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A Proofs of Section 3: Scenario 1

Recall the notations in Section 3,
Yo, = E (Qu(2)y?) €op = E (Qu(x)*2”). (1)
Also denote © = (21, ..., %), ¥ = (Y1, .-, Ur)> and Qp(x) = (Qp(21), ..., Qp(z)), €tc.

The following Lemma is a known result of Lloyd-Max quantizer. We provide a proof here since the
proof would be useful for helping readers to better understand the details.

Lemma Al. Let Qy be a b-bit Lloyd-Max quantizer optimized with respect to an arbitrary probability
distribution f. Suppose random variable x ~ f, then

&i1=%8,0=1—Ds.

Furthermore, if f is standard normal distribution, then 11 = £2,0 < 1.

Proof. Recall that each reconstruction level of LM quantizer is the conditional expectations on its
corresponding separated region. Let tg < t; < --- < t) be the boarders. We have

Mo et f: xf(z)dx
E = chiot T
(Qp(z)2) ; TR

(), ef(@)de)?
i; S fa)da

B M t; (‘/Zl_l xf(x)dx)Q
) Z/ (f,", f(x)dw)?

If f(z) = ¢(x) which is standar Gaussian density, we have

1— Dy =1-E((z — Qu(x)?)) = 2E(Qp(z)x) — E(Qp(2)*) = &11.
The proof is complete. O

zf(x)dx

f(z)dz = E(Qy(2)?).

A.1 Proof of Theorem 1
Proof. We have y; = px; + /1 — p?>Z in distribution, with Z ~ N (0, 1) independent of x. Hence,

E(pe.r) = 111 = E(Qu(2)(pzi + V1 = p?2))
= pE(Qs(zi)z:)
=&1,1p.
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Moreover, we have
Vo2 = B(Qu(2)* (pz: + /1 — p?Z)?)
=&20” + (1= p)éap
= (€22 — £2,0)p° + £2,0-

Therefore, the variance can be expressed as

Var(pn.g) = Var(@(e:u) = 1 (EQu(z:)s7) ~ B@u(r)u))

1
= %(72,2 - 53,102)

(€22 — €20 = E511)P° + 20
p .

The variance of debiased estimator follows easily. The proof is complete. O

A.2 Proof of Theorem 2

Proof. Using first order Taylor expansion of g at zg, yo we get

2
r x r—x — T —
Yo Yo Yo Yo
Therefore,
1 A
N T Q x), ]E 1

).
VEIQ@IBIvE)  E(/Elo@3yE)

Let T = 75/|Qu(x)|13]ly /|3 and E(T) = Eo. Using another Taylor expansion we have:

BVT) = ELVEy + 5= + O((T = o))

1
=+/Ey —|—O(%), as k — oo,

and

k k
Eo = B(T) = (Y Qo3 2)

k
= ,;qm; Q)+ BLY- Q)
k(k — 1)

= T EQ@)Y) + %E(Q(fclfy%)

k—1 Y2,2 1
’ €20+ 2 +O(E)’ as k — oo.

Put above parts together, we obtain the expected value as k — oo,

E(posn) = 222 4 o(L).

V2,0 k

<Q@y> p_ 1@
k b k b

2
c= Hzﬂl , and hence py . =

To derive the asymptotic variance, let a =
a

vbye'




We have

2 9
V2,2 = V2,0P
E(a) = &1,1p = &2,0p = V2,00, Var(a) = TQOv
2
V4,0 — 7
E(b) = &,0 = 72, o,VGT(b) = TZO’
E(c) =1,Var(c) =
k k
COU(CL b ZQ?) xz yz ZQb(Iv)Z) - E(Q)E(b)a
1 1
1
= ﬁ[k(/{ — D20 - v2,00 + ky3.1] — 73 00,
V1= 50P
= =

Similarly, we can get

Cov(a,c) = J1,3 — 72,00 _kw’op, Cov(b,c) = J2.2 — 72,0 ;72’0.

