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A Proofs of Section 3: Scenario 1

Recall the notations in Section 3,

γα,β = E
(
Qb(x)αyβ

)
, ξα,β = E

(
Qb(x)αxβ

)
. (1)

Also denote x = (x1, ..., xk), y = (y1, ..., yk), and Qb(x) = (Qb(x1), ..., Qb(xk)), etc.

The following Lemma is a known result of Lloyd-Max quantizer. We provide a proof here since the
proof would be useful for helping readers to better understand the details.
Lemma A1. LetQb be a b-bit Lloyd-Max quantizer optimized with respect to an arbitrary probability
distribution f . Suppose random variable x ∼ f , then

ξ1,1 = ξ2,0 = 1−Db.

Furthermore, if f is standard normal distribution, then ξ1,1 = ξ2,0 ≤ 1.

Proof. Recall that each reconstruction level of LM quantizer is the conditional expectations on its
corresponding separated region. Let t0 < t1 < · · · < tM be the boarders. We have

E(Qb(x)x) =

M∑
i=1

∫ ti

ti−1

∫ ti
ti−1

xf(x)dx∫ ti
ti−1

f(x)dx
xf(x)dx

=

M∑
i=1

(
∫ ti
ti−1

xf(x)dx)2∫ ti
ti−1

f(x)dx

=

M∑
i=1

∫ ti

ti−1

(
∫ ti
ti−1

xf(x)dx)2

(
∫ ti
ti−1

f(x)dx)2
f(x)dx = E(Qb(x)2).

If f(x) = φ(x) which is standar Gaussian density, we have

1−Db = 1− E((x−Qb(x)2)) = 2E(Qb(x)x)− E(Qb(x)2) = ξ1,1.

The proof is complete.

A.1 Proof of Theorem 1

Proof. We have yi = ρxi +
√

1− ρ2Z in distribution, with Z ∼ N(0, 1) independent of x. Hence,

E(ρ̂b,f ) = γ1,1 = E(Qb(x)(ρxi +
√

1− ρ2Z))

= ρE(Qb(xi)xi)

= ξ1,1ρ.
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Moreover, we have

γ2,2 = E(Qb(x)2(ρxi +
√

1− ρ2Z)2)

= ξ2,2ρ
2 + (1− ρ2)ξ2,0

= (ξ2,2 − ξ2,0)ρ2 + ξ2,0.

Therefore, the variance can be expressed as

V ar(ρ̂b,f ) =
1

k
V ar(Qb(xi)yi) =

1

k
(E(Qb(xi)

2y2i )− E(Qb(xi)yi)
2)

=
1

k
(γ2,2 − ξ21,1ρ2)

=
(ξ2,2 − ξ2,0 − ξ21,1)ρ2 + ξ2,0

k
.

The variance of debiased estimator follows easily. The proof is complete.

A.2 Proof of Theorem 2

Proof. Using first order Taylor expansion of xy at x0, y0 we get

x

y
=
x0
y0

+
x− x0
y0

− (y − y0)x0
y20

+O(
(y − y0)2

y30
). (2)

Therefore,

E(ρ̂b,f,n) = E

 1
k 〈Qb(x),y〉√
1
k2 ‖Qb(x)‖22‖y‖22

 =
E(ρ̂b,f )

E
(√

1
k2 ‖Qb(x)‖22‖y‖22

) +O(
1

k
).

Let T = 1
k2 ‖Qb(x)‖22‖y‖22 and E(T ) = E0. Using another Taylor expansion we have:

E(
√
T ) = E[

√
E0 +

T − E0

2
√
E0

+O((T − E0)2)]

=
√
E0 +O(

1

k
), as k →∞,

and

E0 = E(T ) =
1

k2
E[(

k∑
i

Qb(xi)
2)(

k∑
i

y2i )]

=
1

k2
(E[
∑
i6=j

Qb(xi)
2y2j ] + E[

k∑
l=1

Q(xl)
2y2l ])

=
k(k − 1)

k2
E(Q(x1)2) +

1

k
E(Q(x1)2y21)

=
k − 1

k
ξ2,0 +

γ2,2
k

+O(
1

k
), as k →∞.

Put above parts together, we obtain the expected value as k →∞,

E(ρ̂b,f,n) =
ξ1,1ρ√
ξ2,0

+O(
1

k
).

