
Supplementary Materials
A Basic statistics of FIM without normalization

A.1 Reversed FIM

We prepare the following two lemmas to prove the theorems in the main text.

An FIM is a P × P matrix, where P is the dimension of all parameters. Define a P × CT matrix R
by

R :=
1√
T

[∇θf1 ∇θf2 · · · ∇θfC ]. (S.1)

Its columns are the gradients on each input, i.e., ∇θfk(t) (t = 1, ..., T ). One can represent an
empirical FIM by

F = RR>. (S.2)

Let us refer to the following CT × CT matrix as a reversed FIM:

F ∗ := R>R, (S.3)

which is the right-to-left reversed Gram matrix of F . This F ∗ is essentially the same as the NTK [18].
The F and F ∗ have the same non-zero eigenvalues by definition. Karakida et al. [20] introduced F ∗
to derive the eigenvalue statistics in Theorem 2.2. Technically speaking, they derived the eigenvalue
statistics under the gradient independence assumption (Assumption 3.2). However, Yang [25] recently
succeeded in proving that this assumption is unnecessary. Therefore, Theorem 2.2 is free from this
assumption.

To evaluate the effects of batch normalization, we need to take a more careful look into F ∗ than done
in previous studies. As shown in Supplementary Material B, the FIM under batch normalization in
the last layer requires information on how fast backward order parameters asymptotically converge in
the large M limit. Let us introduce the following variables depending on M :

q̃lM,t :=
∑
i

δli(t)
2, q̃lM,st :=

∑
i

δli(s)δ
l
i(t). (S.4)

When C is a constant of order 1, δli(t) is of order 1/
√
M and the above summations become of order

1. The variable q̃lM,t is a special case of q̃lM,st with s = t. Recent studies [25, 31] proved that, in the
large M limit, backward order parameters asymptotically converge to q̃lst satisfying the recurrence
relations (Eq. (7)). Suppose that we have in the large M limit,

q̃lM,st = q̃lst +O(1/Mq), (S.5)

where q > 0 determines a convergence rate. Schoenholz et al. [11] derived q̃l∞,st = q̃lst under
the gradient independence assumption. Yang [25] succeeded in deriving the recurrence relations
without using the gradient independence assumption. It also gave an upper bound of the residual
term O(1/Mq) although an explicit value of q was not shown. Arora et al. [31] also succeeded in
deriving the recurrence relations in ReLU networks by using a non-asymptotic method and obtained
q ≥ 1/4 (Theorem B.2 in [31]). Thus, previous studies have paid much attention to q̃lst while there
has been almost no comprehensive discussion regarding the residual term O(1/Mq). As shown in
Supplementary Material B.1.3, we confirmed that q = 1/2 holds in simulations of typical DNN
models and that the gradient independence assumption yields q = 1/2.

Between the reversed FIM and convergence rate q, we found that the following lemma holds. This
lemma is a minor extension of Supplementary Material A in [20] into the case without the gradient
independence assumption.
Lemma A.1. Suppose a non-centered network and i.i.d. input samples generated by Eq. (3). When
M is sufficiently large, the F ∗ can be partitioned into C2 block matrices whose (k, k′)-th block is a
T × T matrix defined by

F ∗(k, k′) = α
M

T
Kδkk′ +

1

T
O(M1−q∗), (S.6)
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where q∗ = min{q, 1/2}, k, k′ = 1, ..., C and δkk′ is the Kronecker delta. The matrix K has entries
given by

Kst = κ1 (s = t), κ2 (s 6= t). (S.7)

Proof. We have the parameter set θ = {W l
ij , b

l
i} but the number of bias parameters (of O(M))

is much less than that of weight parameters (of O(M2)). Therefore, the contribution of the FIM
corresponding the bias terms are negligibly small in the large M limit [20], and what we should
analyze is weight parts of the FIM, that is,∇W l

ij
fk. The (k, k′)-th block of F ∗ has the (s, t)-th entry

as
F ∗(k, k′)st =

∑
l

∑
ij

∇W l
ij
f>k (s)∇W l

ij
fk′(t)/T (S.8)

=
∑
l

Ml−1(
∑
i

δlk,i(s)δ
l
k′,i(t))q̂

l−1
M,st/T (S.9)

for s, t = 1, ..., T . In the large M limit, we can apply the central limit theorem to the feedforward
propagation because the pre-activation uli is a weighted sum of independent random weights [10, 24]:
q̂lM,st = q̂lst +O(1/

√
M). This convergence rate of 1/2 is also known in non-asymptotic evaluations

[16, 31]. We then have

F ∗(k, k′)st =
∑
l

Ml−1(q̃lstδkk′ +O(1/Mq))(q̂l−1
st +O(1/

√
M))/T (S.10)

=
∑
l

Ml−1

T
q̃lstq̂

l−1
st δkk′ +

1

T
O(M1−q∗) (S.11)

= ακ2
M

T
δkk′ +

1

T
O(M1−q∗), (S.12)

where q∗ := min{q, 1/2}. The backward order parameters for k 6= k′ become zero because the
chains do not share the same weight WL

ki and the initialization of the recurrence relations (Eq.
(7)) becomes q̃Lst =

∑
i δ
L
k,i(s)δ

L
k′,i(t) =

∑
i δkiδk′i = 0. When t = s, we have F ∗(k, k′)tt =

ακ1M/Tδkk′ +O(M1−q∗)/T .

