of π(aopt). Consequently,
the policy is trapped in local optima, as Fig. 2 (c) shows. Note that although we use Gaussian distri-
bution as our policy in the example, these issues could also happen on multimodal distribution like
Mixture Gaussian or heavy tailed distribution like Beta distribution.

Fig. 3 shows the training process of TRGPPO. When the policy enters into a locally optimal one,
the corresponding feasible variation range of π(aopt) is close to that of π(asubopt) in TRGPPO, as
Fig. 3 (b) shows. Note that the advantage value at aopt is larger than that at asubopt. This could result
in a growing reinforcement of π(aopt), which accordingly leads to a diminishment of π(asubopt).
In this way, the policy jumps out of the local optima and converges to the optimal policy, as Fig. 3
(c) shows.

−1 0 1 2 3 4
Action

0

0.2

0.4

0.6

0.8

1.0

R
ew

ar
d

/
D

en
si

ty

(a) The beginning of training process (1-th iteration)

Reward Function

PDF of Policy π

-1 0 1 2 3 4
Action

0

0.2

0.4

0.6

0.8

1.0
feasible variation
range of π(aopt) is
much smaller than
that of π(asubopt)

π(asubopt)

asubopt

π(aopt)

aopt

(b) The middle of training process (200-th iteration)

Reward Function

PDF of Policy π

Feasible Variation Range of π(a)

−1 0 1 2 3 4
Action

0

0.2

0.4

0.6

0.8

1.0

(c) The end of training process (400-th iteration)

Reward Function

PDF of Policy π

Figure 2: Training process of PPO. The orange solid curve plots the probability density function
(PDF) of policy at the training process. The black dashed curve plots the reward function of the
bandit problem.

−1 0 1 2 3 4
Action

0

0.2

0.4

0.6

0.8

1.0

R
ew

ar
d

/
D

en
si

ty

(a) The beginning of training process (1-th iteration)

Reward Function

PDF of Policy π

-1 0 1 2 3 4
Action

0

0.2

0.4

0.6

0.8

1.0
feasible variation
range at π(aopt) is
close to that at
π(asubopt)

π(asubopt)

asubopt

π(aopt)

aopt

(b) The middle of training process (200-th iteration)

Reward Function

PDF of Policy π

Feasible Variation Range of π(a)

−1 0 1 2 3 4
Action

0

0.2

0.4

0.6

0.8

1.0

(c) The end of training process (400-th iteration)

Reward Function

PDF of Policy π

Figure 3: Training process of TRGPPO.

B Computation of Adaptive Clipping Range

In this section, we detail the method for adaptive clipping range computation, which is formalized
as the following problem.

lδst,at = min
π

{
π(at|st)
πold(at|st)

: Dst
KL(πold, π) ≤ δ

}
uδst,at = max

π

{
π(at|st)
πold(at|st)

: Dst
KL(πold, π) ≤ δ

} (1)

(2)

To be abbreviated, we describe the approach for minimization case under discrete and continuous
action space respectively, while that for the maximization case is similar.

B.1 Discrete Action Space

For discrete action space tasks, it is standard to use a DNN with softmax output layer to represent
the policy, i.e., π(a|s) = [fpθ (s)]a, where fpθ (s) is the parameter of categorical distribution on state
s and the subscript a denote the a-th entry of the vector. The optimal clipping range should be
computed should be independent of special parametrization of fpθ . Thus the problem is formalized
as an optimization problem of two Categorical distributions. Given st and at, let p′ = fpθ′(st), where
θ′ is the parameter of old policy πold, the computation of lδst,at in (1) is formalized as the following
optimization problem:

min
p

pat
p′at

s.t.
∑
a∈A

p′a log
p′a
pa
≤ δ,

∑
a∈A

pa = 1,

0 ≤ pa ≤ 1 for a ∈ A

(3)

While the optimization problem for uδst,at is the maximization case of problem (3). Let λ and ν be
the Lagrangian multipliers.