To derive the asymptotic variance, let a = <Qb(x),y>
k , b = ‖Qb(x)‖2

k , c = ‖y‖2
k , and hence ρ̂b,f,n =

a√
b
√
c
.
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We have

E(a) = ξ1,1ρ = ξ2,0ρ = γ2,0ρ, V ar(a) =
γ2,2 − γ22,0ρ2

k
,

E(b) = ξ2,0 = γ2,0, V ar(b) =
γ4,0 − γ22,0

k
,

E(c) = 1, V ar(c) =
2

k
,

Cov(a, b) = E

[
1

k2
(

k∑
1

Qb(xi)yi)(

k∑
1

Qb(xi)
2)

]
− E(a)E(b),

=
1

k2
[k(k − 1)γ2,0 · γ2,0ρ+ kγ3,1]− γ22,0ρ,

=
γ3,1 − γ22,0ρ

k
.

Similarly, we can get

Cov(a, c) =
γ1,3 − γ2,0ρ

k
, Cov(b, c) =

γ2,2 − γ2,0
k

.

Hence the covariance matrix is formulated as

Cov(a, b, c) =
1

k

γ2,2 − γ22,0ρ2 γ3,1 − γ22,0ρ γ1,3 − γ2,0ρ
γ3,1 − γ22,0ρ γ4,0 − γ22,0 γ2,2 − γ2,0
γ1,3 − γ2,0ρ γ2,2 − γ2,0 2

 ,

and the gradients

O(a, b, c) = (
1√
bc
,− a

2b
3
2
√
c
,− a

2c
3
2

√
b
).

Second order Taylor expansion gives

V ar(ρ̂b,f,n) = O(E(a),E(b),E(c))TCov(a, b, c)O(E(a),E(b),E(c)) +O(
1

k2
),

and the final result is derived by plugging in the expressions and collecting terms:

V ar(ρ̂b,f,n) =
1

k
[(
γ4,0
4γ2,0

+
3

4
γ2,0 +

1

2
γ2,2)ρ2 − (

γ3,1
γ2,0

+ γ1,3)ρ+
γ2,2
γ2,0

] +O(
1

k2
).

This concludes the proof.

A.3 Proof of Theorem 3

Proof. By normality assumption, we can compute,

P̂M(u1, u2, u3) = 1− Φ(
α(ρ12 − ρ13)√

σ2
ρ12 + σ2

ρ13 − 2Cσρ12σρ13

),

P̂ ′M(u1, u2, u3) = 1− Φ(
α′(ρ12 − ρ13)√

σ′2ρ12 + σ′2ρ13 − 2C ′σ′ρ12σ
′
ρ13

).

We can rewrite in terms of debiased variances by σ2
ρ = δ2ρα

2 and σ′2ρ = δ′2ρ α
′2 for ∀ρ:

P̂M(u1, u2, u3) = 1− Φ(
ρ12 − ρ13√

δ2ρ12 + δ2ρ13 − 2Cδρ12δρ13

),

P̂ ′M(u1, u2, u3) = 1− Φ(
ρ12 − ρ13√

δ′2ρ12 + δ′2ρ13 − 2C ′δ′ρ12δ
′
ρ13

)

= 1− Φ(
ρ12 − ρ13√

a2δ2ρ12 + a′2δ2ρ13 − 2aa′C ′δρ12δρ13

),
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with 0 < a < 1, 0 < a′ < 1 by assumption. To compare the probabilities it suffices to consider the
denominators. To make P̂ ′M(u1, u2, u3) < P̂M(u1, u2, u3), we need

δ2ρ12 + δ2ρ13 − 2Cδρ12δρ13 > a2δ2ρ12 + a′2δ2ρ13 − 2aa′C ′δρ12δρ13 ,

which after some simplification gives the condition

C − aa′C ′ <
(1− a2)δ2ρ12 + (1− a′2)δ2ρ13

2δρ12δρ13
.

The proof is complete.

B Proofs of Section 4: Scenario 2 & Symmetric quantization

Hermite polynomials. First we introduce an important tool for our following analysis. The
probabilists’ Hermite polynomials are defined as

Hl(x) = (−1)l exp(
x2

2
)
dl

dxl
exp(−x

2

2
),

which form an orthogonal basis of the Hilbert space H of all functions satisfying
∫
|f(x)|2e− x

2

2 dx <

∞, w.r.t the e−
x2

2 measure. The inner product is well-defined as

〈f, g〉 =

∫
f(x)g(x)e−

x2

2 dx.