The current work essentially differs from [20] in the point that the evaluation of F ∗ includes the
convergence rate. The previous work investigated DNNs without any normalization method and such
cases allow us to focus on the first term of the right-had side of Eq. (S.6). This is because the second
term becomes asymptotically negligible in the large M limit. In contrast, batch normalization in the
last layer makes the first term comparable to the second term and requires careful evaluation of the
second term. Thus, eigenvalues statistics become dependent on the convergence rate.

The previous work [20] showed that the matrix K in the first term of (S.6) determines the eigenvalue
statistics such as mλ and λmax in the large M limit. The assumption of i.i.d. input samples makes
the structure of matrix K easy to analyze, i.e., all the diagonal terms take the same κ1 and all
the non-diagonal terms take κ2. Using this matrix K, we can also derive the eigenvectors of F ∗
corresponding to λmax:
Lemma A.2 (Supplementary Material A.4 in [20]). Suppose a non-centered network and i.i.d. input
samples generated by Eq. (3). Denote the eigenvectors of F ∗ corresponding to λmax as νk ∈ RCT
(k = 1, ..., C). In the large M limit, they are asymptotically equivalent to

(νk)i :=

{
1/
√
T ((k − 1)T + 1 ≤ i ≤ kT ),

0 (otherwise).
(S.13)

It should be remarked that the above results require κ2 > 0. Technically speaking, the second term of
Eq. (S.6) is negligible because κ1 is positive by definition and κ2 is also positive in a non-centered
network. If one considers a centered network, however, the initialization of recurrence relations, i.e.,
q̂0
st = 0, recursively yields

ql+1
st = σ2

wIφ[qlt, 0] = σ2
w

∫
DyDxφ(

√
qltx)φ(

√
qlty) = 0, (S.14)

and it gives q̂lst = 0 for all l and κ2 = 0. In such cases, the second term of Eq. (S.6) dominates the
non-diagonal entries of F ∗(k, k′) and affects the eigenvalue statistics. In contrast, we have qlst > 0
and q̂lst > 0 in a non-centered network. Because q̃lst > 0 holds as well, we have κ2 > 0 and the
second term becomes negligible in the large M limit.
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A.2 Eigenspace of λmax

To prove Theorem 3.1, we use the eigenvector νk obtained in Lemma A.2. The eigenspace of F
corresponding to λmax is constructed from νk. Let us denote an eigenvector of F as v satisfying
Fv = λmaxv. By multiplying R> by both sides, we have

F ∗(R>v) = λmax(R>v). (S.15)

This means that R>v is the eigenvector of F ∗. Then, we obtain R>v =
∑
k ckνk up to a scale

factor by using coefficients ck satisfying
∑
k ck = 1. Substituting it into (RR>)v = λmaxv, we

have v =
∑
k ckRνk =

∑
k ckE[∇θfk]. As a result, the eigenspace of F corresponding to λmax is

spanned by E[∇θfk]. It is easy to conform that the derivative ∇W l
ij
fk(= δlih

l−1
j ) is of O(1/

√
M)

and we have
F · E[∇θfk] = λmaxE[∇θfk] +O(M1/2−q∗), (S.16)

for k = 1, ..., C. The first term of the right-hand side of Eq. (S.16) is of O(M1/2) in non-centered
networks and asymptotically larger than the second term. Thus, we obtain Theorem 3.1.

Note that Lemma A.2 requires non-centered networks and so does Theorem 3.1. Pathological
sharpness appears because non-centered networks make the first term of Eq. (S.16) non-negligible.
In contrast, centered networks have κ2 = 0 and the order of the above λmax becomes lower for a
sufficiently large T . In such case, the second term of Eq. (S.16) becomes dominant and we cannot
judge whether E[∇θfk] is the eigenvector of FIM or not.

B Batch normalization in last layer

B.1 Mean subtraction

B.1.1 Mean of eigenvalues

The FIM under the mean subtraction (Eq. (15)) is expressed by

FL,mBN =
∑
k

E[∇θf̄k(t)∇θf̄k(t)>] = (R− R̄)(R− R̄)>, (S.17)

where R̄ is a CT × P matrix whose k-th column is given by a vector ∇θµi/
√
T ((i− 1)T + 1 ≤

k ≤ iT , i = 1, 2, ..., C). Note that the hyperparameter βk disappears since βk is independent of θ.
Here, we define the projector

G := IT − 1T (1T )>/T, (S.18)
which satisfies G2 = G. Using this projector, we have RG = R− R̄ and