λ

(
−p
′
a

pa

)
+ ν = 0, for a 6= at

1

p′at
+ λ

(
−p
′
at

pat

)
+ ν = 0

λ

(∑
a∈A

p′a log
p′a
pa
− δ
)

= 0∑
a

pa = 1

(4a)

(4b)

(4c)

(4d)

By (a)(b), we have λ 6= 0, since if λ = 0 then ν = 0 (by (a)), which contradicts (b). Second, by
(c) and λ 6= 0, we have

∑
a∈A p

′
a log(p′a/pa) = δ. Third, taking (a) into (d), we have p′a/pa =

ν/λ = (1− p′at)/(1− pat) for a 6= at. Then, taking this equation into
∑
a∈A p

′
a log(p′a/pa) = δ,

this problem is transformed into solving the following equation w.r.t. pat .(
1− p′at

)
log

1− p′at
1− pat

− p′at log
pat
p′at

= δ (5)

In fact, there are two groups of solution for (5), where pat/p
′
at < 1 is the one for the minimization

case, while pat/p
′
at > 1 is the one for the maximization case.

B.2 Continuous Action Space

For continuous action space tasks, it is standard to represent the stochastic policy by a parameterized
conditional Gaussian distribution[4, 2], i.e., π(a|s) = N (a|fµθ (s), fΣ

θ (s)), where fµθ and fΣ
θ are two

DNNs which output the mean vector and covariance matrix. Note that the optimal clipping range
should be computed independent of special parametrization of fµθ and fΣ

θ . Thus the problem (1) is
formalized as an optimization problem of two Gaussian distributions. Given (st, at), let µ′ = fµθ′(st)

and Σ′ = fΣ
θ′(st), where θ′ is the parameter of old policy πold, the computation of lδst,at in (1) is

formalized as the following optimization problem:

min
µ,Σ

1

2

(
− log|Σ|−(µ− at)>Σ−1 (µ− at) + log|Σ′|+(µ′ − at)>Σ′

−1
(µ′ − at)

)
s.t.

1

2

(
log
∣∣Σ′Σ−1

∣∣+ tr
{

Σ′
−1

Σ
}

+ (µ− µ′)>Σ′
−1

(µ− µ′)−D
)
− δ ≤ 0

(6)

where µ ∈ RD, Σ ∈ RD×D is a positive semi-definite matrix, D = dim(A) is the dimension of ac-
tion space. The objective function is log of the ratio π. The covariance matrix could be decomposed
by Σ′ = Σ̄′Σ̄′

>, and we introduce a rotation matrix R ∈ RD×D (which has R>R = R−1R = I).

Second, by replacing µ with Σ̄′Rµ+µ′, and Σ with Σ̄′RΣR>Σ̄′
>, we could transform the problem

to

min
µ,Σ

1

2

(
− log|Σ|−(µ− āt)>Σ−1 (µ− āt) + ā>t āt

)
s.t.

1

2

(
log
∣∣Σ−1

∣∣+ tr {Σ}+ µ>µ−D
)
− δ ≤ 0

(7)

where āt = R>Σ̄′
−1

(µ′ − at).

Next, we constrain the covariance matrix Σ to be diagonal. The final result is sub-optima compared
to the original problem. However, we don’t require accurate clipping bound when optimizing policy.
Another reason is that in practice the diagonal Gaussian policy is widely used in RL realizations.
Then (7) is equivalent to the following problem.

min
µ,σ

1

2

D∑
d=1

(
− log σd − (µd − āt,d)2

σd
−1 + ā2

t,d

)
s.t.

