Supplementary Materials

A Basic statistics of FIM without normalization

A.1 Reversed FIM

We prepare the following two lemmas to prove the theorems in the main text.

AnFIM is a P x P matrix, where P is the dimension of all parameters. Define a P x C'T" matrix R
by

L
VT

Its columns are the gradients on each input, i.e., Vo fi(t) (¢ = 1,...,7). One can represent an
empirical FIM by

R = Vofi Vofs -+ Vafcl. (S.1)

F=RR'. (S.2)
Let us refer to the following CT" x C'T matrix as a reversed FIM:
F*:=R'R, (S.3)

which is the right-to-left reversed Gram matrix of F'. This F'* is essentially the same as the NTK [18].
The F' and F'™* have the same non-zero eigenvalues by definition. Karakida et al. [20] introduced F™*
to derive the eigenvalue statistics in Theorem 2.2. Technically speaking, they derived the eigenvalue
statistics under the gradient independence assumption (Assumption 3.2). However, Yang [25] recently
succeeded in proving that this assumption is unnecessary. Therefore, Theorem 2.2 is free from this
assumption.

To evaluate the effects of batch normalization, we need to take a more careful look into F'* than done
in previous studies. As shown in Supplementary Material B, the FIM under batch normalization in
the last layer requires information on how fast backward order parameters asymptotically converge in
the large M limit. Let us introduce the following variables depending on M:

Cﬁw,t = Zéé(t)27 (ﬁw,st = 265(3)55(” (S.4)

When C' is a constant of order 1, §!(¢) is of order 1/v/M and the above summations become of order
1. The variable (ﬁw is a special case of ‘ﬁv[,st with s = . Recent studies [25, 31] proved that, in the

large M limit, backward order parameters asymptotically converge to ¢, satisfying the recurrence
relations (Eq. (7)). Suppose that we have in the large M limit,

Qorot = Qo + O(1/M), (S.5)

where ¢ > 0 determines a convergence rate. Schoenholz et al. [11] derived Q'fxmt = g, under
the gradient independence assumption. Yang [25] succeeded in deriving the recurrence relations
without using the gradient independence assumption. It also gave an upper bound of the residual
term O(1/M?) although an explicit value of ¢ was not shown. Arora et al. [31] also succeeded in
deriving the recurrence relations in ReLU networks by using a non-asymptotic method and obtained
g > 1/4 (Theorem B.2 in [31]). Thus, previous studies have paid much attention to cjit while there
has been almost no comprehensive discussion regarding the residual term O(1/M?). As shown in
Supplementary Material B.1.3, we confirmed that ¢ = 1/2 holds in simulations of typical DNN
models and that the gradient independence assumption yields ¢ = 1/2.

Between the reversed FIM and convergence rate ¢, we found that the following lemma holds. This
lemma is a minor extension of Supplementary Material A in [20] into the case without the gradient
independence assumption.

Lemma A.1. Suppose a non-centered network and i.i.d. input samples generated by Eq. (3). When
M is sufficiently large, the F* can be partitioned into C*? block matrices whose (k, k')-th block is a
T x T matrix defined by

M 1 .
F*(k, k') = a?mkk, - TO(Ml‘q ), (S.6)
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where ¢* = min{q, 1/2}, k, k' = 1,...,C and by is the Kronecker delta. The matrix K has entries
given by

Kg=k1 (s=1), ke (s#1). (S.7)
Proof. We have the parameter set § = {W};,b.} but the number of bias parameters (of O(M))

is much less than that of weight parameters (of O(M?)). Therefore, the contribution of the FIM
corresponding the bias terms are negligibly small in the large M limit [20], and what we should
analyze is weight parts of the FIM, that is, V ;1 fi. The (k, k')-th block of F** has the (s, t)-th entry
as

Pk ) =Y Ve fi (9)Vw fur(t)/T (S.8)
l 7
=D Mia (Y 6.:()0k i (D)dng ot/ T (8.9)
l i

for s,t = 1,...,T. In the large M limit, we can apply the central limit theorem to the feedforward
propagation because the pre-activation u! is a weighted sum of independent random weights [10, 24]:

G4y o = G +O(1/v/M). This convergence rate of 1/2 is also known in non-asymptotic evaluations
[16, 31]. We then have

F* (kK )st = Y M1 (@ Sk + O(1/M9))(ds; ' + O(1/VM))/T (S.10)
l
My_1 ., - 1 g%
= zl: T Lah s S + TO(Ml @) (S.11)
M 1
= aﬁg?ékk/ + TO(Ml_q*), (812)

where ¢* := min{q, 1/2}. The backward order parameters for k& # k' become zero because the
chains do not share the same weight W and the initialization of the recurrence relations (Eq.
(7)) becomes Gy, = >, 6 (5)0f ;(t) = D2, 0ridprs = 0. When t = s, we have F*(k, k') =
ki M /T +O(M*—97)/T. O

The current work essentially differs from [20] in the point that the evaluation of F™* includes the
convergence rate. The previous work investigated DNNs without any normalization method and such
cases allow us to focus on the first term of the right-had side of Eq. (S.6). This is because the second
term becomes asymptotically negligible in the large M limit. In contrast, batch normalization in the
last layer makes the first term comparable to the second term and requires careful evaluation of the
second term. Thus, eigenvalues statistics become dependent on the convergence rate.

The previous work [20] showed that the matrix K in the first term of (S.6) determines the eigenvalue
statistics such as my and A, in the large M limit. The assumption of i.i.d. input samples makes
the structure of matrix K easy to analyze, i.e., all the diagonal terms take the same x; and all
the non-diagonal terms take k9. Using this matrix K, we can also derive the eigenvectors of F™*
corresponding to Ay, qz:

Lemma A.2 (Supplementary Material A.4 in [20]). Suppose a non-centered network and i.i.d. input
samples generated by Eq. (3). Denote the eigenvectors of F* corresponding to Apaz as vy € RET
(k=1,...,C). In the large M limit, they are asymptotically equivalent to

_[1NT ((k—=1)T+1<i<kT),
(Vk)i .—{

0 (otherwise). (S.13)

It should be remarked that the above results require xo > 0. Technically speaking, the second term of
Eqg. (S.6) is negligible because «; is positive by definition and k4 is also positive in a non-centered
network. If one considers a centered network, however, the initialization of recurrence relations, i.e.,
4%, = 0, recursively yields

aui" = onlsla, 0] = o, / DyDag(y/dhe)o(y/aby) =0, (S.14)

and it gives qf,t = 0 for all [ and k2 = 0. In such cases, the second term of Eq. (S.6) dominates the
non-diagonal entries of F'*(k, k') and affects the eigenvalue statistics. In contrast, we have ¢, > 0
and ¢!, > 0 in a non-centered network. Because ¢, > 0 holds as well, we have x2 > 0 and the
second term becomes negligible in the large M limit.
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A.2 Eigenspace of )\,

To prove Theorem 3.1, we use the eigenvector v obtained in Lemma A.2. The eigenspace of F’
corresponding to A, is constructed from vy. Let us denote an eigenvector of F' as v satisfying
Fv = Apnagv. By multiplying RT by both sides, we have

F*(R"0) = Anaz(R" ). (S.15)

This means that R v is the eigenvector of F*. Then, we obtain RTv = 3  CkVE Up to a scale
factor by using coefficients c;, satisfying >, ¢, = 1. Substituting it into (RR")v = Apaav, We
have v = ), cp R = >, ckE[Vo fi]. As aresult, the eigenspace of F' corresponding to Ap,qy iS
spanned by E[V fi]. It is easy to conform that the derivative V. fi(= (5§h§71) is of O(1/v/M)
and we have ’

F-E[Vofi] = AmaaB[Vo fi] + O(M>7), (S.16)

for k = 1,..., C. The first term of the right-hand side of Eq. (S.16) is of O(M'/2) in non-centered
networks and asymptotically larger than the second term. Thus, we obtain Theorem 3.1.

Note that Lemma A.2 requires non-centered networks and so does Theorem 3.1. Pathological
sharpness appears because non-centered networks make the first term of Eq. (S.16) non-negligible.
In contrast, centered networks have ko = 0 and the order of the above A, becomes lower for a
sufficiently large T'. In such case, the second term of Eq. (S.16) becomes dominant and we cannot
judge whether E[Vy fi] is the eigenvector of FIM or not.