As an example, the first several Hermite polynomials are
H0(x) = 1, H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x, ...,

and they can be derived via a recursion relationship: for l = 0, 1, ...,

Hl+1(x) = xHl(x)−H
′

l (x).

Hermite Polynomials admits Orthogonality in the sense that∫
Hm(x)Hn(x)e−

x2

2 dx = 0, m 6= n,∫
Hn(x)Hn(x)e−

x2

2 dx =
√

2πn!, m = n.

We can deduct some useful quantities from this property. Let x ∼ N(0, 1), then we have for all
l = 1, 2, ...,

E(Hl(x)) = E(H0(x)Hl(x)) = 0, V ar(Hl(x)) =
1√
2π

∫
Hl(x)Hl(x)e−

x2

2 dx = l!.

Moreover, Hn(x) is an odd function if n is odd, and is symmetric about y axis when n is even. One
important application of Hermite polynomials is that we can decompose the bivariate normal density
as below [1]:

φρ(x, y) =

∞∑
l=0

ρl

l!
Hl(x)Hl(y)φ(x)φ(y),

where Hl(x) is the l-th order probabilitist Hermite polynomial, and φ(x) is the density function of
standard normal distribution as defined before. This immediately implies that for any functions f1
and f2, we can write

E[f1(x)f2(y)] =

∫ ∫
f1(x)f2(y)φρ(x, y)dxdy

=

∫ ∫
f1(x)f2(y)

∞∑
l=0

ρl

l!
Hl(x)Hl(y)φ(x)φ(y)dxdy

=

∞∑
l=0

ρl

l!

∫ ∫
f1(x)f2(y)Hl(x)Hl(y)φ(x)φ(y)dxdy

=

∞∑
l=0

ρl

l!
(

∫
f1(x)Hl(x)φ(x)dx

∫
f2(y)Hl(y)φ(y)dy). (3)

4



As we can see, the correlation coefficient ρ is factored out in (3), which is beneficial for studying the
dependence of the expected value on ρ.

Now we recall some notations. The data vectors are LM quantized with different bits b1 < b2, and
we denote two Lloyd-Max quantizers as Qb1 and Qb2 and distortion Db1 and Db2 , respectively. With
a little abuse of notation, in this section we re-define ξα,β = E(Qb1(x)αxβ), γα,β = E(Qb2(x)αxβ)
and ζα,β = E(Qb1(x)αQb2(y)β).

B.1 Proof of Theorem 4 & Corollary 1

To prove the results, we will use the following lemma.

Lemma B2. Suppose we have a sequence of positive constants V = (v1, v2, ...). LetW = diag(V )
and c1 = (c11, c12, ...) and c2 = (c21, c22, ...) be vectors with same length as V . Then

max
‖c1‖22=L1,‖c2‖22=L2

cT1Wc2 =
√
L1L2‖V ‖∞,

where the infinite norm ‖ · ‖∞ is the maximum absolute value of a vector.

Proof. By the symmetry of this optimization problem, we know that the optimal solution of c1 and
c2 is not unique. Hence, we may cast two more constraints c1 ≥ 0 and c2 ≥ 0 to get a unique
solution. To proceed, we introduce Lagrangian multipliers Lwith slack variables s̃ = (s1, s2, ...), t̃ =
(t1, t2, ...) as:

L = cT1Wc2 − λ1(cT1 c1 − L1)− λ2(cT2 c2 − L2) + λ̃T
3 (c1 − s̃2)− λ̃T

4 (c2 + t̃2),

where λ̃3 = (λ31, λ32, ...) and λ̃4 = (λ41, λ42, ...). The Karush-Kuhn-Tucker conditions are
satisfied at minimal point, which gives



Wc2 − 2λ1c1 + λ̃3 = 0 (4)

Wc1 − 2λ2c2 − λ̃4 = 0 (5)
cT1 c1 = L1

cT2 c2 = L2

c1 − s̃2 = 0

c2 + t̃2 = 0

2λ̃3 � s̃ = 0

2λ̃4 � t̃ = 0

where � denotes element-wise product. The equations leads to following observations:

• Any pair of values (c1i, c2i) must be zero or nonzero at the same time. To see this, suppose
c1i = 0 and c2i 6= 0, then by (5) we have two situations:
1) λ2 6= 0 and λ4i 6= 0, which implies that ti = 0 and thus c2i = 0. A contradiction occurs.
2) λ2 = 0 and λ4i = 0. Firstly, we note that there must exist at least one j 6= i such that
c1j 6= 0. For a nonzero c1j , λ2 = 0 forces λ4j 6= 0, and thus c2j must be zero. Therefore,
for ∀i = 1, 2, ..., we have 1{c1i > 0}+ 1{c2i > 0} ≤ 1, which implies that the objective
function is trivially 0. Hence it can not be an optimal solution.