Hence the covariance matrix is formulated as

1 [722~ V30P” W31 V0P M3 7200
Cov(a,b,c) = | B1T200 70~ %0 V227720 |

V1,3 = V2,00 V2,2 — V2,0 2
and the gradients
1 a a
V(a, bv C) = (7 T .3 _37)

Vo 2b3/c 2¢2b

Second order Taylor expansion gives
. 1
Var(py,gn) = V(E(a), E(b), E(c))" Cov(a,b,¢) ¥ (E(a), E(b), E(c)) + O(73),

and the final result is derived by plugging in the expressions and collecting terms:

. 1. 70 3 1 2 3.1 2,2 1
v B VR - (% 12214 0(=).
ar(py, f.n) ]{:[(47270 + 20 + 572,2)p (7270 3)p+ 7270] +0(:3)

This concludes the proof.

A.3 Proof of Theorem 3

Proof. By normality assumption, we can compute,

: a(p12 — p13
PM(Ul,u27’U,3):1_¢( (2 1 ) )’
\/ P12 + To1a — 2000120013
i a’(p12 — P13
Pl (uy,ug, uz) = 1 — &( 2 (2 ) \
o’ / gl ol
\/ P12 + Op1s — 2C"o 0120 p13
We can rewrite in terms of debiased variances by 0’3 — 53@2 and U;g _ 6;)2 o for V!
pM(ulv'UQ,Ug =1—-® P12 — P13 ,
\/5p12 +02,, = 2C0p,00,
P//\/t(uhuz,us =1—-® P12 — P13
\/6912 + 6:)213 20/62126/013

P12 — P13 )
\/a252 +a?62 . —2aa’C"5,,,0,,,

P12

=19




with 0 < a < 1,0 < @’ < 1 by assumption. To compare the probabilities it suffices to consider the
denominators. To make P} (u1,uz,us) < Puy(ug,ug,us), we need

(5i12 + 5513 2C8,,,0p,, > a (5212 + a’zéilg —2aad'C'6,,,0,,,,
which after some simplification gives the condition
(1 —a )612712 (1 B a )5313 .

20,,,9

p127p13
The proof is complete. O

C—adC <

B Proofs of Section 4: Scenario 2 & Symmetric quantization

Hermite polynomials. First we introduce an important tool for our following analysis. The
probabilists’ Hermite polynomials are defined as

which form an orthogonal basis of the Hilbert space .#” of all functions satisfying [ | f(z)|?e™ 5 de <

I2 . .
00, w.r.t the e~z measure. The inner product is well-defined as

9= [ f@gla)e  da,

As an example, the first several Hermite polynomials are
Ho(x) =1, Hi(z) = 2, Ho(x) = 2> — 1, Hy(x) = 2 — 3z, ...,
and they can be derived via a recursion relationship: for/ = 0,1, ...,

Hys(x) = oH(x) — H, ().

Hermite Polynomials admits Orthogonality in the sense that

/H _2dx—0 m # n,
/H *2dac*\/ 2mn!, m=n.

We can deduct some useful quantities from this property. Let x ~ N(0,1), then we have for all
l=1,2,..,

E(HI(IL')) = E(Ho(I)Hl(x)) = 0 VG,T'(H[ /Hl Hl d =1

Moreover, H,,(x) is an odd function if n is odd, and is symmetrlc about y axis when n is even. One
important application of Hermite polynomials is that we can decompose the bivariate normal density
as below [1]]:

o 1
p
v) = 3 @) H(y)6@)o().
1=0
where H;(x) is the [-th order probabilitist Hermite polynomial, and ¢(x) is the density function of

standard normal distribution as defined before. This immediately implies that for any functions f;
and fo, we can write

E[fy(2) faly / / (@) Fa () by (2, )y
-1/ Fi@)1a0) 3 o @) 1))y
=0

o
:Z% / / fi(@) fa(y) Hi(x) Hy(y) () p(y)dady

-y / fi@Hi(@ola)ds [ fl)H)ow). )

=0



As we can see, the correlation coefficient p is factored out in ([3)), which is beneficial for studying the
dependence of the expected value on p.