1

2

D∑
d=1

[
− log σd + σd + µ2

d −D
]
− δ ≤ 0

(8)

where µ ∈ RD, σ ∈ R+D. We choose appropriate R to make āt,d = ȧt =
∥∥∥(µ′ − at) Σ̄′

−1
∥∥∥/√D

for d = 1, 2, · · · , D, which means that all entries of āt are equal. Let λ be the Lagrangian multiplier,
by appling the KKD condition,

− (µd−ȧt)
σd

+ λµd = 0 d = 1, · · · , D
− 1
σd

+ (µd−ȧt)2
σd2

+ λ
[
− 1
σd

+ 1
]

= 0 d = 1, · · · , D

λ

(
1
2

D∑
d=1

[
− log σd + σd + µ2

d −D
]
− δ
)

= 0

λ ≥ 0

(9)

By the equations above, we could easily know that µd and σd are equal for all d. Thus the problem
could collapse to the following problem,

min
µ,σ

1

2
D
(
− log σ − (µ− ȧt)2

σ−1 + (0− ȧt)2
)

s.t.
1

2

(
− log σ + σ + µ2 − 1

)
−D−1δ ≤ 0

(10)

Remember that ȧt =
∥∥∥(µ′ − at) Σ̄′

−1
∥∥∥/√D, µ ∈ R, σ ∈ R+. Until now, the original D-

dimensional optimization problem is transformed to a 1-dimensional optimization problem. By
the KKT conditions above, we could obtain the following equations w.r.t. µ, σ and λ.

When ȧt 6= 0, the problem is transformed into solving the following equations w.r.t. µ, σ, λ:
− log (µ−ȧt)(µ2−ȧtµ−1)

ȧt
+ (µ−ȧt)(µ2−ȧtµ−1)

ȧt
+ µ2 − 1− 2δD−1 = 0

σ = (µ− ȧt)(µ2 − ȧtµ− 1)
/
ȧt

λ = µ−ȧt
σµ

(11)

When ȧt = 0, the problem is transformed into solving the following equations w.r.t. µ, σ, λ:
µ = 0

− log σ + σ − 1− 2δ/D = 0

λ =
−σ+ȧ2t
−σ+σ2

(12)

There are two groups of solution for both (11) and (12), where λ > 0 is the one for the minimization
case, while λ < 0 is the one for the maximization case.

B.3 Computation Acceleration

Note the solutions in (5) only depend on the one-dimensional constant p′a and δ, while (11) and (12)
only depend on one-dimensional constant ȧ and δ/D. We use MINPACK’s HYBRD and HYBRJ
routines [3] as the solver. To accelerate this computation procedure, we propose two additional
approach. One is to train a DNN which input πold(a|s) and δ and approximately output the solutions,
which serve as the initial solutions for the solver. The other is to discretize the space of the input
and save all the solutions in advance. The experimental results in our main content are conducted
with the discretization version.

Table 2 shows the wall-clock time required by variants of TRGPPO and PPO to finish benchmark
tasks in a modern CPU. With our proposed acceleration tricks, the optimization time of calculating
clipping range can be reduced significantly. The result is obtained with the same experiment setup
as previous experiments. The experiments are applied on a computer with an Intel i5-7500 CPU,
16GB of memory and a GeForce GTX 1060 GPU.

Table 1: Input and output of the DNN for solving problems. For discrete action space, we sample
1000 p′a. For continuous action space, we sample 1000 ȧ and 1000 δ/D (note we take δ/D as an
entity). We solve these problems and obtain the corresponding solutions, and these data are used to
train our DNN.

Input Output
Discrete Action Space p′a ∼ U(0, 1) pa

Continuous Action Space ȧ ∼ U(−5, 5);D−1δ ∼ U [0.0002, 0.01] µ, σ

Table 2: Comparison of computation cost for TRGPPO with different acceleration tricks.

PPO TRGPPO
(discretization)

TRGPPO
(solver)

TRGPPO
(DNN)

Mujoco(106 timesteps) 24 min 25 min 52 min 29 min
Atari(107 timesteps) 195 min 198 min 243 min 213 min

B.4 Adaptively Setting δ with ε

We detail method about how to adaptively set δ by ε. Our goal is to make TRGPPO has theoretical
maximum KL divergence over all sampled states.

