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Abstract

We provide a differentially private algorithm for hypothesis selection. Given samples from
an unknown probability distribution P and a set of m probability distributions H, the goal is to
output, in a ε-differentially private manner, a distribution from H whose total variation distance
to P is comparable to that of the best such distribution (which we denote by α). The sample

complexity of our basic algorithm is O
(

logm
α2 + logm

αε

)
, representing a minimal cost for privacy

when compared to the non-private algorithm. We also can handle infinite hypothesis classes H
by relaxing to (ε, δ)-differential privacy.

We apply our hypothesis selection algorithm to give learning algorithms for a number of
natural distribution classes, including Gaussians, product distributions, sums of independent
random variables, piecewise polynomials, and mixture classes. Our hypothesis selection proce-
dure allows us to generically convert a cover for a class to a learning algorithm, complementing
known learning lower bounds which are in terms of the size of the packing number of the class.
As the covering and packing numbers are often closely related, for constant α, our algorithms
achieve the optimal sample complexity for many classes of interest. Finally, we describe an
application to private distribution-free PAC learning.

1 Introduction

We consider the problem of hypothesis selection: given samples from an unknown probability
distribution, select a distribution from some fixed set of candidates which is “close” to the unknown
distribution in some appropriate distance measure. Such situations can arise naturally in a number
of settings. For instance, we may have a number of different methods which work under various
circumstances, which are not known in advance. One option is to run all the methods to generate a
set of hypotheses, and pick the best from this set afterwards. Relatedly, an algorithm may branch
its behavior based on a number of “guesses,” which will similarly result in a set of candidates,
corresponding to the output at the end of each branch. Finally, if we know that the underlying
distribution belongs to some (parametric) class, it is possible to essentially enumerate the class
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(also known as a cover) to create a collection of hypotheses. Observe that this last example is quite
general, and this approach can give generic learning algorithms for many settings of interest.

This problem of hypothesis selection has been extensively studied (see, e.g., [Yat85, DL96, DL97,
DL01]), resulting in algorithms with a sample complexity which is logarithmic in the number of
hypotheses. Such a mild dependence is critical, as it facilitates sample-efficient algorithms even
when the number of candidates may be large. These initial works have triggered a great deal of
study into hypothesis selection with additional considerations, including computational efficiency,
understanding the optimal approximation factor, adversarial robustness, and weakening access to
the hypotheses (e.g., [MS08, DDS12b, DK14, SOAJ14, AJOS14, DKK+16, AFJ+18, BKM19]).

However, in modern settings of data analysis, data may contain sensitive information about
individuals. Some examples of such data include medical records, GPS location data, or private
message transcripts. As such, we would like to perform statistical inference in these settings with-
out revealing significant information about any particular individual’s data. To this end, there
have been many proposed notions of data privacy, but perhaps the gold standard is that of differ-
ential privacy [DMNS06]. Informally, differential privacy requires that, if a single datapoint in the
dataset is changed, then the distribution over outputs produced by the algorithm should be similar
(see Definition 2.4). Differential privacy has seen widespread adoption, including deployment by
Apple [Dif17], Google [EPK14], and the US Census Bureau [DLS+17].

This naturally raises the question of whether one can perform hypothesis selection under the
constraint of differential privacy, while maintaining a logarithmic dependence on the size of the
cover. Such a tool would allow us to generically obtain private learning results for a wide variety
of settings.

1.1 Results

Our main results answer this in the affirmative: we provide differentially private algorithms for
selecting a good hypothesis from a set of distributions. The output distribution is competitive with
the best distribution, and the sample complexity is bounded by the logarithm of the size of the set.
The following is a basic version of our main result.

Theorem 1.1. Let H = {H1, . . . ,Hm} be a set of probability distributions. Let D = {X1, . . . , Xn}
be a set of samples drawn independently from an unknown probability distribution P . There exists
an ε-differentially private algorithm (with respect to the dataset D) which has following guarantees.

Suppose there exists a distribution H∗ ∈ H such that dTV(P,H∗) ≤ α. If n = Ω
(

logm
α2 + logm

αε

)
,

then the algorithm will output a distribution Ĥ ∈ H such that dTV(P, Ĥ) ≤ (3+ζ)α with probability
at least 9/10, for any constant ζ > 0. The running time of the algorithm is O(nm2).