Now we recall some notations. The data vectors are LM quantized with different bits b; < bo, and
we denote two Lloyd-Max quantizers as @y, and Qp, and distortion Dy, and Dy, respectively. With

a little abuse of notation, in this section we re-define &, 5 = E(Qp, (2)°2°), Va5 = E(Qp, (2)*27)

and o5 = E(Qu, (2)%Qp, (v)?).

B.1 Proof of Theorem 4 & Corollary 1

To prove the results, we will use the following lemma.

Lemma B2. Suppose we have a sequence of positive constants V. = (v, va, ...). Let W = diag(V')
and ¢1 = (11, €12, ...) and c2 = (ca1, Cag, ...) be vectors with same length as V. Then

cIWeg = /L1 Lo|| V| oo,

where the infinite norm || - || is the maximum absolute value of a vector.

ma
llerl3=La,lle2l3=La

Proof. By the symmetry of this optimization problem, we know that the optimal solution of ¢; and
c2 is not unique. Hence, we may cast two more constraints ¢; > 0 and cz > 0 to get a unique
solution. To proceed, we introduce Lagrangian multipliers L with slack variables § = (s1, s2,...),t =
(t1,ta,...) as:

L= C:}—‘WCZ — /\1(6{C1 — Ll) — )\2(6%102 — LQ) + S\g‘(cl —_ ~2) — XZ(CZ + ’Ez),

where X3 = (As1, Ase, ...) and Ay = (M1, A2, ...). The Karush-Kuhn-Tucker conditions are
satisfied at minimal point, which gives

Wea —2Me1 + Az =0 (4)
Wer — 2 oca —Ag =0 ©))
cTel =1,

cTe2 =1,

c1—582=0

co + 2 =0

2X3®5=0

224 0t=0

where © denotes element-wise product. The equations leads to following observations:

e Any pair of values (c;, c2;) must be zero or nonzero at the same time. To see this, suppose
c1; = 0 and cg; # 0, then by @) we have two situations:
1) A2 # 0 and Ay; # 0, which implies that ¢; = 0 and thus c¢; = 0. A contradiction occurs.
2) Ao = 0 and A\4; = 0. Firstly, we note that there must exist at least one j # 4 such that
c1;j # 0. For a nonzero ¢y, Ay = 0 forces A\4; # 0, and thus co; must be zero. Therefore,
for Vi = 1,2, ..., we have 1{cy; > 0} + 1{cq; > 0} < 1, which implies that the objective
function is trivially 0. Hence it can not be an optimal solution.

o Ifcy; 75 0, co; % 0 forai €, then A3; = Ay; = 0 for Vi. From (@) and (5)) we deduct that

c1i = QC% +€2: from which we can further derive V;> = Ay )\2

Based on above reasoning, we can consider 2 situations for the optimal solution. First, if only one
pair (¢4, co;) is nonzero, then the maximum of cf W e, is trivially derived at

C1 =V LlImama C2 = v/ L2Imam7



with I, 42 the indicator vector of where the maximum of V is located , e.g in the form (...,0,0,1,0....).
The maxima in this case equals to

max C{WCz =V L1L2 maxV = \V L1L2HV||007

Ci1,C2
subject to constraints ||c1]|3 = L, ||ca||3 = Lo.

Now consider the case where more than two pairs of values (¢4, ¢2;), ¢ € S are nonzero, where

S denotes the set of nonzero indices. Then A\;\y = V2 := V*2, Vi € S must hold. By Cauchy-
Schwartz inequality, we have

C{WCz = V*C{62 S V*HC]_HQHCzHQ S \/LlLQV* S \/L1L2HV||ooa
and the bound is tight (i.e. equality holds when ¢; and co have same direction).

Combining above analysis, we have shown that

cIWea = /L1 Lo|| V| so-

max
lleill3=L1,lle2ll3=L2

Proof of Theorem 4 and Theorem 5.