FL,mBN = R(IC ⊗G)R>, (S.19)

where IC is a C × C identity matrix and ⊗ is the Kronecker product. We introduce a reversed Gram
matrix of the FIM under the mean subtraction:

F ∗L,mBN := (R− R̄)>(R− R̄) = (IC ⊗G)F ∗(IC ⊗G)>. (S.20)

Let us partition F ∗L,mBN into C2 block matrices and denote its (k, k′)-th block as a T × T matrix
F ∗L,mBN (k, k′). Substituting the F ∗ (S.6) into the above, we obtain these blocks as

F ∗L,mBN (k, k′) = α
M

T
KL,mBNδkk′ +

1

T
O(M1−q∗), (S.21)

with

(KL,mBN )st :=

{
(κ1 − κ2)(1− 1/T ) (s = t),

−(κ1 − κ2)/T (s 6= t).
(S.22)

We assume T ≥ 2 since T = 1 is trivial.

The mean of eigenvalues is asymptotically obtained by

mλ = Trace(F ∗L,mBN )/P (S.23)

∼ C(1− 1/T )(κ1 − κ2)/M. (S.24)
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B.1.2 Largest eigenvalue when T ≥ 2 and T = O(1)

First, we obtain a lower bound of λmax. In general, we have

λmax = max
v;||v||2=1

v>F ∗L,mBNv. (S.25)

We then find

λmax ≥ ν>F ∗L,mBNν, (S.26)

where ν is a CT -dimensional vector whose ((i− 1)T + 1)-th entries are 1/
√

2C, ((i− 1)T + 2)-th
entries are −1/

√
2C, and the others are 0 (i = 1, ..., C). We then have

λmax ≥ α
κ1 − κ2

T
M +O(M1−q∗). (S.27)

Next, we obtain an upper bound of λmax. In general, the maximum eigenvalue is denoted as the
spectral norm || · ||2, i.e., λmax = ||F ∗L,mBN ||2. Using the triangle inequality, we have

λmax ≤ ||F̄ ∗L,mBN ||2 + ||F̃ ∗L,mBN ||2. (S.28)

We divided F ∗L,mBN into F̄ ∗L,mBN corresponding to the first term of Eq. (S.21) and F̃ ∗L,mBN
corresponding to the second term. F̄ ∗L,mBN is composed of αMT KL,mBN . The eigenvalues of
αMT KL,mBN are explicitly obtained as follows: λ1 = 0 for an eigenvector e = (1, ..., 1), and
λi = α(κ1 − κ2)M/T for eigenvectors e1 − ei (i = 2, ..., T ), where ei denotes a unit vector whose
entries are 1 for the i-th entry and 0 otherwise. We then obtain

||F̄ ∗L,mBN ||2 = α(κ1 − κ2)M/T. (S.29)

Each entry of F̃ ∗L,mBN is of O(M1−q∗). We then have

||F̃ ∗L,mBN ||2 ≤ ||F̃ ∗L,mBN ||F = O(M1−q∗), (S.30)

where || · ||F is the Frobenious norm. These lead to

λmax ≤ α
κ1 − κ2

T
M +O(M1−q∗). (S.31)

Finally, sandwiching λmax by bounds (S.27) and (S.31), we asymptotically obtain

λmax ∼ α
κ1 − κ2

T
M, (S.32)

in the large M limit.

Note that κ1 > κ2 holds in our settings. We can easily observe q̂lt > q̂lst from the Cauchy–Schwarz
inequality and it leads to κ1 > κ2 (strictly speaking, when φ(x) is a constant function, its equality
holds and we have q̂lt = q̂lst and κ1 = κ2. However, we do not suppose the constant function as an
”activation” function and then κ1 > κ2 holds).

B.1.3 Largest eigenvalue when M/T = const.

This case requires a careful consideration of the O(M1−q∗) term in the reversed FIM (S.21). This
is because the non-diagonal term of KL,mBN asymptotically decreases to zero in the large M limit
and the O(M1−q∗) term becomes non-negligible. We found the following theorem without using the
gradient independence assumption;
Theorem B.1. Suppose a non-centered network with the mean subtraction in the last layer (Eq. (15))
and i.i.d. input samples generated by Eq. (3). When T = O(M) with a constant ρ := M/T , the
largest eigenvalue in the large M limit is asymptotically evaluated as

ρα(κ1 − κ2) + c1M
1−2q∗ ≤ λmax ≤

√
Cα2ρ(κ1 − κ2)2M + c2M2(1−q∗) (S.33)

for q∗ = min{q, 1/2}, non-negative constants c1 and c2.
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Proof. To evaluate the largest eigenvalue, we use the second moment of the eigenvalues, i.e.,
sλ :=

∑P
i λ

2
i /P . Because F ∗L,mBN is positive semi-definite, we have

∑
i λ

2
i =

∑
st((F

∗
L,mBN )st)