• If c1i 6= 0, c2i 6= 0 for a i ∈, then λ3i = λ4i = 0 for ∀i. From (4) and (5) we deduct that
c1i = λ2c2i

Vi
= Vic2i

λ1
, from which we can further derive V 2

i = λ1λ2.

Based on above reasoning, we can consider 2 situations for the optimal solution. First, if only one
pair (c1i, c2i) is nonzero, then the maximum of cT1Wc2 is trivially derived at

c1 =
√
L1Imax, c2 =

√
L2Imax,
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with Imax the indicator vector of where the maximum of V is located , e.g in the form (...,0,0,1,0,...).
The maxima in this case equals to

max
c1,c2

cT1Wc2 =
√
L1L2 maxV =

√
L1L2‖V ‖∞,

subject to constraints ‖c1‖22 = L1, ‖c2‖22 = L2.

Now consider the case where more than two pairs of values (c1i, c2i), i ∈ S are nonzero, where
S denotes the set of nonzero indices. Then λ1λ2 = V 2

i := V ∗2, ∀i ∈ S must hold. By Cauchy-
Schwartz inequality, we have

cT1Wc2 = V ∗cT1 c2 ≤ V ∗‖c1‖2‖c2‖2 ≤
√
L1L2V

∗ ≤
√
L1L2‖V ‖∞,

and the bound is tight (i.e. equality holds when c1 and c2 have same direction).

Combining above analysis, we have shown that

max
‖c1‖22=L1,‖c2‖22=L2

cT1Wc2 =
√
L1L2‖V ‖∞.

Proof of Theorem 4 and Theorem 5.

Proof. First, we have that

E(Qb1(x)Qb2(y)) (6)

=

∞∑
l=0

ρl

l!
(

∫
Qb1(x)Hl(x)φ(x)dx

∫
Qb2(y)Hl(y)φ(y)dy)

=

∞∑
l=1,odd

ρl

l!
E[Qb1(x)Hl(x)]E[Qb2(x)Hl(x)]

= (1−Db1 −Db2 +Db1Db2)ρ+

∞∑
l=3,odd

ρl

l!
Cov[Qb1(x), Hl(x)] · Cov[Qb2(x), Hl(x)]. (7)

Note that E−ρ[Qb1(x)Qb2(y)] = −Eρ[Qb1(x)Qb2(y)], so it suffices to consider the case where
ρ ≥ 0 in the remaining part of the proof.

From previous sections we know that for a fixed quantizer Qb(·) with distortion Db and Hermite
Polynomial Hk(·) with k > 1,

V ar(Hk(x)) = E(Hk(x)2) = k!, Cov(Qb(x), x) = E(Qb(x)x) = 1−Db,

V ar(Qb(x)) = E(Qb(x)2) = 1−Db, Cov(Hk(x), x) = E(Hk(x)x) = 0.

We can compute the correlations:

Corr(Qb(x), x) =
√

1−Db, Corr(Hk(x), x) = 0.

By working with correlations between 3 random variables and using Cauchy-Schwartz inequality, we
get

−
√
Db ≤ Corr(Qb(x), Hk(x)) ≤

√
Db.

Denote the correlation Corr(Qb(x), Hk(x)) as ck, k = 0, 1, 2, ..., and C=(c0, c1, c2, ...). Note
that Hermite polynomials are infinite orthogonal basis of the function space H , and thus we have
the decomposition Qb(x) =

∑∞
i=1 aiHi(x) for some ai, i = 1, 2, .... Simple calculation yields

Cov(Q,Hi) = aiV ar(Hi(x)), V ar(Q) =
∑∞
i=1 a

2
iV ar(Hi(x)). So the correlations can be derived

as

ci = Corr(Q,Hi) =
aiV ar(Hi(x))√∑∞

j=1 a
2
jV ar(Hj(x))

√
V ar(Hi(x))

=

√
aiV ar(Hi(x))√∑∞
j=1 a

2
jV ar(Hj(x))

.
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Consequently, we have CTC ≡ 1. Given that c1 = Corr(Qb(x), x) =
√

1−Db and ck = 0 for all
even k’s, we have

∑∞
k=3,odd c

2
k = Db.