Proof. First, we have that

(le( sz ) (6)
>0 / Qo (@) Hi()o@)ds [ Qn, (o) ) $(w)i)

E[Qy, (z) Hi(2)| E[Q, (x) Hi ()]

l:l,odd
o©
= (1= Dy, = Do+ Do, Dy )p+ Y 2C00[Qu, (@), Hi(w)] - CovlQu, (), Hila)). ()
1=3,0dd
Note that E_,[Qs, ()Qu, (y)] = —E,[Qs, ()Qu, (y)], so it suffices to consider the case where

p > 0 in the remaining part of the proof.

From previous sections we know that for a fixed quantizer @Q,(-) with distortion D, and Hermite
Polynomial Hy/(-) with k > 1,

Var(Hy(z)) = E(Hi(2)?) = k!, Cov(Qy(x),z) = E(Qy(z)x) =1 — Dy,
Var(Quy(z)) = E(Qy(x)?) = 1 — Dy, Cov(Hy(z),x) = E(Hy(x)z) = 0.

We can compute the correlations:

Corr(Qp(z =+/1—= Dy, Corr(H(z),z) =0.

By working with correlations between 3 random variables and using Cauchy-Schwartz inequality, we

get
—V/Dy < Corr(Qy(x), Hi(x)) < \/D.

Denote the correlation Corr(Qy(x), Hi(x)) as ¢x, k = 0,1,2, ..., and C=(cg, 1, 2, ...). Note
that Hermite polynomials are infinite orthogonal basis of the function space .7, and thus we have
the decomposition Q(z) = >~ a;H;(x) for some a;, i = 1,2, .... Simple calculation yields
Cov(Q, H;) = a;Var(H;(z)), Var(Q) = Y o, aiVar(H;(z)). So the correlations can be derived
as

anar(H (z)) a;Var(H;(z))

\/Z] 1a]Va?" )/ Var(H \/Z] 1 ]2Va1" (9:))

= Corr(Q, H;)




Consequently, we have CTC = 1. Given that ¢; = Corr(Qy(z),z) = v/1 — Dy, and ¢ = 0 for all
even k’s, we have ZZO:&Odd ¢ = Dy,.

The above argument holds for both @, and Qp,. Denote c1p, = Corr(Qy,, Hy) and co =
Corr(Qp,, Hy) and notice that fori = 1,2and k = 0,1,2, ...,

Cov(Qu, (x), Hy(w)) = cap/T = DivR,
because Var|[Hy(x)] = k!. Continuing with (7) we obtain

E(ﬁbl,b2) = E(Qh(x)sz(y)) = (1 - Dbl)(]‘ - Db2)p+ \/1 - Db1 \/1 - Db2 Z Clkc?kpk'
k=3,0dd
)]

Now we seek to bound the last term in above equation. Applying Lemma with V(p) =
(3,05, p7, ...) and constraints ||c1||3 = Dy, , ||c2||3 = Dy, we get

o0
~V/ Dy, Do, |pl* < > crpeanp® < /D, Dy, |pl?,

k=3,0dd

for p € [—1, 1] by symmetry, and this bound is tight in worst-case. Therefore, we have
|E([)bl7b2) - (1 - Db1)(1 - Dbz)p| < \/Dlebz \/1 — Dy, \/1 — Dy, ‘0‘3' 9)
To get the bound on absolute bias, note that for p > 0, by Eq.(9) we have

p = E(pv,4,) = (Do, + Dy, = Dy, Do, )p = /Dy Do, /1 — Dy, /1 = Dy, p*. (10)
By computing

(Dbl +Dbz - Dleb2)2 - Dleb2(1 - Dbl)(l - Db2)
= Dj, + D, + Dy, Dy, (1 = Dy, — Dy,)
>0,

since for LM quantizers, 1— Dy, — Dy, > 0 always holds. Consequently, we know that p—E(pp, 5,) >
0 for p > 0. Now by the symmetry of j;, j, and elementary inequalities, we have for p € [—1,1],