For discrete action space, let p+ = max
t:At>0

πold(at|st), p− = max
t:At<0

πold(at|st). By eq. (5), we set δ

by
δ = max(δ+, δ−)

δ+ =
(
1− p+

)
log

1− p+

1− p+(1 + ε)
− p+ log(1 + ε)

δ− =
(
1− p−

)
log

1− p−
1− p−(1− ε) − p

− log(1− ε)

(13a)

(13b)

(13c)

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e7

0

500

1000

1500

2000

2500

3000

3500

Re
wa

rd

BeamRider
PPO
TRGPPO

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e7

0

50

100

150

200

250

300

Re
wa

rd

Breakout
PPO
TRGPPO

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e7

20

10

0

10

20

Re
wa

rd

Pong

PPO
TRGPPO

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e7

0

2500

5000

7500

10000

12500

15000

17500

Re
wa

rd

Qbert
PPO
TRGPPO

Figure 4: Episode rewards achieved by algorithm during the training process averaged over 4 random
seeds. TRGPPO (blue line) achieves better performance than PPO (orange line).

For continuous action space, for PPO, theoretically, it always achieves maximum KL divergence at
the sampled action which is the mode of the Gaussian. Our idea is to make the optimal clipping
range at the mode of distribution equals the clipping range of PPO. By problem eq. (10) and (12),
we set δ by

δ = max(δ+, δ−)

δ+ = log(1 + ε) +
1

2
D exp(

−2 log(1 + ε)

D
)− 1

2
D

δ− = log(1− ε) +
1

2
D exp(

−2 log(1− ε)
D

)− 1

2
D

(14a)

(14b)

(14c)

C Additional Experiment

To evaluate the proposed TRGPPO on discrete tasks, we use Atari games as a testing environment,
so the policies are learned with raw images. We present results on several atari games in Fig. 4,
the blue and orange curves visualize the results using TRGPPO and PPO. We set δ = 0.001 for all
tasks.

Both TRGPPO and PPO adopt exactly same implementations and hyperparameters given in [1] for
discrete tasks except that clipping range of TRGPPO is computed adaptively according to given δ,
and the policy entropy coefficient is 0 but not 0.01 used in PPO. This is because our TRGPPO has
better exploration property than PPO, so it does not need to add extra entropy regularization.

D Implementation Details

Table 3: Hyperparameters for PPO and TRGPPO on Mujoco tasks.
Hyperparameter Value

learning rate 3× 10−4

number of parallel environments
64 (Humanoid)
2 (Other tasks)

timesteps per epoch 1024

initial logstd of policy
-1.34 (HalfCheetah,Humanoid)

0 (Other tasks)

policy Gaussian
λ (GAE) 0.95

clipping range ε (PPO and TRGPPO) 0.2

Table 4: Hyperparameters for PPO and TRGPPO on Atari tasks.
Hyperparameter Value

learning rate 2.5× 10−4

number of parallel environments 8
timesteps per epoch 128

policy Softmax
λ (GAE) 0.95

clipping range ε (PPO) LinearAnneal(0.1,0)
coefficient of trust region δ (TRGPPO) LinearAnneal(0.001,0)

E Theorem Proof

In this section, we will give theorem proofs. To make it easier to read, we will mention the related
notations again.

E.1 Theorems in Section 4

Lemma 1. ∆π0,t , Eπt [‖πt − π∗‖∞|π0] = 1− Eπt [πt(aopt)|π0].

Proof: For any a 6= aopt, then |πt(a)− π∗(a)|= |πt(a)|≤ |1− πt(aopt)|.
Thus we have ‖πt − π∗‖∞= maxa∈A‖πt(a)− π∗(a)‖= 1− πt(aopt).

Lemma 2. Eπt+1
[πt+1(a)|π0] = Eπt

[
Eπt+1

[πt+1(a)|πt] |π0

]
.