2

and obtain

sλ =
∑
k,k′

∑
s,t

(
α
M

T
(KL,mBN )stδkk′ +

1

T
(F0(k, k′))st

)2

/P, (S.34)

where we denote the second term of Eq. (S.21) as F0 = O(M1−q∗). We then have

sλ =∑
s,t

C
(
α
M

T
(KL,mBN )st

)2

+ 2α
M

T 2
(KL,mBN )st

∑
k

(F0(k, k))st +
∑
k,k′

1

T 2
(F0(k, k′))2

st

 /P

=
Cα

T
(1− 1/T )(κ1 − κ2)2 +

2(κ1 − κ2)

MT 2
(1− 1/T )

∑
t

(KL,mBN )tt
∑
k

(F0(k, k))tt

− 2(κ1 − κ2)

MT 3

∑
s6=t

(KL,mBN )st
∑
k

(F0(k, k))st +
∑
s,t

∑
k,k′

1

αT 2M2
(F0(k, k′))2

st. (S.35)

When T = O(Mp) (p ≥ 0), the first term is of O(1/Mp), the second and third terms are of
O(1/Mp+q∗), and the fourth term is of O(1/M2q∗). Therefore, the second and third terms are
negligible compared to the first term for all p and q∗. The fifth term is non-negative by definition.
Although we can make the bounds of λmax for all p, we focus on p = 1 for simplicity. In the large
M limit, we have asymptotically

sλ ∼
Cαρ

M
(κ1 − κ2)2 +

c0
M2q∗

. (S.36)

The constant c0 comes from the fourth term of Eq. (S.35) and is non-negative.

The lower bound of λmax is derived from λmax ≥
∑
i λ

2
i /
∑
i λi = sλ/mλ, that is,

λmax ≥ (κ1 − κ2)ρ+ c1M
1−2q∗ . (S.37)

The upper bound comes from λmax ≤
√∑

i λ
2
i =
√
Psλ and we have

λmax ≤
√
Cα2ρ(κ1 − κ2)2M + c2M2(1−q∗). (S.38)

The non-negative constants c1 and c2 come from c0.

Thus, we find that λmax is of order M1−2q∗ at least and of order M1−q∗ at most. Since we have
0 < q∗ ≤ 1/2 by definition, the order of λmax is always lower than order of M . Therefore, we can
conclude that the mean subtraction alleviates the pathological sharpness for any q.

Furthermore, we confirmed that q = q∗ = 1/2 held in simulations as shown in Fig. S.1. We
numerically computed q̃1

M,st in DNNs with input samples generated by Eq. (3), random Gaussian
weights and biases. We set αl = C = 1, L = 3 and T = 100. The experiments involved 100
different ensembles. We observed that the standard deviation of q̃1

M,st decreased with the order of
1/
√
M , which indicated that q = 1/2 held in the real models.

From the theoretical perspective, we found that the gradient independence assumption achieves
q = q∗ = 1/2 and leads to a constant lower bound independent of M .

Lemma B.2. The gradient independent assumption yields q = q∗ = 1/2.
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Figure S.1: Standard deviation of q̃1
M,st. Variances of parameters were given by (2, 0) in ReLU case

and (σ2
w, σ

2
b ) = (3, 0.64) in tanh case.

Proof. Under the gradient assumption, we can apply the central limit theorem to q̃lM,st because we
can assume that they do not share the same random weights and biases. That is,

q̃lM,st =
∑
i

φ′li (s)φ′li (t)
∑
j,j′

W l+1
ji W l+1

j′i δ
l+1
j (s)δl+1

j′ (t) (S.39)

=
∑
i

φ′li (s)φ′li (t)
∑
j,j′

W̃ l+1
ji W̃ l+1

j′i δ
l+1
j (s)δl+1

j′ (t) (by Assumption 3.2) (S.40)

=
∑
i

φ′li (s)φ′li (t)
σ2
w

Ml

∑
j

δl+1
j (s)δl+1

j (t) +O(1/
√
M) (in the large M limit) (S.41)

= σ2
w q̃

l+1
st Iφ′ [q

l
t, q

l
st] +O(1/

√
M). (S.42)

Thus, we have q̃lM,st = q̃lst +O(1/
√
M) and obtain q = q∗ = 1/2.

The bounds for λmax in Theorem 3.3 are immediately obtained from Theorem B.1 and Lemma B.2.

B.2 Mean subtraction and variance normalization

Define ūk(t) =: uLk (t)− µk(θ). The derivatives of output units are given by

∇θfk =
1

σk(θ)
∇θūk −

1

σk(θ)3
ūkE[ūk∇θūk]. (S.43)

Then, the FIM is given by

FL,BN :=

C∑
k

E[∇θfk(t)∇θfk(t)>] (S.44)

=

C∑
k

1

σk(θ)2

(
E[∇θūk∇θū>k ]− 1

σk(θ)2
E[ūk∇θūk]E[ūk∇θūk]>

)
, (S.45)

using the fact σk(θ)2 = E[ū2
k]. We can represent FL,BN in a matrix representation as

FL,BN = (R− R̄)Q(R− R̄)>. (S.46)
Q is a CT × CT matrix whose (k, k′)-th block is given by a T × T matrix,

Q(k, k′) :=
1

σ2
k

(
IT −

1

Tσ2
k

ūkū
>
k

)
δkk′ , (S.47)

where IT is a T × T identity matrix, σ2
k means σk(θ)2, and Q(k, k) is a projector to the vector ūk.