Ay — A1 < |E(Poyp,) — pl < A1+ Ag,

where

Ay = /Dy, Dy,\/1 — Dy, \/1 — Dy, |p|*>, Ay = (Dy, + Dy, — Dy, Dy,)|pl.-

To prove Theorem 5, notice that when Q1 = Q2 := Qp and Dy, = Dy, := Dy, we can modify (@) as

E(Qu(2)Qu(y)) = (1 — 2Dy + D)p+ (1—Dy) Y ciph,
1=3.0dd

where ¢, = Corr(Qy(x), Hy(z)) and 72 5 ¢ = D,. Obviously, the summation is lower bounded
by 0 and upper bounded by Djp>. Similar calculation can be conducted to get the bound on absolute
bias. This completes the proof.

O

B.2 Proof of Theorem 6

Proof. The proof follows from the proof of Theorem 2. As k£ — oo, Taylor Expansion of % at xo, Yo
gives: (
T _To T X0 (y — yo)zo

—=—+ - +O((x — 20)?) + O((y — yo)?)-
Y % o I (( 0)%) ((y —90)°)
We apply the expansion at expectations:
~ E l Q 1 T 7@ 2 y 1 E ) 1,02 1
B ) - — FGQU@QuW) 1 Bluw) oL

E(yElQn@lon@ig) F BV Tk



Let T = 2 (|Qs, (®)]13]|Qu, ()]13. E(T) = Ey. Using Taylor Expansion again, we have:

E(VT) =E ( Ey + 7;\_/E£00 +0((T - EO)2)>

1
= Ey +O(E>’ as k — oo,

k k
Fy=B(T) = 4E ((Z Qo (2)2)(>" O, <yi>2>>

k
{ Zle ;) Q2 yJ Z Q2 u) )]
i#j =t
_ %E[QNQF]E[Qz@l)Z] + 1Bl (@)*Qa(w)?

k—1 1 1
= sz,oﬂ’z,o + ECz,z + O(E>’ as k — oo.

Combining parts together we have as k — oo,

1
E(py o) = —22— 1 0(L).

V£2,072,0 k

2 2
Let a — <Qbpy (I)];ng (y)> , b= Hlek(fL’)” c= Hng W)l and thus pAbl,bg, \[\[ We have:
Coo—(F
E(a) = (1,1, Var(a) = — % =t
40— &
E(b) = &0, Var(b) = 5 0
V4,0 — 7
E(c) = 72,0, Var(c) = Tw’
k
COU(G’ b ( Zle xl sz yz ZQM xz ) _E(a)E(b)
1
1
= ﬁ[k(k — 1)¢112,0 + kC31] — C11é2,0
_ Ga—CGaéeo
k b
Cov(a, c) = 1,3 —21,1’72,0’ Cov(b, ¢) = G2,2 —22,072,0.
Therefore,
1 Cz,z - C12,1 C3,1 - C1,1§2,0 C1,3 - C1,1’72,0
Cov(a,b,c) = T G31—Caboo  ao—&o  Ca2— 0720 |
2
CG13—C1720 C22—%80%0 740 — Vo
and

1 G ISE! )
) 3 9 3 .
V&2,072,0 263 0v/T20 2930V E20

V(E(a), E(b), E(c)) = (

Using Taylor expansion we have

. 1
Var(py, by.n) = V(E(a),E(b),E(c))T Cov(a, b, ¢)V(E(a), E(b), E(c)) + O(ﬁ)
The final result is derived by direct calculation and collecting terms:

. 1.Co—C1 Galsi—CEiéo il —(Fav2o
Var(pbl,bz, ) [ - -

).

k" &2072,0 €3 02,0 £2,073.0
<1 1622 — CE1bo0v20  (Taa0—CE1b50  CTavao — RV 1
3 3 ]+ 0(7
2£3 0750 485 0720 482,075 9

This completes the proof.