B Batch normalization in last layer

B.1 Mean subtraction
B.1.1 Mean of eigenvalues

The FIM under the mean subtraction (Eq. (15)) is expressed by

Frmpy =Y EVefi()Vafu(t)]=(R-R)(R-R)T, (S.17)
k

where R is a CT x P matrix whose k-th column is given by a vector Vou; /T ((i — 1)T + 1 <
k<iT,i=1,2,...,C). Note that the hyperparameter 3;, disappears since S} is independent of 6.
Here, we define the projector

G:=1Ip—17(17)" /T, (S.18)
which satisfies G2 = G. Using this projector, we have RG = R — R and
Frmen = R(Ic ® G)R", (S.19)

where I is a C' x C identity matrix and ® is the Kronecker product. We introduce a reversed Gram
matrix of the FIM under the mean subtraction:

F}mpn =RB—-R)(R-R)=Ic®G)F(lc®G)". (S.20)

Let us partition F} , 5 into C? block matrices and denote its (k, k")-th block as a 7' x T matrix
F} (K, k'). Substituting the * (S.6) into the above, we obtain these blocks as

M 1 .
Ff mpn (kK = QTKL,mBN(Skk’ + TO(Ml_q ) (S.21)
with
(k1 —r2)(1 =1/T) (s =1),
K1 mBN)st i= S.22
R A 522
We assume 7" > 2 since 1" = 1 is trivial.
The mean of eigenvalues is asymptotically obtained by
my = Trace(Fy ,,pn)/P (S.23)
~C(1—=1/T)(k1 — Kk2)/M. (S.24)
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B.1.2 Largest eigenvalue when 7' > 2and 7' = O(1)

First, we obtain a lower bound of \,,.. In general, we have

Mnaz = max v F} NV (S.25)
v;l|v||2=1 ’
We then find
Amaz = V' Ff NV (S.26)

where v is a C'T-dimensional vector whose ((¢ — 1)T" + 1)-th entries are 1/v/2C, ((i — 1)T + 2)-th
entries are —1/v/2C, and the others are 0 (i = 1, ..., C). We then have

R1 — R2

Amaz > @ M+ O(M'"™1). (S.27)

Next, we obtain an upper bound of \,,,,. In general, the maximum eigenvalue is denoted as the
spectral norm || - [|2, i.e., Amaz = || F} ,, gy ll2- Using the triangle inequality, we have

Amaz < ||Fz,mBNH2 + ||Fz,mBN||2- (5.28)

We divided F7 ,, gy into F;mBN corresponding to the first term of Eq. (S.21) and FE}WBN
corresponding to the second term. Ff’m g 1s composed of a%K r.mBN. The eigenvalues of

a%KL,mBN are explicitly obtained as follows: A\; = 0 for an eigenvector e = (1,...,1), and
Ai = a(k1 — k2)M/T for eigenvectors e; — e; (i = 2,...,T), where e; denotes a unit vector whose
entries are 1 for the i-th entry and 0 otherwise. We then obtain

|F7 npnll2 = alky — k) M/T. (S5.29)

Each entry of Fz’mBN is of O(M'~%"). We then have

1FL mpnlle < 1FLmpnllr = O™, (5.30)
where || - || r is the Frobenious norm. These lead to
Amaz < a2 P20 4 O(M ), (S.31)

Finally, sandwiching A, 4, by bounds (S.27) and (S.31), we asymptotically obtain

=Ry

T ) (8.32)

Amaz ~ @

in the large M limit.

Note that k1 > ko holds in our settings. We can easily observe ¢! > ¢, from the Cauchy—Schwarz
inequality and it leads to k1 > ko (strictly speaking, when ¢(x) is a constant function, its equality
holds and we have ¢! = ¢%, and x; = k2. However, we do not suppose the constant function as an
“activation” function and then k1 > k9 holds).

B.1.3 Largest eigenvalue when M /T = const.