Theorem 2. Given initial policy π0, if π2
0(aopt) · |A|<

∑
asubopt∈Asubopt

π2
0(asubopt) −∑

a−∈A− π
2
0(a−), then we have

(i)
∑
asubopt∈Asubopt

π0(asubopt) <
∑
asubopt∈Asubopt

EπPPO
1

[
πPPO

1 (asubopt)|π0

]
< · · · <∑

asubopt∈Asubopt
EπPPO

t

[
πPPO
t (asubopt)|π0

]
;

(ii) π0(aopt) > EπPPO
1

[
πPPO

1 (aopt)|π0

]
> · · · > EπPPO

t

[
πPPO
t (aopt)|π0

]
;

(iii) ∆π0,0 < ∆PPO
π0,1 < · · · < ∆PPO

π0,t .

Proof: For PPO, if c(a) > 0, then we have

EπPPO
t+1

[
πPPO
t+1 (a)|πt

]
= πt(a) +

π2
t (a)−

∑
a+∈A+/{a}

π2
t (a+)

|A|−1
+

∑
a−∈A−

π2
t (a−)

|A|−1

 ε (15)

Let L(a) = π2
t (a)−∑a+∈A+/{a}

π2
t (a+)
|A|−1 +

∑
a−∈A−

π2
t (a−)
|A|−1 .

If π2
0(aopt) · |A|<

∑
asubopt∈Asubopt

π2
0(asubopt)−

∑
a−∈A− π

2
0(a−), then we have L(aopt) < 0.

Hence we obtain πPPO
0 (aopt) > EπPPO

1

[
πPPO

1 (aopt)|πt
]
.

For asubopt, we have ∑
a∈Asubopt

L(asubopt)

=
∑

a∈asubopt

π2
0(subopt)− π2

0(a+)
|Asubopt|
|A|−1

+
∑

a−∈A−

π2
0(a−)

|A|−1
> 0

(16)

Thus we have ∑
asubopt∈Asubopt

π0(asubopt) <
∑

asubopt∈Asubopt

EπPPO
1

[
πPPO

1 (asubopt)|π0

]
(17)

Then by Lemma 2, we obtain (i) and (ii). Since (ii) holds, by Lemma 1, we get (iii).

E.2 Theorems in Section 5

Lemma 3. For TRGPPO with hyperparameter δ, we have
duδs,a

dπold(a|s) < 0,
dlδs,a

dπold(a|s) > 0.

Proof: By solving (1) and (2) for discrete space, we have

(18)(1− πold(a|s)) log
1− πold(a|s)

1− πold(a|s)lδs,a
− πold(a|s) log lδs,a = δ

(19)(1− πold(a|s)) log
1− πold(a|s)

1− πold(a|s)uδs,a
− πold(a|s) log uδs,a = δ

To be abbreviated, let l = lδst,at , u = uδst,at , p = πold(at|st). By eq. (18), we have

dl

dp
=
l
(

(1− pl) log (1−p)l
1−pl + 1− l

)
p(l − 1)

=
l(1− pl)
p(l − 1)

(
log

(1− p)l
1− pl +

1− l
1− pl

)
=
l(1− pl)
p(l − 1)

(
log

(
1 +

l − 1

1− pl

)
− l − 1

1− pl

) (20)

Note that 0 < l < 1, 1 − pl > 0, we have l−1
1−pl = − 1−l

1−pl > −1. Indeed, log(1 + x) − x < 0 for

any x > −1. Hence, log
(

1 + l−1
1−pl

)
− l−1

1−pl < 0. We obtain dl
dp > 0.

Similarly, we can get that dudp > 0.

Theorem 3. For TRGPPO with hyperparameter (δ, ε) and PPO with same ε. If δ ≤
g(maxa∈Asubopt

πt(a), 1 + ε) for all t, then we have ∆TRGPPO
π0,t ≤ ∆PPO

π0,t for any t.

Proof: If δ ≤ g(maxa∈Asubopt
πt(a), 1 + ε), then by Lemma 3 and Lemma 5 we have uδasubopt

≤
1 + ε. Hence, uδ,εasubopt

= 1 + ε.

Meanwhile, uδ,εa ≥ 1 + ε and lδ,εa ≤ 1− ε for any a.