C Proofs of Section 5: Monotonicity
C.1 Proof of Theorem 7

Lemma C3. Assume <9yg) ~ N <(8) , (/1) T)) For0 < s<tand -1 < p <1, Pr(z €

[s,t],y > 0) is increasing in p, Pr(x € [s,t],y < 0) is decreasing in p.

Proof. We have

_ x2—2pzy+y?

P,y =Pr(zelst],y>0 20-0")  dzxdy

o) t
1
N
0 Js 2my/1— p?
/OO ,/1 ) /t ~SE dyd
= —F—e€ e 20-r%) aydx
0 2 1—p2 s
o0 1 / .2
:/ R e~z /1 — p2dudzx
0 2my/1—p? e

v

]
“‘m

8
“‘m

B Wi@f% t—px | s — px
- [ = P~ et )

It is easy to check that this integral meets the conditions of DCT. Hence, taking the derivative yields

OPs 1 + .:/Oo 1 €,§[¢( t—px) —r+tp (s—p:c) —xr+sp ]
o "y Vam i - g -

For the first term we have

122 t— px

1 a2 —z+tp 1 _eow? 2 —gp4tp
— ¢ (b( ) 5 = —e 20-p)2e” 2 v
o Ver V1I—p2 (L=p%)3/2 o 2m (1—-p%)3/2
1 1 2 _eow?|”
= 2—726776 2(1—p2)
™ 1— p 0
L1 wtm (11)
= - e P .
2T 1—p2

Similarly we can compute

2

1 w2, s—pr . —x+S8p 1 1 s
e % - T, (12)
/0 V2m ¢<,/1—p2)(17p2)3/2 21 /1 — p?

Thus, we obtain

P,y 1 1  __2_ 1 1  ___
T = e 200—-p%) — — e 2(1—p?)
ap 2m /1 — p? 21 (/1= p?
11 22 2
= 77(67 2(1-p2) _ ¢ 2(1—-p2) )
2T 1-— p2
>0,
due to the fact that s < t. For Py, _ := Pr(z € [s,t],y < 0), we proceed with similar calculation,
which will change the sign in (TT) and (I2) and eventually gives
OPy_ 1 1 e

- (e 70— — e 20-7) < 0.
ap 2m /1 — p?

The proof is complete. O



C.2 Proof of Lemma 1

We prove a more detailed version of Lemma 1.

Lemma C4. Assume Qy, is a M-bit symmetric quantizer in the sense that it divides the positive
axis into M intervals with cut point ty = 0 < t1 < --- < tpr—1. The reconstruction levels are give
by le(fﬂ) = pi > Oa RS [tiflati} and le(l') = —Wi T € [_tutfl - 1]7 i = 17"'7M' sz
is a 1-bit quantizer such that Qp,(y) = v > 0 when y > 0 and Qp,(y) = —v when y < 0. Then
E[Qs, (2)Qu, (y)] is strictly increasing in p on [—1,1].

Proof. Denote P, + = Pr(z € [s,t],y > 0) and Ps;_ = Pr(z € [s,t],y < 0). We write
explicitly

M M
E[le (.’E)sz (y)] = Vzuiprti—l,tiri’ - VZMiPTtifl,ti,f
i=1 i=1

M M
- VE :u“iPT—tm—f/ifl,-l- +v E uiPr—tiv_ti—lv_
1=1 1=1
M
=2v E Mi(Prti71¢ti,+ - Prti—hti,*)’
i=1

due to the symmetry of bivariate normal density. Since v > 0 and p; > 0,4 = 1,..., M, applying
Lemma[C3]we prove the desired result. O

C.3 Proof of Lemma 2

In the following we prove a detialed version of Lemma 2.