This case requires a careful consideration of the O(M 1-4") term in the reversed FIM (S.21). This
is because the non-diagonal term of K, ,,pn asymptotically decreases to zero in the large M limit
and the O(M1~4 ) term becomes non-negligible. We found the following theorem without using the
gradient independence assumption;

Theorem B.1. Suppose a non-centered network with the mean subtraction in the last layer (Eq. (15))
and i.i.d. input samples generated by Eq. (3). When T = O(M) with a constant p := M /T, the
largest eigenvalue in the large M limit is asymptotically evaluated as

pa(ry — ko) + LM < Apay < \/ Ca?p(ky — K2)?M + ¢ M=) (S.33)

for ¢* = min{q, 1/2}, non-negative constants ¢y and cs.
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Proof.  To evaluate the largest eigenvalue, we use the second moment of the eigenvalues, i.e.,

s,\d::be A7/ P. Because F} . 5 is positive semi-definite, we have Y, A? = > ((Ff ,.pn)st)?
and obtain

M 1 2
sA=Y.> (aT(KL,mBN)stakk/ + o (Fo(k, k’))st) /P, (S.34)

kk' st
where we denote the second term of Eq. (S.21) as Fy = O(M 1-¢" ). We then have
S\ =

M 2 M
Z C (aT(KL,'rrLBN)st) +2aT KL ,mBN 5tzk: FO k k' st"’z FO k K )) /P

st K,k

OTO‘(1 — 1T (k1 — K2)® + 2(“1\147;’”)(1 — 1/T)Z KpmpN) Zk: Fo(k, k)

2(k1 — K2)
A}TS 2 Z(KL,mBN)stZ Fo(kyk))st + )Y —5 aT2 gz (Fo(k k)% (5.35)

s#£t s,t k,k’

When T = O(MP) (p > 0), the first term is of O(1/M?), the second and third terms are of
O(1/MP+47), and the fourth term is of O(1/M?9"). Therefore, the second and third terms are
negligible compared to the first term for all p and ¢*. The fifth term is non-negative by definition.
Although we can make the bounds of A, for all p, we focus on p = 1 for simplicity. In the large
M limit, we have asymptotically

)~ %(m — ra)® + Mcgq* : (S.36)
The constant ¢y comes from the fourth term of Eq. (S.35) and is non-negative.
The lower bound of Ayy,q is derived from A > >, A2/ D" A = 50 /m,y, that is,
Amaz > (K1 — K)p+ et M0 (S.37)
The upper bound comes from A4, < m = /Ps, and we have
Amas < 1/ Cp(r1 — ka)?M + caM20-0°), (S.38)
The non-negative constants c¢; and ce come from cg. O

Thus, we find that )4, is of order M172¢" at least and of order M1~%" at most. Since we have
0 < ¢* < 1/2 by definition, the order of A, is always lower than order of M. Therefore, we can
conclude that the mean subtraction alleviates the pathological sharpness for any q.

Furthermore, we confirmed that ¢ = ¢* = 1/2 held in simulations as shown in Fig. S.1. We
numerically computed g3, ., in DNNs with input samples generated by Eq. (3), random Gaussian
weights and biases. We set ¢y = C' = 1, L = 3and T = 100. The experiments involved 100
different ensembles. We observed that the standard deviation of 9711\4,st decreased with the order of

1/+/ M, which indicated that ¢ = 1/2 held in the real models.

From the theoretical perspective, we found that the gradient independence assumption achieves
g = ¢* = 1/2 and leads to a constant lower bound independent of M.

Lemma B.2. The gradient independent assumption yields ¢ = ¢* = 1/2.
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Figure S.1: Standard deviation of (ﬁ/[’st. Variances of parameters were given by (2, 0) in ReLU case
and (02, 02) = (3,0.64) in tanh case.

Proof. Under the gradient assumption, we can apply the central limit theorem to (jf\/[,st because we
can assume that they do not share the same random weights and biases. That is,

Ghrse = ()0 (1) D WTTWIELSH (5)65 1 (1) (S.39)
i 33"

=> ¢l (s)e ()Y WETWEE6IH ()65 (¢) - (by Assumption 3.2) (S.40)
i 3.3

=5 :(pgl(s)qb;l(t)% > 8 (s)8 T (t) + O(1/VM)  (in the large M limit) ~ (S.41)
X 1 X
% J

=024 Ly lar, gk + O(1/VM). (S.42)

Thus, we have qNMSt =g\, + O(1/v/M) and obtain ¢ = ¢* = 1/2. O

The bounds for A4, in Theorem 3.3 are immediately obtained from Theorem B.1 and Lemma B.2.