FL,BN and the following matrix have the same non-zero eigenvalues,

F ∗L,BN := Q(R− R̄)>(R− R̄) = QF ∗L,mBN . (S.48)
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F ∗L,BN is a CT × CT matrix and partitioned into C2 block matrices. Using Eq. (S.21), we obtain
the (k, k′)-th block as

F ∗L,BN (k, k′) = α
M

T
Q(k, k′)KL,mBNδkk′ +

1

T
O(M1−q∗), (S.49)

where the independence assumption yields q∗ = 1/2. The first term is easy to evaluate,

Q(k, k)KL,mBN =
1

σ2
k

(κ1 − κ2)

(
IT −

1

Tσ2
k

(1− 1

T
)ūkū

>
k

)
, (S.50)

by using the fact of
∑
t ū

L
k (t) = 0. Suppose the case of ρ = M/T = const. Regarding the diagonal

entries of Q(k, k′)KL,mBN , the contribution of 1
σ2
kT

(1− 1
T )uku

>
k is negligible to that of IT in the

large T limit. Thus, we asymptotically obtain

mλ ∼
∑
k

1

σ2
k

(κ1 − κ2)/M. (S.51)

The bounds of the largest eigenvalue are straightforwardly obtained from the second moment as in
the deviation of Theorem B.1. Since the second moment sλ =

∑
i λ

2
i /P is given by a trace of the

squared matrix in general, we have

sλ = Trace(F ∗L,BN
2)/P (S.52)

=
∑
k,k′

Trace(F ∗L,BN (k, k′)F ∗L,BN (k′, k))/P (S.53)

= α2ρ2
∑
k

Trace(Q(k, k)KL,mBNQ(k, k)KL,mBN )/P +O(1/M) (S.54)

= αρ
∑
k

1

σ4
k

(κ1 − κ2)2/M +O(1/M). (S.55)

The lower bound is given by λmax ≥ sλ/mλ and the upper bound by λmax ≤
√
Psλ.

C Batch normalization in middle layers

Batch normalization makes the chain of backward signals more complicated as follows. Suppose the
t-th input sample is given. Then, the activation in each layer depends not only on the t-th sample
but also on the whole of all samples. This is because batch normalization includes µl and σl, which
depend on the whole of all samples in the batch. Therefore, we should compute derivatives as

∂uLk (t)

∂W l
ij

=
∑
a

δlk,i(t; a)hl−1
j (a), (S.56)

where we defined

δlk,i(t; a) :=
∂uLk (t)

∂uli(a)
. (S.57)

Its chain rule is given by

δlk,i(t; a) =
∑
b,j

∂ul+1
j (b)

∂uli(a)
δl+1
k,j (t; b) (S.58)

=
1

σli

∑
b

φ′li (b)P li (a, b)
∑
j

W l+1
ji δl+1

k,j (t; b), (S.59)

where we defined

P li (a, b) := δab −
1

T
− (uli(b)− µli)(uli(a)− µli)

(σli)
2T

. (S.60)

Recently, Yang et al. [14] investigated a gradient explosion of the above chain rule in extremely deep
networks although it requires a complicated formulation of mean field equations and is analytically
intractable in general cases. In the following, we demonstrate an approach to batch normalization in
the middle layers by avoiding the complicated analysis of the chain rule.
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C.1 Effect of un-normalized last layer on the FIM

The derivative with respect to the L-th layer is independent of the complicated chain of batch
normalization because we do not normalize the last layer and have

∂fk(t)

∂WL
ij

=
∑
a

δLk,i(t; a)hL−1
j (a) = hL−1

j (t)δki, (S.61)

where we used δLk,i(t; a) = δkiδta. The lower bound of λmax is derived as follows:

λmax = max
||x||2=1;x∈RP

x>Fx (S.62)

≥ max
||x||2=1;x∈RCML−1

x>FLx (S.63)

=: λLmax, (S.64)

where we denote a diagonal block of F as FL :=
∑
k E[∇θLfk∇θLf>k ] and θL is a vector composed

of all entries of WL. We denote its largest eigenvalue as λLmax. One can represent FL = RR> by
using R := [∇θLf1 ∇θLf2 · · · ∇θLfC ]/

√
T . Its reversed FIM is given by F ∗L := R>R. In the

large M limit, we have

F ∗L(k, k′) = α
M

T
KLδkk′ +

1

T
O(M1−q∗). (S.65)

The matrix KL is defined by (KL)st := q̂L−1
t,BN (s = t), q̂L−1

st,BN (s 6= t) where we denote
feedroward order parameters for batch normalization as

q̂lt,BN :=

∑
i

Ml
φ(ūli(t))

2, q̂lst,BN :=

∑
i

Ml
φ(ūli(t))φ(ūli(s)). (S.66)

We then have

λLmax ≥ ν>k FLνk =
T − 1

T
q̂L−1
st,BN +

q̂L−1
t,BN

T
. (S.67)

The evaluation of the order parameters are shown in the following subsection. When the activation
function is non-negative, the order paramters are positive. In particular, they are analytically tractable
in ReLU networks.