If c(a) ≥ 0, then we have

Eπnew [πnew(a)|πt] = πt(a) +

π2
t (a)(ua − 1)−

∑
a+∈A+/{a}

π2
t (a+)

|A|−1
(ua+ − 1) +

∑
a−∈A−

π2
t (a−)

|A|−1
(1− la−)

(21)

Since uδ,εaopt
≥ 1 + ε and lδ,εa− ≤ 1 − ε while uδ,εasubopt

= 1 + ε, we can get

EπTRGPPO
t+1

[
πTRGPPO
t+1

(aopt)|πt
]
≥ EπPPO

t+1

[
πPPO
t+1

(aopt)|πt
]
.

Then by Lemma 2, we have EπTRGPPO
t+1

[
πTRGPPO
t+1

(aopt)|π0

]
≥ EπPPO

t+1

[
πPPO
t+1

(aopt)|π0

]
.

Finally, by Lemma 1, we have ∆TRGPPO
π0,t ≤ ∆PPO

π0,t .

We now derive the form of the optimal solution which achieves minimum KL divergence over all
optimal solutions. The general form of surrogate objective function of PPO is as follows:

(22)L̂CLIP
πold

(π) =
1

T

T∑
t =1

[min (rπ(st, at)At, clip (rπ(st, at), lst,at , ust,at)At))]

Let Πnew denote the set of all the optimal solutions of the empirical surrogate objective function of
PPO, and let πnew ∈ Πnew denote the optimal solution which achieves minimum KL divergence
over all optimal solutions, i.e., Dst

KL(πold, πnew) ≤ Dst
KL(πold, π) for any π ∈ Πnew under all st.

We first give the form of Πnew.
Lemma 4. Πnew = {π|for all t that At < 0, π(at|st) ≤ πold(at|st)lst,at ; for all t that At >
0, π(at|st) ≥ min(πold(at|st)ust,at , 1)}.

Proof:

We first prove that if a policy π∗ satisfies the conditions in Πnew, then π∗ ∈ Πnew.

Let L̂tπold
(π) = min (rπ(st, at)At, clip (rπ(st, at), lst,at , ust,at)At)). To prove that L̂CLIP

πold
(π∗) ≥

L̂CLIP
πold

(π) for any π, we just need to prove that L̂tπold
(π∗) ≥ L̂tπold

(π) for any π under all t.

If At < 0, L̂tπold
(π) could be rewritten as the following form:

L̂tπold
(π) =

{
lst,atAt rπ(st, at) ≤ lst,at
rπ(st, at)At rπ(st, at) > lst,at

(23)

Thus, we have L̂tπold
(π) ≤ lst,atAt = L̂tπold

(π∗) for any π.

Similarly, if At > 0, we also have L̂tπold
(π) ≤ L̂tπold

(π∗) for any π.

We then prove that if a policy π0 does not satisfy the conditions in Πnew, then π∗ is not an optimal
solution in maximization problem of eq. (22).

We can construct a policy π∗ that satisfy the conditions in the Πnew. We have L̂tπold
(π0) < L̂tπold

(π∗)

on t that does not satisfy the conditions. Hence, L̂CLIP
πold

(π0) < L̂CLIP
πold

(π∗).

We now derive the form of πnew.

If At < 0, by Lemma 4, minπ∈Πnew
Dst

KL(πold, π) is formalized as the following problem:

min
π

∑
a

πold(a|st) log
πold(at|st)
π(at|st)

s.t.π(at|st) ≤ πold(at|st)lst,at ,∑
a

π(a|st) = 1, π(a|st) > 0

(24)

By using the KKT conditions, we can get that

πnew(a|st) =

{
πold(a|st)(1−πold(at|st)lst,at)

1−πold(at|st) a 6= at

πold(at|st)lst,at a = at
(25)

The according KL divergence is

Dst
KL(πold, πnew) = (1− πold(at|st)) log

1− πold(at|st)
1− πold(at|st)lst,at

− πold(at|st) log lst,at (26)

Similarly, if At > 0, we can get

πnew(a|st) =

{
πold(a|st)(1−min(πold(at|st)ust,at ,1))