B.2 Mean subtraction and variance normalization

Define iy, (t) =: uf (t) — px(0). The derivatives of output units are given by

1 1
\ = —Vour — ——urElur Vougl. S.43
0.fk oo @ U T [t Vot (5.43)
Then, the FIM is given by
c
Frpn =) E[NVofi(t)Vafi(t)'] (S.44)
k
c
= L (pv,a.vea! L 1, Vot Bl Vo] T S.45
= zk: o () [VourVoty ] — o () [ur Veour]ElurVour] ), (5.45)
using the fact o (0 2 = E[ﬂﬁ} We can represent I, gy in a matrix representation as
Fren=(R-—R)Q[R-R)". (S.46)
Q is a CT x CT matrix whose (k, k')-th block is given by a T' x T matrix,
1 1 -
Q(k, k/) = 0_7]% ([T — mUkuk) (Skk', (847)

where I7 is a T x T identity matrix, o7 means o ()2, and Q(k, k) is a projector to the vector .
F1, gy and the following matrix have the same non-zero eigenvalues,

Ffgn =QR—R)"(R—R) =QF} ,.5n- (S.48)
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F} py isa CT x CT matrix and partitioned into C* block matrices. Using Eq. (S.21), we obtain
the (k, k’)-th block as

M 1 .
Ff gn(kK) = a?Q(k, ENK L mBNOkkr + TO(MHI ), (S.49)
where the independence assumption yields ¢* = 1/2. The first term is easy to evaluate,
Q(k, k) K ! — (k1 — K2) | I — L(lf l)a i, (S.50)
L,mBN — O'k 1 2 T TO'I% T kUL ’ .

by using the fact of Y, a¥ (t) = 0. Suppose the case of p = M /T = const. Regarding the diagonal

entries of Q(k, k') K1 m B, the contribution of —3—(1 — F)ugu, is negligible to that of I7 in the
k

large T limit. Thus, we asymptotically obtain
my ~ Z (k1 — k) /M. (S.51)

The bounds of the largest eigenvalue are stralghtforwardly obtained from the second moment as in
the deviation of Theorem B.1. Since the second moment sy = >_. A?/P is given by a trace of the
squared matrix in general, we have

S\ = Trace(FL*’BNZ)/P (S.52)

= ZTY&CG(FL*,BN(/% K)FL pn (K k) /P (5.53)
K.k’

= a?p? ZTrace QUk, k)K 1 mpNQ(k, k)KL mpN)/P + O(1/M) (S.54)

= ozpz (k1 — ko) /M + O(1/M). (S.55)

The lower bound is given by Ap,qz > sx/m and the upper bound by Aax < +/PSa.

C Batch normalization in middle layers

Batch normalization makes the chain of backward signals more complicated as follows. Suppose the
t-th input sample is given. Then, the activation in each layer depends not only on the ¢-th sample
but also on the whole of all samples. This is because batch normalization includes ! and o, which
depend on the whole of all samples in the batch. Therefore, we should compute derivatives as

a;Vsz Za,“ (t;a)h " (a), (S.56)
where we defined oub (1)
uy (¢
o i(ta) = aulf(a)' (8.57)
Its chain rule is given by
l+1
5t i(t;a) Z a l+1(t b) (S.58)
=~ Z ¢ (b) Pl (a,0) Y WIoI L (1:0), (S.59)
i} j
where we defined ( l() l)( l( ) l)
1 w; (D) — ;) (u;(a) —
l p— 7 3 3 3
P;(a,b) := 6qp — T (oh2T . (S.60)

Recently, Yang et al. [14] investigated a gradient explosion of the above chain rule in extremely deep
networks although it requires a complicated formulation of mean field equations and is analytically
intractable in general cases. In the following, we demonstrate an approach to batch normalization in
the middle layers by avoiding the complicated analysis of the chain rule.
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C.1 Effect of un-normalized last layer on the FIM