C.2 Specific values of q̂L−1
t,BN and q̂L−1

st,BN

Order parameters for batch normalization in the middle layers (S.66) require a careful integral over a
T -dimensional Gaussian distribution [14]. This is because the pre-activation ūli depends on all of
uli(t) (t = 1, ..., T ) which share the same weight W l

ij . Therefore, we generally need the integration
of φ(ūli(t)) over the T -dimensional Gaussian distribution, that is,

q̂lt,BN =

∫
Dulφ

(
ul(t)−

∑
t′ u

l(t′)/T∑
t(u

l(t)−
∑
t′ u

l(t′)/T )2/T

)2

, (S.68)

q̂lst,BN =

∫
Dulφ

(
ul(t)−

∑
t′ u

l(t′)/T∑
t(u

l(t)−
∑
t′ u

l(t′)/T )2/T

)
φ

(
ul(s)−

∑
t′ u

l(t′)/T∑
t(u

l(t)−
∑
t′ u

l(t′)/T )2/T

)
,

(S.69)
where ul = (ul(1), ul(2), ..., ul(T )) is a T dimensional vector and ul ∼ N (0, σ2

wΣl−1). The
T × T covariance matrix is defined by (Σl−1)st = q̂l−1

st,BN (s 6= t), q̂l−1
t,BN (s = t). These order

parameters are positive when the activation function is non-negative (strictly speaking, non-negative
and φ(x) > 0 for certain x).

Although the above integral is analytically intractable in many activation functions, Yang et al. [14]
gave profound insight into the integral. For instance, Corollary F.10 in [14] revealed that the ReLU
activation is more tractable, and we have

q̂lt = 1/2, q̂lst =
1

2
J(−1/(T − 1)), (S.70)

where J(x) := (
√

1− x2 + (π − arccos(x))x)/π is known as the arccosine kernel. Wei et al. [32]
proposed a mean field approximation on the computation of order parameters for batch normalization,
which is consistent with the above order parameters in the large T limit. The previous study [14] also
proposed some methods to evaluate the order parameters in more general activation functions.
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D Additional experiment on gradient descent training

Training loss

M

η

w/ mean subtractionw/o normalization

M

η

Figure S.2: Exhaustively searched training losses depending on M (width) and η (learning rate). We
trained DNNs over ten trials with different random seeds, and plotted the minimum value of the
training loss over all trials. Gray area corresponds to the explosion of the minimum value (i.e., larger
than 103) and means that gradient dynamics in all trials exploded in that area. The other experimental
settings are the same as those in Fig.2. The theoretical line predicted well the experimental results of
wide networks. Mean subtraction achieved the larger area of low training losses.

E Layer normalization

E.1 Order parameters in layer normalization

We show that the order parameters under layer normalization are quite similar to those without
the normalization. This is because the random weights and biases make the contribution of layer
normalization relatively easy. In the large M limit, we asymptotically have

µl(t) =
∑
j

(∑
i

Ml
W l
ij

)
hl−1
j (t) +

∑
i

Ml
bli = 0, (S.71)

and

σl(t)2 =
∑
j,j′

∑
i

Ml
W l
ijW

l
ij′h

l−1
j (t)hl−1

j′ (t) +

∑
i

Ml
(bli)

2 = σ2
w q̂

l−1
t + σ2

b (S.72)

for l = 1, ..., L− 1. Let us denote feedforward order parameters as

q̂lt :=

∑
i

Ml
φ(ūli(t))

2, q̂lst :=

∑
i

Ml
φ(ūli(t))φ(ūli(s)). (S.73)

The same calculation as in the feedforward propagation without normalization leads to

q̂l+1
t =

∫
Duφ2 (u) , q̂l+1

st = Iφ

[
1,
σ2
w q̂

l
st + σ2

b

σ2
w q̂

l
t + σ2

b

]
. (S.74)

The backward order parameters are also very similar to those without layer normalization. Let us
consider the chain rule which appears in a FIM:

∂uLk (t)

∂W l
ij

= δlk,i(t)h
l−1
j (t). (S.75)

Ommiting index k in δlk,i(t) to avoid complicated notation, we have

δli(t) =
∑
j

∂ul+1
j

∂uli
(t)δl+1

j (t) (S.76)

=
1

σl(t)

∑
k

φ′lk(t)P lki(t)
∑
j

W l+1
jk δl+1

j (t), (S.77)

20



where we define P lki(t) :=
∂ūl

k

∂ul
i

(t), which is an essential effect of layer normalization on the chain,
and it becomes

P lki(t) = δki −
1

Ml
− nlk(t)nli(t)