1−πold(at|st) a 6= at

min(πold(at|st)ust,at , 1) a = at
(27)

If At > 0 and πold(at|st)ust,at ≤ 1, the according KL is

Dst
KL(πold, πnew) = (1− πold(at|st)) log

1− πold(at|st)
1− πold(at|st)ust,at

− πold(at|st) log ust,at (28)

If At > 0 and πold(at|st)ust,at > 1, we have Dst
KL(πold, πnew) = +∞. Equation (26) and eq. (28)

have just the same form w.r.t. lst,at and ust,at respectively. In fact, since lst,at ∈ (0, 1) and
ust,at ∈ (1,+∞), the monotonicity w.r.t. lst,at and ust,at on these two intervals are different, and
we obtain the correlation between clipping range and KL divergence.

Lemma 5. (i) If At < 0, we have dDst
KL(πold, πnew)/dlst,at < 0,

dDst
KL(πold, πnew)/dπold(at|st) > 0. (ii) If At > 0 and πold(at|st)ust,at ≤ 1, we have

dDst
KL(πold, πnew)/dust,at > 0, dDst

KL(πold, πnew)/dπold(at|st) > 0.

Proof: To be abbreviated, let D = Dst
KL(πold, πnew), l = lδst,at , u = uδst,at , p = πold(at|st).

If At < 0, by eq. (26), we have

dD

dp
= − log

(1− p)l
1− pl +

l − 1

1− pl

= − log

(
1 +

l − 1

1− pl

)
+

l − 1

1− pl

(29)

If At > 0 and πold(at|st)ust,at ≤ 1, by eq. (28), we have

dD

dp
= − log

(
1 +

u− 1

1− pu

)
+

u− 1

1− pu (30)

We have l−1
1−pl > −1 and u−1

1−pu > 0. Indeed, − log(1 + x) + x > 0 for any x > −1. Thus, we have
dD
dp > 0.

If At < 0, by eq. (26), we have
dD

dl
=

p(l − 1)

l(1− pl) < 0 (31)

If At > 0 and πold(at|st)ust,at ≤ 1, by eq. (28), we have

dD

du
=

p(u− 1)

u(1− pu)
> 0 (32)

We introduce an empirical version of lower performance bound.

M̂πold
(π) = L̂πold

(π)− C max
t
Dst

KL (πold, π) . (33)

where L̂πold
(π) = 1

T

∑T
t=1 [rπ(st, at)At] + η̂πold , η̂πold is the estimated performance of πold.

Lemma 6. (i) For PPO, assume that maxtD
st
KL(πold, π

PPO
new) < +∞, if a given (st, at)

satisfies πold(at|st) 6= max
t̂:At̂<0

πold(at̂|st̂) and πold(at|st) 6= max
t̂:At̂>0

πold(at̂|st̂), then

Dst
KL(πold, π

PPO
new) < maxt̂D

st̂
KL(πold, π

PPO
new). (ii) For TRGPPO, we have Dst

KL(πold, π
TRGPPO
new) =

maxt̂D
st̂
KL(πold, π

TRGPPO
new) for any (st, at).

Proof: We first prove (i).

If At < 0, if πold(at|st) 6= max
t̂:At̂<0

πold(at̂|st̂), then πold(at|st) < max
t̂:At̂<0

πold(at̂|st̂). By Theorem

5, we have Dst
KL(πold, π

PPO
new) < max

t̂:At̂<0
D
st̂
KL(πold, π

PPO
new) ≤ max

t̂
D
st̂
KL(πold, π

PPO
new).

Similarly, if At > 0, we also have Dst
KL(πold, π

PPO
new) < max

t̂
D
st̂
KL(πold, π

PPO
new).

We then prove (ii). If At < 0, by eq. (18) and eq. (26), we have

Dst
KL(πold, πnew) = (1− πold(at|st)) log

1− πold(at|st)
1− πold(at|st)lδst,at

− πold(at|st) log lδst,at = δ (34)

Similarly, if At > 0, we also have Dst
KL(πold, πnew) = δ.