Lemma C5. Consider two 2-bit symmetric quantizers Qp, and Qp,. Qp, has cut point at (—t1,0,t1)
with distinct quantizing values (—pa, — 1, i1, p2), 0 < p1 < uo on the 4 intervals separated
by the cut points. Similarly, Qp, has cut points (—t2,0,t2) and distinct codes (—&2,—&1,&1,&2),
0 < & < &. Assume that both quantizers to be increasing, namely, 1 < po, &1 < &. Then
E[Qs, (2)Qw, (y)] is strictly increasing in p on [—1,1].

Proof. The expectations is computed as

E[Qp, (7)Qu, (y)] = 2p1&1 (P11 —p11) +2p1&2(Pr2 —p12) + 20281 (P21 —pa1) +2p2a (Pa2 —pzlzs?,
(13)

where

P11 = Pr(z € [0,t1],y € [0,t2]), Pr2a = Pr(z € [0,t1],y € [t2, +9]),

Py = Pr(z € [t1,+00],y € [0,t2]), Poa = Pr(z € [t1,+0],y € [t2, +9]),
p11 = Pr(z € [0,t1],y € [~t2,0]),p12 = Pr(xz € [0,t1],y € [—00, —t2]),

po1 = Pr(z € [t1,+00],y € [~t2,0]),p22 = Pr(z € [t1, +00],y € [—00, —t2]).

10



We compute the derivative with respect to p for each probability using the procedure in proving
lemma.

APy, 1 1 124220ty ty 2 _t3
3 = 2772[(3 2(1-p2) —e 200-p2) — e 201-p2) 4 1]
p Ty1—p

2,2 4 2
8512 _ ;%[_e_tl ;(zrp‘;t)ltz Yo 2(112p2)]
P T\1—-p

2,,2 o
ale _ i;[_e_tl 2t(21,pgt)1t2 + 6_ 2(111;]2)]
8p 2 1— p2

Py 1 1 _t34t3-2ptty
P — 2(1—p2)

dp 2w /1 — p?

o 1 1 _t%+t%+2pt1t2 _ 2 B 3
9p11 = 77[—6 2(1—p2) +e 2002 4 e 20-pH) — 1]
(9/7 2w 1— p2

9 1 1 _ t3+t342pt1ty 3
b2 _ 1 [e7 " 2007 — e 207 ]
3p 21 1— p2

t34t3+2pty to 3
apzl — i#[ef 2(1—p2) _ 672(1—,72)}
ap 2m /1 — p?

o 1 1 _t%+t§+2pt1t2
D22 = ¢ 2(1—p2)

(9/7 N 2r /1 — p2
Now, taking the derivative of (I3 and collecting terms yields

OEQn ()@ W) _ 11 (1€ (A+2—-2C1 =203 ) +11€2(2Co — A) + 11261 (201 — A) o Al

dp /1= p?

3320ty ty 3342ty ty 3 .

where A = e 2107 e 200" (7 =e 20-¢H, (Cy = e 20-,". Rearranging terms,

we obtain

OE T

@, (6P)Qb2 ) oc A(pa&1 — e — paén + p2é2) + (2 — 201 — 202)p1&1 + 2C2p1€ + 201 1261

= A(p1&r — 1o — po&y + p2de) + 2p1&1 + 20161 (2 — p1) + 2021 (&2 — 1)
> 0.

The last inequality holds due to 0 < p1; < o, 0 < &1 < &o. O

Theorem [C5| requires that both quantizers be “stair-shaped” (i.e. increasing) functions. Next, we
extend the analysis to the general case based on this result.

C.4 Proof of Lemma 3

Proof. We show how to construct such decomposition. By symmetry, it suffices to consider the
positive part. Suppose the cut point of @y is (t1 = 0, 2, ..., tx) with values (u1, ..., i), all greater
than 0 and in an increasing order. Now choose a number 0 < &; < min(u1, g — pig—1), and set the
values of Qp—1 as (p1 — &1, p2 — &1,y - pi—1 — &1), With cut points (¢1 = 0, ta, ..., tx—1). Let Qp, be
cut at ¢, with values (&1, i — pk—1 + &1)- It is easy to check that this procedure is valid in any case.
This proves the lemma. O
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