The derivative with respect to the L-th layer is independent of the complicated chain of batch
normalization because we do not normalize the last layer and have

Ofi(t
a%v(b) = dtilti)hy (@) = A7 (1)dk, (S.61)
ij "

where we used 515,2'(72 @) = 0ki0tq. The lower bound of A, is derived as follows:

I = B e F T (5.62)
T

- ||m|\2:1r;22§§cm71 v Fre (S.63)
= Ynaa: (S.64)

where we denote a diagonal block of F' as Fy, := >, E[Vgz f Ve fi ] and 0% is a vector composed
of all entries of WX. We denote its largest eigenvalue as A%, . One can represent F;, = RR' by
using R := [Vgr f1 Vorfa -+ Verfc]/VT. Its reversed FIM is given by F; := R R. In the
large M limit, we have
M 1 .

Fi(k k) = a?KLékk./ + TO(MM ). (S.65)
The matrix K, is defined by (K1)s = G gy (s = t), G543y (s # t) where we denote
feedroward order parameters for batch normalization as

b = SOV, T = T2 () (5.66)

‘We then have L1
AL 4. BN

max

(8.67)

The evaluation of the order parameters are shown in the following subsection. When the activation
function is non-negative, the order paramters are positive. In particular, they are analytically tractable
in ReLU networks.

T—-1_,_
> v Fry, = — QN

C.2  Specific values of qu}v and qft_Bl N

Order parameters for batch normalization in the middle layers (S.66) require a careful integral over a
T-dimensional Gaussian distribution [14]. This is because the pre-activation ﬂi depends on all of
ul(t) (t = 1,...,T) which share the same weight Wf] Therefore, we generally need the integration

of ¢(k(t)) over the T-dimensional Gaussian distribution, that is,

TR d() = Y, ul )T\
o= [ D ¢<zt<ul<t>—zt, ul(t/)/T)Q/T> : (5.68)
[ W(t) — S, ()T ul(s) — X, ul ()T
Govpn = / bue (ztw(t) =SH ul(t'>/T>2/T) ¢ (ztw(t) -, ul(t’)/T)Z/T()S S

where u! = (u!(1),u!(2),...,u!(T)) is a T dimensional vector and u! ~ N (0,023, 1). The
T x T covariance matrix is defined by (X;_1)s = (ji;}BN (s # 1), inle (s = t). These order
parameters are positive when the activation function is non-negative (strictly speaking, non-negative

and ¢(z) > 0 for certain z).

Although the above integral is analytically intractable in many activation functions, Yang et al. [14]
gave profound insight into the integral. For instance, Corollary F.10 in [14] revealed that the ReLU
activation is more tractable, and we have

1
G =1/2, Gy =5J(=1/(T = 1)), (5.70)

where J(z) := (V1 — 22 + (7 — arccos(x))x) /7 is known as the arccosine kernel. Wei et al. [32]
proposed a mean field approximation on the computation of order parameters for batch normalization,
which is consistent with the above order parameters in the large 7" limit. The previous study [14] also
proposed some methods to evaluate the order parameters in more general activation functions.
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D Additional experiment on gradient descent training

w/o normalization w/ mean subtraction

)
n n )
10" X =}
10 2 3
2
1073 10‘3 1T 0
0
107 104 = s =
1 2 3
10 M 10 10 10! M 107 10°

Figure S.2: Exhaustively searched training losses depending on M (width) and n (learning rate). We
trained DNNs over ten trials with different random seeds, and plotted the minimum value of the
training loss over all trials. Gray area corresponds to the explosion of the minimum value (i.e., larger
than 10%) and means that gradient dynamics in all trials exploded in that area. The other experimental
settings are the same as those in Fig.2. The theoretical line predicted well the experimental results of
wide networks. Mean subtraction achieved the larger area of low training losses.