The sample complexity of this problem without privacy constraints is O
(

logm
α2

)
, and thus the

additional cost for ε-differential privacy is an additive O
(

logm
αε

)
. We consider this cost to be

minimal; in particular, the dependence on m is unchanged. Note that the running time of our
algorithm is O(nm2) – we conjecture it may be possible to reduce this to Õ(nm) as has been done
in the non-private setting [DK14, SOAJ14, AJOS14, AFJ+18], though we have not attempted to
perform this optimization. Regardless, our main focus is on the sample complexity rather than the
running time, since any method for generic hypothesis selection requires Ω(m) time, thus precluding
efficient algorithms when m is large. Note that the approximation factor of (3 + ζ)α is effectively
tight [DL01, MS08, BKM19]. Theorem 1.1 requires prior knowledge of the value of α, though we
can use this to obtain an algorithm with similar guarantees which does not (Theorem 3.4).
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It is possible to improve the guarantees of this algorithm in two ways (Theorem 4.1). First, if
the distributions are nicely structured, the former term in the sample complexity can be reduced
from O(logm/α2) to O(d/α2), where d is a VC-dimension-based measure of the complexity of
the collection of distributions. Second, if there are few hypotheses which are close to the true
distribution, then we can pay only logarithmically in this number, as opposed to the total number
of hypotheses. These modifications allow us to handle instances where m may be very large (or
even infinite), albeit at the cost of weakening to approximate differential privacy to perform the
second refinement. A technical discussion of our methods is in Section 1.2, our basic approach is
covered in Section 3, and the version with all the bells and whistles appears in Section 4.

From Theorem 1.1, we immediately obtain Corollary 1.2 which applies when H itself may not
be finite, but admits a finite cover with respect to total variation distance.

Corollary 1.2. Suppose there exists an α-cover Cα of a set of distributions H, and that we are
given a set of samples X1, . . . , Xn ∼ P , where dTV(P,H) ≤ α. For any constant ζ > 0, there
exists an ε-differentially private algorithm (with respect to the input {X1, . . . , Xn}) which outputs
a distribution H∗ ∈ Cα such that dTV(P,H∗) ≤ (6 + 2ζ)α with probability ≥ 9/10, as long as

n = Ω

(
log |Cα|
α2

+
log |Cα|
αε

)
.

Informally, this says that if a hypothesis class has an α-cover Cα, then there is a private learning
algorithm for the class which requires O(log |Cα|) samples. Note that our algorithm works even if
the unknown distribution is only close to the hypothesis class. This is useful when we may have
model misspecification, or when we require adversarial robustness. (We also give an extension
of this algorithm which gives guarantees in the semi-agnostic learning model; see Section 3.3 for
details.) The requirements for this theorem to apply are minimal, and thus it generically provides
learning algorithms for a wide variety of hypothesis classes. That said, in non-private settings,
the sample complexity given by this method is rather lossy: as an extreme example, there is no
finite-size cover of univariate Gaussian distributions with unbounded parameters, so this approach
does not give a finite-sample algorithm. That said, it is well-known that O(1/α2) samples suffice
to estimate a Gaussian in total variation distance. In the private setting, our theorem incurs a
cost which is somewhat necessary: in particular, it is folklore that any pure ε-differentially private
learning algorithm must pay a cost which is logarithmic in the packing number of the class (for
completeness, see Lemma 5.1). Due to the relationship between packing and covering numbers
(Lemma 5.2), this implies that up to a constant factor relaxation in the learning accuracy, our
results are tight (Theorem 5.3). Further discussion appears in Sections 5.

Given Corollary 1.2, in Section 6, we derive new learning results for a number of classes. Our
main applications are for d-dimensional Gaussian and product distributions. Informally, we obtain
Õ(d) sample algorithms for learning a product distribution and a Gaussian with known covariance
(Corollaries 6.3 and 6.10), and an Õ(d2) algorithm for learning a Gaussian with unknown covariance
(Corollary 6.11). These improve on recent results by Kamath, Li, Singhal, and Ullman [KLSU19]
in two different ways. First, as mentioned before, our results are semi-agnostic, so we can handle
when the distribution is only close to a product or Gaussian distribution. Second, our results
hold for pure (ε, 0)-differential privacy, which is a stronger notion than ε2-zCDP as considered
in [KLSU19]. In this weaker model, they also obtained Õ(d) and Õ(d2) sample algorithms, but the
natural modifications to achieve ε-DP incur extra poly(d) factors.1 [KLSU19] also showed Ω̃(d)

1Roughly, this is due to the fact that the Laplace and Gaussian mechanism are based on `1 and `2 sensitivity,
respectively, and that there is a

√
d-factor relationship between these two norms, in the worst case.
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lower bounds for Gaussian and product distribution estimation in the even weaker model of (ε, δ)-
differential privacy. Thus, our results show that the dimension dependence for these problems
is unchanged for essentially any notion of differential privacy. In particular, our results show a
previously-unknown separation between mean estimation of product distributions and non-product
distributions under pure (ε, 0)-differential privacy; see Remark 6.4.