The above argument holds for both Qb1 and Qb2 . Denote c1k = Corr(Qb1 , Hk) and c2k =
Corr(Qb2 , Hk) and notice that for i = 1, 2 and k = 0, 1, 2, ...,

Cov(Qbi(x), Hk(x)) = cik
√

1−Di

√
k!,

because V ar[Hk(x)] = k!. Continuing with (7) we obtain

E(ρ̂b1,b2) = E(Qb1(x)Qb2(y)) = (1−Db1)(1−Db2)ρ+
√

1−Db1

√
1−Db2

∞∑
k=3,odd

c1kc2kρ
k.

(8)
Now we seek to bound the last term in above equation. Applying Lemma B2 with V (ρ) =
(ρ3, ρ5, ρ7, ...) and constraints ‖c1‖22 = Db1 , ‖c2‖22 = Db2 , we get

−
√
Db1Db2 |ρ|3 ≤

∞∑
k=3,odd

c1kc2kρ
k ≤

√
Db1Db2 |ρ|3,

for ρ ∈ [−1, 1] by symmetry, and this bound is tight in worst-case. Therefore, we have

|E(ρ̂b1,b2)− (1−Db1)(1−Db2)ρ| ≤
√
Db1Db2

√
1−Db1

√
1−Db2 |ρ|3. (9)

To get the bound on absolute bias, note that for ρ > 0, by Eq.(9) we have

ρ− E(ρ̂b1,b2) ≥ (Db1 +Db2 −Db1Db2)ρ−
√
Db1Db2

√
1−Db1

√
1−Db2ρ

3. (10)

By computing

(Db1 +Db2 −Db1Db2)2 −Db1Db2(1−Db1)(1−Db2)

= D2
b1 +D2

b2 +Db1Db2(1−Db1 −Db2)

≥ 0,

since for LM quantizers, 1−Db1−Db2 > 0 always holds. Consequently, we know that ρ−E(ρ̂b1,b2) >
0 for ρ > 0. Now by the symmetry of ρ̂b1,b2 and elementary inequalities, we have for ρ ∈ [−1, 1],

∆2 −∆1 ≤ |E (ρ̂b1,b2)− ρ| ≤ ∆1 + ∆2,

where

∆1 =
√
Db1Db2

√
1−Db1

√
1−Db2 |ρ|3, ∆2 = (Db1 +Db2 −Db1Db2)|ρ|.

To prove Theorem 5, notice that when Q1 = Q2 := Qb and Db1 = Db2 := Db, we can modify (8) as

E(Qb(x)Qb(y)) = (1− 2Db +D2
b )ρ+ (1−Db)

∞∑
l=3,odd

c2kρ
k,

where ck = Corr(Qb(x), Hk(x)) and
∑∞
k=3 c

2
k = Db. Obviously, the summation is lower bounded

by 0 and upper bounded by Dbρ
3. Similar calculation can be conducted to get the bound on absolute

bias. This completes the proof.

B.2 Proof of Theorem 6

Proof. The proof follows from the proof of Theorem 2. As k →∞, Taylor Expansion of xy at x0, y0
gives:

x

y
=
x0
y0

+
x− x0
y0

− (y − y0)x0
y20

+O((x− x0)2) +O((y − y0)2).

We apply the expansion at expectations:

E(ρ̂b1,b2,n) =
E( 1

k 〈Qb1(x), Qb2(y)〉)

E
(√

1
k2 ‖Qb1(x)‖22‖Qb2(y)‖22

) +O(
1

k
) =

E(ρ̂b1,b2)

E(
√
T )

+O(
1

k
).
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Let T = 1
k2 ‖Qb1(x)‖22‖Qb2(y)‖22, E(T ) = E0. Using Taylor Expansion again, we have:

E(
√
T ) = E

(√
E0 +

T − E0

2
√
E0

+O((T − E0)2)

)
=
√
E0 +O(

1

k
), as k →∞,

E0 = E(T ) =
1

k2
E

(
(

k∑
i

Qb1(xi)
2)(

k∑
i

Qb2(yi)
2)

)

=
1

k2

[
E(
∑
i 6=j

Qb1(xi)
2Q2(yj)

2) + E(

k∑
l=1

Q1(xl)
2Q2(yl)

2)

]

=
k(k − 1)

k2
E[Q1(x1)2]E[Q2(y1)2] +

1

k
E[Q1(x1)2Q2(y1)2]

=
k − 1

k
ξ2,0γ2,0 +

1

k
ζ2,2 +O(

1

k
), as k →∞.