Theorem 4. Assume that maxtD
st
KL(πold, π

PPO
new) < +∞ for all t. If TRGPPO and PPO have the

same hyperparameter ε, we have:

(i) uδst,at ≥ 1 + ε and lδst,at ≤ 1− ε for all (st, at);

(ii) maxtD
st
KL(πold, π

TRGPPO
new) = maxtD

st
KL(πold, π

PPO
new);

(iii) M̂πold
(πTRGPPO

new) ≥ M̂πold
(πPPO

new). Particularly, if there exists at least one (st, at) such that
πold(at|st) 6= max

t̂:At̂<0
πold(at̂|st̂) and πold(at|st) 6= max

t̂:At̂>0
πold(at̂|st̂), then M̂πold

(πTRGPPO
new) >

M̂πold
(πPPO

new).

Proof:

We first prove (ii). By Equation (13) and Lemma 6, we have maxtD
st
KL(πold, π

TRGPPO
new) = δ =

maxtD
st
KL(πold, π

PPO
new).

We then prove (i). By (ii) we have Dst
KL(πold, π

PPO
new) ≤ maxt̂D

st̂
KL(πold, π

PPO
new) = δ =

Dst
KL(πold, π

TRGPPO
new) for all (st, at). Thus, we have Dst

KL(πold, π
PPO
new) ≤ Dst

KL(πold, π
TRGPPO
new).

Indeed, by Lemma 5, we have dlst,at/dD
st
KL(πold, πnew) < 0, dust,at/dD

st
KL(πold, πnew) > 0.

Thus, we obtain lδst,at ≤ 1− ε and uδst,at ≥ 1 + ε.

Particularly, by Lemma 6, if a given (st, at) satisfies πold(at|st) 6= max
t̂:At̂<0

πold(at̂|st̂) and

πold(at|st) 6= max
t̂:At̂>0

πold(at̂|st̂), then Dst
KL(πold, π

PPO
new) < Dst

KL(πold, π
TRGPPO
new). Hence, we have

lδst,at < 1− ε and uδst,at > 1 + ε.

We finally prove (iii). By eq. (25) and eq. (27), we can get that

rπnew
(st, at)At =

{
lst,atAt At < 0

min(ust,at , 1)At At > 0
(35)

By (i) we have rπTRGPPO
new

(st, at)At ≥ rπPPO
new

(st, at)At on all st, at. Thus,
1
T

∑T
t=1

[
rπTRGPPO

new
(st, at)At

]
≥ 1

T

∑T
t=1

[
rπPPO

new
(st, at)At

]
. By (ii) and the definition of

M̂πold
, we obtain M̂πold

(πTRGPPO
new) ≥ M̂πold

(πPPO
new).

Particularly, if there exists one (st, at) that satisfies πold(at|st) 6= max
t̂:At̂<0

πold(at̂|st̂) and

πold(at|st) 6= max
t̂:At̂>0

πold(at̂|st̂), then we have rπTRGPPO
new

(st, at)At > rπPPO
new

(st, at)At. Hence,

we obtain M̂πold
(πTRGPPO

new) > M̂πold
(πPPO

new).

References
[1] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Rad-

ford, John Schulman, Szymon Sidor, and Yuhuai Wu. Openai baselines. https://github.
com/openai/baselines, 2017.

[2] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforce-
ment learning. In International conference on machine learning, pages 1928–1937, 2016.

https://github.com/openai/baselines
https://github.com/openai/baselines

[3] Michael JD Powell. A hybrid method for nonlinear equations. Numerical methods for nonlinear
algebraic equations, 1970.

[4] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229–256, 1992.

	Example: Continuous-Armed Bandit
	Computation of Adaptive Clipping Range
	Discrete Action Space
	Continuous Action Space
	Computation Acceleration
	Adaptively Setting with

	Additional Experiment
	Implementation Details
	Theorem Proof
	Theorems in Section 4
	Theorems in Section 5