Ml
, (S.78)

where we define nlk(t) := (ulk(t) − µl(t))/σl(t). Let us denote backward order parameters as
q̃lt :=

∑
i δ
l
i(t)

2 and q̃lst :=
∑
i δ
l
i(s)δ

l
i(t) in the large M limit. We then have

q̂lst =
1

σl(t)σl(s)

∑
i

∑
k,k′

φ′lk(s)φ′lk′(t)P
l
ki(s)P

l
k′i(t)

∑
j,j′

W l+1
jk W l+1

j′k′ δ
l+1
j (s)δl+1

j′ (t) (S.79)

=
1

σ2
w q̂

l−1
t + σ2

b

∑
k,k′

φ′lk(s)φ′lk′(t)Γ
l
k,k′(s, t)

∑
j,j′

W l+1
jk W l+1

j′k′ δ
l+1
j (s)δl+1

j′ (t), (S.80)

where we substituted σl(t) = σl(s) =
√
σ2
w q̂

l−1
t + σ2

b and defined

Γlk,k′(s, t) := δkk′ −
nlk(t)nlk′(t) + nlk(s)nlk′(s) + 1

Ml
−
nlk(s)nlk′(t)

∑
i n

l
i(s)n

l
i(t)

M2
l

. (S.81)

Under the gradient independence assumption, we can replace W l+1
jk and W l+1

j′k′ in Eq. (S.80) with
W̃ l+1
jk and W̃ l+1

j′k′ which are freshly generated from N (0, σ2
w/Ml). This is a usual trick in mean field

theory of DNNs [11–14]. In the large M limit, we have

q̃lst =
1

σ2
w q̂

l−1
t + σ2

b

∑
k

φ′lk(s)φ′lk(t)Γlk,k(s, t)
σ2
w

Ml
q̃l+1
st , (S.82)

(S.83)
where

Γlk,k(s, t) = 1− nlk(t)2 + nlk(s)2 + 1

Ml
−
nlk(s)nlk(t)

∑
i n

l
i(s)n

l
i(t)

M2
l

. (S.84)

The first term of Γlk,k(s, t) is dominant in the large M limit because other terms are of order 1/M .
Then, we have

q̃lst =
1

σ2
w q̂

l−1
t + σ2

b

∑
k

φ′lk(s)φ′lk(t)
σ2
w

Ml
q̃l+1
t . (S.85)

(S.86)

After applying the central limit theorem to
∑
k
φ′lk (s)φ′lk (t)

Ml
, we have

q̃lt =
σ2
w q̃

l+1
t

σ2
w q̂

l−1
t + σ2

b

∫
Du[φ′ (u)]2, q̃lst =

σ2
w q̃

l+1
st

σ2
w q̂

l−1
t + σ2

b

Iφ′

[
1,
σ2
w q̂

l−1
st + σ2

b

σ2
w q̂

l−1
t + σ2

b

]
. (S.87)

E.2 FIM

E.2.1 Effect of the normalization in the last layer

Denote the mean subtraction in the last layer as ūk(t) =: uLk (t)− µL(t). The derivatives in the last
layer are given by

∇θfk(t) =
1

σ(t)
∇θūk(t)− 1

Cσ(t)3
ūk(t)

∑
i

ūi(t)∇θūi(t), (S.88)

where σ(t)2 :=
∑
k ūk(t)2/C. Then, the FIM is given by

FLN :=
∑
k

E[∇θfk(t)∇θfk(t)>] (S.89)

= E

 1

σ(t)2

∑
k

∇θūk(t)∇θūk(t)> − 1

Cσ(t)4

∑
k,k′

ūk(t)ūk′(t)∇θūk(t)∇θūk′(t)>
 .
(S.90)
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We can represent FL,BN in a matrix representation. Define a P × CT matrix R by

R :=
1√
T

[∇θuL1 ∇θuL2 · · · ∇θuLC ]. (S.91)

Its columns are the gradients on each input sample, i.e.,∇θuLk (t) (t = 1, ..., T ). We then have

FLN = (R− R̄)Q(R− R̄)>, (S.92)

where R̄ is defined as a CT ×P matrix whose ((k−1)T + t)-th column is given by a vector∇θµL(t)
(t = 1, ..., T , k = 1, ..., C). We also defined a CT × CT matrix Q whose (k, k′)-th block matrix is
given by the following T × T matrix:

Q(k, k′)st :=
1

σ(t)2

(
δkk′ −

1

Cσ(t)2
ūLk (t)ūLk′(t)

)
δst (S.93)

for k, k′ = 1, ..., C. This Q(k, k′) is a diagonal matrix. Compared to the matrix Q in batch
normalization (Eq. (S.47)), Q in layer normalization is not block-diagonal. This is because layer
normalization in the last layer yields interaction between different output units.