Combining parts together we have as k →∞,

E(ρ̂b1,b2,n) =
ζ1,1√
ξ2,0γ2,0

+O(
1

k
).

Let a =
<Qb1 (x),Qb2 (y)>

k , b =
‖Qb1 (x)‖

2

k , c =
‖Qb2 (y)‖

2

k , and thus ρ̂b1,b2,n = a√
b
√
c
. We have:

E(a) = ζ1,1, V ar(a) =
ζ2,2 − ζ21,1

k
,

E(b) = ξ2,0, V ar(b) =
ξ4,0 − ξ22,0

k
,

E(c) = γ2,0, V ar(c) =
γ4,0 − γ22,0

k
,

Cov(a, b) = E

(
1

k2
(

k∑
1

Qb1(xi)Qb2(yi))(

k∑
1

Qb1(xi)
2)

)
− E(a)E(b)

=
1

k2
[k(k − 1)ζ1,1ξ2,0 + kζ3,1]− ζ1,1ξ2,0

=
ζ3,1 − ζ1,1ξ2,0

k
,

Cov(a, c) =
ζ1,3 − ζ1,1γ2,0

k
, Cov(b, c) =

ζ2,2 − ξ2,0γ2,0
k

.

Therefore,

Cov(a, b, c) =
1

k

 ζ2,2 − ζ21,1 ζ3,1 − ζ1,1ξ2,0 ζ1,3 − ζ1,1γ2,0
ζ3,1 − ζ1,1ξ2,0 ξ4,0 − ξ22,0 ζ2,2 − ξ2,0γ2,0
ζ1,3 − ζ1,1γ2,0 ζ2,2 − ξ2,0γ2,0 γ4,0 − γ22,0

 ,

and
O(E(a),E(b),E(c)) = (

1√
ξ2,0γ2,0

,− ζ1,1

2ξ
3
2
2,0
√
γ2,0

,− ζ1,1

2γ
3
2
2,0

√
ξ2,0

).

Using Taylor expansion we have

V ar(ρ̂b1,b2,n) = O(E(a),E(b),E(c))TCov(a, b, c)O(E(a),E(b),E(c)) +O(
1

k2
).

The final result is derived by direct calculation and collecting terms:

V ar(ρ̂b1,b2,n) =
1

k
[
ζ2,2 − ζ21,1
ξ2,0γ2,0

−
ζ1,1ζ3,1 − ζ21,1ξ2,0

ξ22,0γ2,0
−
ζ1,1ζ1,3 − ζ21,1γ2,0

ξ2,0γ22,0

+
ζ21,1ζ2,2 − ζ21,1ξ2,0γ2,0

2ξ22,0γ
2
2,0

+
ζ21,1ξ4,0 − ζ21,1ξ22,0

4ξ32,0γ2,0
+
ζ21,1γ4,0 − ζ21,1γ22,0

4ξ2,0γ32,0
] +O(

1

k2
).

This completes the proof.
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C Proofs of Section 5: Monotonicity

C.1 Proof of Theorem 7

Lemma C3. Assume
(
x
y

)
∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
. For 0 ≤ s < t and −1 ≤ ρ ≤ 1, Pr(x ∈

[s, t], y ≥ 0) is increasing in ρ, Pr(x ∈ [s, t], y < 0) is decreasing in ρ.

Proof. We have

Ps,t,+ = Pr(x ∈ [s, t], y ≥ 0) =

∫ ∞
0

∫ t

s

1

2π
√

1− ρ2
e
− x

2−2ρxy+y2

2(1−ρ2) dxdy

=

∫ ∞
0

1

2π
√

1− ρ2
e−

x2

2

∫ t

s

e
− (y−ρx)2

2(1−ρ2) dydx

=

∫ ∞
0

1

2π
√

1− ρ2
e−

x2

2

∫ t−ρx√
1−ρ2

s−ρx√
1−ρ2

e−
u2

2

√
1− ρ2dudx

=

∫ ∞
0

1√
2π
e−

x2

2 [Φ(
t− ρx√
1− ρ2

)− Φ(
s− ρx√
1− ρ2

)].