E Layer normalization

E.1 Order parameters in layer normalization

We show that the order parameters under layer normalization are quite similar to those without
the normalization. This is because the random weights and biases make the contribution of layer
normalization relatively easy. In the large M limit, we asymptotically have

! il ) i1 2
t) = Syl ) plt(t) + &bl = 0, .71
(1) Ejj(Ml LUy (571
and
O'I(t)2 _ lel Wl hl—l(t)hl—l(t)+ Zl(bl)Q _0_2 ~Al—1 +O_2 (S 72)
—2 M, ij WVigr s 5t _Ml i) = Owt b .
53’

for! =1,...,L — 1. Let us denote feedforward order parameters as

i NI iy _

G = o), du = 7A@ () (s)). (8.73)
The same calculation as in the feedforward propagation without normalization leads to

i = / Dud? (u), qt = 1, [1, Tl £ 90 (S.74)

q; - y st = 1¢ ) 0,12”(%_’_0‘5 . .

The backward order parameters are also very similar to those without layer normalization. Let us
consider the chain rule which appears in a FIM:

Qug(t) _ -1

oWl Ope,i ()R (2)- (S.75)
Ommiting index k in 62714(75) to avoid complicated notation, we have
I+1
50 -3 Ol ()8t (t) (S.76)
’ — oup Y
1

=50 Do GOPL) Y W), (S.77)

k J
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ol

where we define P, (t) := 5.1 (t), which is an essential effect of layer normalization on the chain,
and it becomes ' !l
1 ng (E)n; (¢
PLit) = 0 — — — 22 S.78
where we define nl (t) := (uk( ) — ul(t))/ol(t). Let us denote backward order parameters as
g =04t )2 and ¢, ==Y, 6L(s)d ( ) in the large M limit. We then have
Al L+ sl41 ) 3 si+1
@ = J0T05) qus $)R (£) Pl (s) Pl (t ZW];W,}H()W() (S.79)
ik 3,
= T 2 (s Th (s,8) Y WHIWE 6L ()0l (1), (S.80)
qt to Oy kK’ G’
where we substituted o () = o'(s) = /024" + o2 and defined
o) b OO TG £1 (O S0 g

M; M?
Under the gradient independence assumption, we can replace W;,;H and WJZ,J;} in Eq. (S.80) with

W]l;-l and le,*,;} which are freshly generated from A/(0, o2 /M;). This is a usual trick in mean field
theory of DNNs [11-14]. In the large M limit, we have

2
- } : Ow ~1+1
st = o le 1 (b ( 7t)]\2{; qst > (882)

wHt

(S.83)

where ()2 ()2 L(s)nk (t) 3, nt(s)nl
. (6)° +np(s)?+1  ni(s)ng(t) D, n(s)n; (1)
T (s, t) =1— & . — ke (S.84)
k(1) M M?
The first term of F%C’ (s, t) is dominant in the large M limit because other terms are of order 1/M.
Then, we have

do = g Z i M % g1, (S.85)
(S.86)
: . ¢§f(8)¢ﬁ(t)
After applying the central limit theorem to ), , we have

2 ~l+1 2 ~l+1 2 Al—1 2

wq qu qu + a
e / Dul¢' (u)]*, G, = ey Ty |1, 7; — (S.87)

024 +op ondy  +op ondy  top

E.2 FIM

E.2.1 Effect of the normalization in the last layer

Denote the mean subtraction in the last layer as @iy, (t) =: uf (t) — pL(t). The derivatives in the last
layer are given by

Vofr(t) = %ﬂveﬂk(t) - %Wﬂk(t) ;ﬂi(t)veﬂi(t)a (5.88)
where o (t)? := ", 1y (t)?/C. Then, the FIM is given by
Fin = E[Vofe(t)Vafu(t)"] (S.89)
%
=B ﬁ ;Veﬂk(t)veﬂk(t)T - C’al(t)4 %ﬂk(t)uk/( )Voy(t) Vot ()"
(5.90)



We can represent F, g in a matrix representation. Define a P x C'T" matrix R by

1
R = ﬁ[vguf Vouk - Vouk). (S.91)
Its columns are the gradients on each input sample, i.e., Voul (t) (t = 1,...,T). We then have
Fry = (R=R)QR-R)T, (5.92)

where R is defined as a C'T x P matrix whose ((k — 1)T +t)-th column is given by a vector Vgu® (t)
t=1,..,T,k=1,..,C). Wealso defined a CT x CT matrix ) whose (k, k')-th block matrix is
given by the following 7" x T" matrix:

, 1 1 .
Qk, K )gs = SR (5%, — Wu,ﬁ(t)u@ (t)) st (S.93)

for k, k' = 1,...,C. This Q(k, k') is a diagonal matrix. Compared to the matrix () in batch
normalization (Eq. (S.47)), @ in layer normalization is not block-diagonal. This is because layer
normalization in the last layer yields interaction between different output units.