We also apply Theorem 4.1 to obtain algorithms for learning Gaussians under (ε, δ)-differential
privacy, with no bounds on the mean and variance parameters. More specifically, we provide
algorithms for learning multivariate Gaussians with unknown mean and known covariance (Corol-
lary 6.13), and univariate Gaussians with both unknown mean and variance (Corollary 6.15). For
the former problem, we manage to avoid dependences which arise due to the application of advanced
composition (similar to Remark 6.4).

To demonstrate the flexibility of our approach, we also give private learning algorithms for sums
of independent random variables (Corollaries 6.20 and 6.22) and piecewise polynomials (Corol-
lary 6.29). To the best of our knowledge, the former class of distributions has not been considered
in the private setting, and we rely on covering theorems from the non-private literature. Private
learning algorithms for the latter class, piecewise polynomials, have been studied by Diakonikolas,
Hardt, and Schmidt [DHS15]. They provide sample and time efficient algorithms for histogram
distributions (i.e., piecewise constant distributions), and claim similar results for general piecewise
polynomials. Their method depends heavily on rather sophisticated algorithms for the non-private
version of this problem [ADLS17]. In constrast, we can obtain comparable sample complexity
bounds from just the existence of a cover and elementary VC dimension arguments, which we
derive in a fairly self-contained manner.

We additionally give algorithms for learning mixtures of any coverable class (Corollary 6.32).
In particular, this immediately implies algorithms for learning mixtures of Gaussians, product
distributions, and all other classes mentioned above.

To conclude our applications, we discuss a connection to PAC learning (Corollary 6.34). It is
known that the sample complexity of differentially private distribution-free PAC learning can be
higher than that of non-private learning. However, this gap does not exist for distribution-specific
learning, where the learning algorithm knows the distribution of (unlabeled) examples, as both
sample complexities are characterized by VC dimension. Private hypothesis selection allows us
to address an intermediate situation where the distribution of unlabeled examples is not known
exactly, but is known to come (approximately) from a class of distributions. When this class has a
small cover, we are able to recover sample complexity guarantees for private PAC learning which
are comparable to the non-private case.

1.2 Techniques

Non-privately, most algorithms for hypothesis selection involve a tournament-style approach. We
conduct a number of pairwise comparisons between distributions, which may either have a winner
and a loser, or may be declared a draw. Intuitively, a distribution will be declared the winner of a
comparison if it is much closer than the alternative to the unknown distribution, and a tie will be
declared if the two distributions are comparably close. The algorithm will output any distribution
which never loses a comparison. A single comparison between a pair of hypotheses requires O(1/α2)
samples, and a Chernoff plus union bound argument over the O(m2) possible comparisons increases
the sample complexity toO(logm/α2). In fact, we can use uniform convergence arguments to reduce
this sample complexity to O(d/α2), where d is the VC dimension of the 2

(
m
2

)
sets (the “Scheffé”

sets) defined by the subsets of the domain where the PDF of one distribution dominates another.
Crucially, we must reuse the same set of samples for all comparisons to avoid paying polynomially
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in the number of hypotheses.
A private algorithm for this problem requires additional care. Since a single comparison is

based on the number of samples which fall into a particular subset of the domain, the sensitivity
of the underlying statistic is low, and thus privacy may seem easily achievable at first glance.
However, the challenge comes from the fact that the same samples are reused for all pairwise
comparisons, thus greatly increasing the sensitivity: changing a single datapoint could flip the
result of every comparison! In order to avoid this pitfall, we instead carefully construct a score
function for each hypothesis, namely, the minimum number of points that must be changed to
cause the distribution to lose any comparison. For this to be a useful score function, we must show
that the best hypothesis will win all of its comparisons by a large margin. We can then use the
Exponential Mechanism [MT07] to select a distribution with high score.

Further improvements can be made if we are guaranteed that the number of “good” hypotheses
(i.e., those that have total variation distance from the true distribution bounded by (3 + ζ)α) is
at most some parameter k, and if we are willing to relax to approximate differential privacy. The
parameter k here is related to the doubling dimension of the hypothesis class with respect to total
variation distance. If we randomly assign the hypotheses to Ω(k2) buckets, with high probability,
no bucket will contain more than one good hypothesis. We can identify a bucket containing a
good hypothesis using a similar method based on the exponential mechanism as described above.
Moreover, since we are likely to only have one “good” hypothesis in the chosen bucket, this implies
a significant gap between the best and second-best scores in that bucket. This allows us to use
stability-based techniques [DL09, TS13], and in particular the GAP-MAX algorithm of Bun, Dwork,
Rothblum, and Steinke [BDRS18], to identify an accurate distribution.