It is easy to check that this integral meets the conditions of DCT. Hence, taking the derivative yields

∂Ps,t,+
∂ρ

:=

∫ ∞
0

1√
2π
e−

x2

2 [φ(
t− ρx√
1− ρ2

)
−x+ tρ

(1− ρ2)3/2
− φ(

s− ρx√
1− ρ2

)
−x+ sρ

(1− ρ2)3/2
].

For the first term we have∫ ∞
0

1√
2π
e−

x2

2 φ(
t− ρx√
1− ρ2

)
−x+ tρ

(1− ρ2)3/2
=

∫ ∞
0

1

2π
e
− (x−tρ)2

2(1−ρ)2 e−
t2

2
−x+ tρ

(1− ρ2)3/2

=
1

2π

1√
1− ρ2

e−
t2

2 e
− (x−tρ)2

2(1−ρ2)

∣∣∣∣∣
∞

0

= − 1

2π

1√
1− ρ2

e
− t2

2(1−ρ2) . (11)

Similarly we can compute∫ ∞
0

1√
2π
e−

x2

2 φ(
s− ρx√
1− ρ2

)
−x+ sρ

(1− ρ2)3/2
= − 1

2π

1√
1− ρ2

e
− s2

2(1−ρ2) . (12)

Thus, we obtain

∂Ps,t,+
∂ρ

=
1

2π

1√
1− ρ2

e
− s2

2(1−ρ2) − 1

2π

1√
1− ρ2

e
− t2

2(1−ρ2)

=
1

2π

1√
1− ρ2

(e
− s2

2(1−ρ2) − e−
t2

2(1−ρ2) )

> 0,

due to the fact that s < t. For Ps,t,− := Pr(x ∈ [s, t], y < 0), we proceed with similar calculation,
which will change the sign in (11) and (12) and eventually gives

∂Ps,t,−
∂ρ

=
1

2π

1√
1− ρ2

(e
− t2

2(1−ρ2) − e−
s2

2(1−ρ2) ) < 0.

The proof is complete.
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C.2 Proof of Lemma 1

We prove a more detailed version of Lemma 1.

Lemma C4. Assume Qb1 is a M -bit symmetric quantizer in the sense that it divides the positive
axis into M intervals with cut point t0 = 0 < t1 < · · · < tM−1. The reconstruction levels are give
by Qb1(x) = µi > 0, x ∈ [ti−1, ti] and Qb1(x) = −µi, x ∈ [−ti, t−i− 1], i = 1, ...,M . Qb2
is a 1-bit quantizer such that Qb2(y) = ν > 0 when y ≥ 0 and Qb2(y) = −ν when y < 0. Then
E[Qb1(x)Qb2(y)] is strictly increasing in ρ on [−1, 1].

Proof. Denote Ps,t,+ = Pr(x ∈ [s, t], y ≥ 0) and Ps,t,− = Pr(x ∈ [s, t], y < 0). We write
explicitly

E[Qb1(x)Qb2(y)] = ν

M∑
i=1

µiPrti−1,ti,+ − ν
M∑
i=1

µiPrti−1,ti,−

− ν
M∑
i=1

µiPr−ti,−ti−1,+ + ν

M∑
i=1

µiPr−ti,−ti−1,−

= 2ν

M∑
i=1

µi(Prti−1,ti,+ − Prti−1,ti,−),

due to the symmetry of bivariate normal density. Since ν > 0 and µi > 0, i = 1, ...,M , applying
Lemma C3 we prove the desired result.

C.3 Proof of Lemma 2

In the following we prove a detialed version of Lemma 2.

Lemma C5. Consider two 2-bit symmetric quantizers Qb1 and Qb2 . Qb1 has cut point at (−t1, 0, t1)
with distinct quantizing values (−µ2,−µ1, µ1, µ2), 0 < µ1 < µ2 on the 4 intervals separated
by the cut points. Similarly, Qb2 has cut points (−t2, 0, t2) and distinct codes (−ξ2,−ξ1, ξ1, ξ2),
0 < ξ1 < ξ2. Assume that both quantizers to be increasing, namely, µ1 < µ2, ξ1 < ξ2. Then
E[Qb1(x)Qb2(y)] is strictly increasing in ρ on [−1, 1].