We introduce the following matrix which has the same non-zero eigenvalues as FLN :

F ∗LN = Q(R− R̄)>(R− R̄) = QF ∗mLN , (S.94)

where

F ∗mLN := (R− R̄)>(R− R̄). (S.95)

This F ∗mLN corresponds to the mean subtraction in layer normalization. Its entries are given by

F ∗mLN (k, k′)st := (∇θuLk (s)−∇θµL(s))>(∇θuLk′(t)−∇θµL(t)) (S.96)

= uLk (s)>∇θuLk′(t)−
∑
a

C
∇θuLk (s)>∇θuLa (t)−

∑
a

C
∇θuLa (s)>∇θuLk′(t)

+

∑
a

C2
∇θuLa (s)>∇θuLa (t) +

∑
a6=a′

C2
∇θuLa (s)>∇θuLa′(t). (S.97)

In the large M limit, we have

∇θuLk (s)>∇θuLk′(t) =
∑
l,ij

(δlk,i(s)δ
l
k′,i(t))(h

l−1
j (s)hl−1

j (t)) (S.98)

=
∑
l

Mlq̃
l
stq̂

l−1
st δkk′ +O(M1−q∗), (S.99)

after doing the same calculation as Eq. (S.12) and using the order parameters obtained in Section E.1.
We have q∗ = 1/2 due to the gradient independence assumption. The reversed FIM becomes

F ∗mLN (k, k′) =

(
δkk′ −

1

C

)
α
M

T
KLN +

1

T
O(M1−q∗), (S.100)

where we defined a matrix KLN by

(KLN )st = κ′1 (s = t), κ′2 (s 6= t), (S.101)

with

κ′1 :=

L∑
l=1

αl−1

α
q̃ltq̂

l−1
t , κ′2 :=

L∑
l=1

αl−1

α
q̃lstq̂

l−1
st . (S.102)

Note that the order parameters (q̂lt, q̂
l
st, q̃

l
t, q̃

l
st) of layer normalization are computed by the recurrence

relations (Eqs. (S.74) and (S.87)). Finally, the (k, k′)-th block of F ∗LN is given by

F ∗LN (k, k′) =
∑
a

Q(k, a)F ∗mLN (a, k′) (S.103)

= α
M

T
diag

(
1

σ(t)2

)((
δkk′ −

1

C

)
IT −

1

C
diag

(
ūk(t)ūk′(t)

σ(t)2

))
KLN , (S.104)

where diag(f(t)) means a T × T diagonal matrix whose t-th diagonal entry is f(t).
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E.2.2 Eigenvalue statistics

The mean is asymptotically given by

mλ = Trace(F ∗LN )/P (S.105)

=
∑
k

Trace(F ∗LN (k, k))/P (S.106)

∼ η1
(C − 2)κ′1

M
, (S.107)

where η1 := 1
T

∑
t

1
σ(t)2 .

The largest eigenvalue is evaluated using the second moment of the eigenvalues. Since the second
moment sλ =

∑
i λ

2
i /P is given by a trace of the squared matrix in general, we have

sλ = Trace((F ∗LN )2)/P (S.108)

=
∑
k

Trace(
∑
a

F ∗LN (k, a)F ∗LN (a, k))/P. (S.109)

We obtain

((
∑
a

F ∗LN (k, a)F ∗LN (a, k))tt (S.110)

= (α
M

T
)2
∑
a,t′

1

σ(t)2

((
δka −

1

C

)
− 1

C

(
ūk(t)ūa(t)

σ(t)2

))
(KLN )tt′ (S.111)

· 1

σ(t′)2

((
δak −

1

C

)
− 1

C

(
ūa(t′)ūk(t′)

σ(t′)2

))
(KLN )t′t

=
∑
t′

(α
M

T
)2 1

σ(t)2σ(t′)2
(C − 3 + g(t, t′)2)((κ′1

2 − κ′2
2
)δtt′ + κ′2

2
), (S.112)

where we define g(t, t′) := 1
C

∑
a ūa(t)ūa(t′)

σ(t)σ(t′) . Substituting Eq. (S.112) into Eq. (S.109), we obtain

sλ = α
(η2

3 − η2
1)T + (C − 2)(η2

1T − η2)

T
κ′2

2
+ α(C − 2)η2

κ′1
2

T
, (S.113)

where η2 :=
∑

t

T
1

σ(t)4 and η3 := 1
T 2

∑
t,t′

g(t,t′)
σ(t)σ(t′) . The lower bound is given by λmax ≥ sλ/mλ

and the upper bound by λmax ≤
√
Psλ.

Remark onC = 2: Because we have a special symmetry, i.e., ū1(t) = −ū2(t) = (uL1 (t)−uL2 (t))/2
in C = 2, the gradient (Eq. (S.88)) becomes zero. This is caused by the mean subtraction and
variance normalization in the last layer. This makes the FIM a zero matrix. The case of C > 3 is
non-trivial and the FIM becomes non-zero, as we revealed. Similarly, the gradient (Eq. (S.43)) in
batch normalization becomes zero when T = 2 due to the same symmetry [14]. Such an exceptional
case of batch normalization is not our interest because we focus on the sufficiently large T in Eq.
(19).
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