We introduce the following matrix which has the same non-zero eigenvalues as F y:

Fiy=Q[R-R)"(R—R)=QF .y, (S.94)
where
min = (R—R)"(R—R). (8.95)
This F}, ; \; corresponds to the mean subtraction in layer normalization. Its entries are given by
min (b K)se := (Voug (s) = Vou™ (5)) T (Voug (t) — Vou' (¢)) (5.96)
= uf () Vo (1) — Vgl (5) Voul (1) — 2o Voul () Voufi (1)
+ %; Voul (s)TVeul (t) + Zcﬁ Vouk(s)TVouk (). (S.97)
In the large M limit, we have
Voug (s)TVouf (t) = D (81,4(8)0k ;()) (h ()R (1)) (S.98)
Lij
=" Mg, dl o + O(M' ), (S.99)
l

after doing the same calculation as Eq. (S.12) and using the order parameters obtained in Section E.1.
We have ¢* = 1/2 due to the gradient independence assumption. The reversed FIM becomes

Fr ok k) = (5%, - é) a%KLN + %O(Ml‘q*), (S.100)
where we defined a matrix K by
(Kpn)st = Ky (s=1), Ky (s#t), (S.101)
with
L L
K= l; O‘la‘lcﬁqg—l, Ky = l; agl .t (S.102)

Note that the order parameters (4., ¢, 4, G.;) of layer normalization are computed by the recurrence
relations (Egs. (S.74) and (S.87)). Finally, the (k, &')-th block of F} 5, is given by

Fin(k, k) =" Q(k,a)Fy,pn(a, k) (S.103)

o () (s 2 1 i (O O) ), 100

where diag(f(t)) means a T' x T diagonal matrix whose ¢-th diagonal entry is f(¢).
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E.2.2 Eigenvalue statistics

The mean is asymptotically given by

my = Trace(F} y)/P (S.105)
=" Trace(F; y (k. k))/P (S.106)
k
C — 2)x'
~ ’71%7 (S.107)

where g = % >, T}f)Q

The largest eigenvalue is evaluated using the second moment of the eigenvalues. Since the second
moment sy = »_. A\?/P is given by a trace of the squared matrix in general, we have

sy = Trace((Fjx)?)/P (S.108)
= Trace()  Fjy(k.a)Fjy(a,k))/P. (S.109)
k a
We obtain

(O Fin(k,a)Ffy(a, k) (S.110)

= (04%)22 ﬁ ((5ka - é) - é (W)) (KN (S.111)

1/ 1\ 1 [ ()
s (e 2) 5 (M) (o
= Z(a%?W(O =34 g(t (R = K)o + 157, (S.112)

where we define g(t,t') := é%ﬁf)m Substituting Eq. (S.112) into Eq. (S5.109), we obtain

2 _ 2 T -9 2T_ ’2
(n3 — i) +((; )(ni 7]2)11/224-04(6'—2)772&

sy = a (S.113)

where 72 1= % 0(1)4 and n3 := % Zt,t/ U‘Zf)tt;t(lg,). The lower bound is given by Ay,aq > Sx/m

and the upper bound by A4, < V/ Psy.
L

Remark on C = 2: Because we have a special symmetry, i.e., i (t) = —u2(t) = (uf(t) —ul(t))/2
in C = 2, the gradient (Eq. (S.88)) becomes zero. This is caused by the mean subtraction and
variance normalization in the last layer. This makes the FIM a zero matrix. The case of C' > 3 is
non-trivial and the FIM becomes non-zero, as we revealed. Similarly, the gradient (Eq. (S.43)) in
batch normalization becomes zero when 1" = 2 due to the same symmetry [14]. Such an exceptional
case of batch normalization is not our interest because we focus on the sufficiently large 7" in Eq.
(19).
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