Proof. The expectations is computed as

E[Qb1(x)Qb2(y)] = 2µ1ξ1(P11−p11)+2µ1ξ2(P12−p12)+2µ2ξ1(P21−p21)+2µ2ξ2(P22−p22),
(13)

where

P11 = Pr(x ∈ [0, t1], y ∈ [0, t2]), P12 = Pr(x ∈ [0, t1], y ∈ [t2,+∞]),

P21 = Pr(x ∈ [t1,+∞], y ∈ [0, t2]), P22 = Pr(x ∈ [t1,+∞], y ∈ [t2,+∞]),

p11 = Pr(x ∈ [0, t1], y ∈ [−t2, 0]), p12 = Pr(x ∈ [0, t1], y ∈ [−∞,−t2]),

p21 = Pr(x ∈ [t1,+∞], y ∈ [−t2, 0]), p22 = Pr(x ∈ [t1,+∞], y ∈ [−∞,−t2]).
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We compute the derivative with respect to ρ for each probability using the procedure in proving
lemma.

∂P11

∂ρ
=

1

2π

1√
1− ρ2

[e
− t

2
1+t22−2ρt1t2

2(1−ρ2) − e−
t21

2(1−ρ2) − e−
t22

2(1−ρ2) + 1]

∂P12

∂ρ
=

1

2π

1√
1− ρ2

[−e−
t21+t22−2ρt1t2

2(1−ρ2) + e
− t22

2(1−ρ2) ]

∂P21

∂ρ
=

1

2π

1√
1− ρ2

[−e−
t21+t22−2ρt1t2

2(1−ρ2) + e
− t21

2(1−ρ2) ]

∂P22

∂ρ
=

1

2π

1√
1− ρ2

e
− t

2
1+t22−2ρt1t2

2(1−ρ2)

∂p11
∂ρ

=
1

2π

1√
1− ρ2

[−e−
t21+t22+2ρt1t2

2(1−ρ2) + e
− t21

2(1−ρ2) + e
− t22

2(1−ρ2) − 1]

∂p12
∂ρ

=
1

2π

1√
1− ρ2

[e
− t

2
1+t22+2ρt1t2

2(1−ρ2) − e−
t22

2(1−ρ2) ]

∂p21
∂ρ

=
1

2π

1√
1− ρ2

[e
− t

2
1+t22+2ρt1t2

2(1−ρ2) − e−
t21

2(1−ρ2) ]

∂p22
∂ρ

= − 1

2π

1√
1− ρ2

e
− t

2
1+t22+2ρt1t2

2(1−ρ2) .

Now, taking the derivative of (13) and collecting terms yields

∂E[Qb1(x)Qb2(y)]

∂ρ
=

1

π

1√
1− ρ2

[µ1ξ1(A+2−2C1−2C2)+µ1ξ2(2C2−A)+µ2ξ1(2C1−A)+µ2ξ2A],

where A = e
− t

2
1+t22−2ρt1t2

2(1−ρ2) + e
− t

2
1+t22+2ρt1t2

2(1−ρ2) , C1 = e
− t21

2(1−ρ2) , C2 = e
− t22

2(1−ρ2) . Rearranging terms,
we obtain

∂E[Qb1(x)Qb2(y)]

∂ρ
∝ A(µ1ξ1 − µ1ξ2 − µ2ξ1 + µ2ξ2) + (2− 2C1 − 2C2)µ1ξ1 + 2C2µ1ξ2 + 2C1µ2ξ1

= A(µ1ξ1 − µ1ξ2 − µ2ξ1 + µ2ξ2) + 2µ1ξ1 + 2C1ξ1(µ2 − µ1) + 2C2µ1(ξ2 − ξ1)

> 0.

The last inequality holds due to 0 < µ1 < µ2, 0 < ξ1 < ξ2.

Theorem C5 requires that both quantizers be “stair-shaped” (i.e. increasing) functions. Next, we
extend the analysis to the general case based on this result.

C.4 Proof of Lemma 3

Proof. We show how to construct such decomposition. By symmetry, it suffices to consider the
positive part. Suppose the cut point of Qb is (t1 = 0, t2, ..., tk) with values (µ1, ..., µk), all greater
than 0 and in an increasing order. Now choose a number 0 < ξ1 < min(µ1, µk − µk−1), and set the
values of Qb−1 as (µ1 − ξ1, µ2 − ξ1, ...µk−1 − ξ1), with cut points (t1 = 0, t2, ..., tk−1). Let Qb2 be
cut at tk, with values (ξ1, µk − µk−1 + ξ1). It is easy to check that this procedure is valid in any case.
This proves the lemma.
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