1.3 Related Work

Our main result builds on a long line of work on non-private hypothesis selection. One starting
point for the particular style of approach we consider here is [Yat85], which was expanded on
in [DL96, DL97, DL01]. Since then, there has been study into hypothesis selection under additional
considerations, including computational efficiency, understanding the optimal approximation factor,
adversarial robustness, and weakening access to the hypotheses [MS08, DDS12b, DK14, SOAJ14,
AJOS14, DKK+16, AFJ+18, BKM19]. Our private algorithm examines the same type of problem,
with the additional constraint of differential privacy.

There has recently been a great deal of interest in differentially private distribution learn-
ing. In the central model, most relevant are [DHS15], which gives algorithms for learning struc-
tured univariate distributions, and [KV18, KLSU19], which focus on learning Gaussians and binary
product distributions. [CWZ19] also studies private statistical parameter estimation. Privately
learning mixtures of Gaussians was considered in [NRS07, KSSU19]. The latter paper (which
is concurrent with the present work) gives a computationally efficient algorithm for the prob-
lem, but with a worse sample complexity, and incomparable accuracy guarantees (they require a
separation condition, and perform clustering and parameter estimation, while we do proper learn-
ing). [BNSV15] give an algorithm for learning distributions in Kolmogorov distance. Upper and
lower bounds for learning the mean of a product distribution over the hypercube in `∞-distance
include [BDMN05, BUV14, DMNS06, SU17]. [AKSZ18] focuses on estimating properties of a distri-
bution, rather than the distribution itself. [Smi11] gives an algorithm which allows one to estimate
asymptotically normal statistics with optimal convergence rates, but no finite sample complexity
guarantees. There has also been a great deal of work on distribution learning in the local model of
differential privacy [DJW13, WHW+16, KBR16, ASZ19, DR18, JKMW18, YB18, GRS19].

Non-privately, there has been a significant amount of work on learning specific classes of distri-
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butions. The PAC-style formulation of the problem we consider originated in [KMR+94]. While
learning Gaussians and product distributions can be considered folklore at this point, some of the
other classes we learn have enjoyed more recent study. For instance, learning sums of independent
random variables was recently considered in [DDS12b] toward the problem of learning Poisson Bi-
nomial Distributions (PBDs). Since then, there has been additional work on learning PBDs and
various generalizations [DKT15, DDKT16, DKS16b, DKS16c, DKS16a, DLS18].

Piecewise polynomials are a highly-expressive class of distributions, and they can be used to
approximate a number of other univariate distribution classes, including distributions which are
multi-modal, concave, convex, log-concave, monotone hazard rate, Gaussian, Poisson, Binomial,
and more. Algorithms for learning such classes are considered in a number of papers, includ-
ing [DDS12a, CDSS14a, CDSS14b, ADK15, ADLS17].

There has also been a great deal of work on learning mixtures of distribution classes, particularly
mixtures of Gaussians. There are many ways the objective of such a problem can be defined,
including clustering [Das99, DS00, AK01, VW02, AM05, CR08b, CR08a, KK10, AS12, RV17, HL18,
DKS18, KSS18], parameter estimation [KMV10, MV10, BS10, HK13, ABG+14, BCMV14, HP15,
GHK15, XHM16, DTZ17, ABDH+18], proper learning [FOS06, FOS08, DK14, SOAJ14, DKK+16,
LS17], and improper learning [CDSS14a]. Our work falls into the line on proper learning: the
algorithm is given a set of samples from a mixture of Gaussians, and must output a mixture of
Gaussians which is close in total variation distance.

1.4 Organization

We begin in Section 2 with preliminaries. In Section 3, we give a basic algorithm for private
hypothesis selection, via the exponential mechanism. In Section 4, we extend this approach in two
ways: by using VC dimension arguments to reduce the sample complexity for sets of hypotheses
with additional structure, and combining this with a GAP-MAX algorithm to achieve non-trivial
guarantees for infinite hypothesis classes. Section 5 shows that our approach leads to algorithms
which essentially match lower bounds for most distribution classes (in the constant α regime).
We consider applications in Section 6: through a combination of arguments about covers and VC
dimension, we derive algorithms for learning a number of classes of distributions, as well as describe
an application to private PAC learning. Finally, we conclude in Section 7 with open questions.

2 Preliminaries

We start with some preliminaries and definitions.

Definition 2.1. The total variation distance or statistical distance between P and Q is defined as

dTV(P,Q) = max
S⊆Ω

P (S)−Q(S) =
1

2

∫
x∈Ω
|P (x)−Q(x)|dx =

1

2
‖P −Q‖1 ∈ [0, 1].

Moreover, if H is a set of distributions over a common domain, we define dTV(P,H) = infH∈H dTV(P,H).

Throughout this paper, we consider packings and coverings of sets of distributions with respect
to total variation distance.

Definition 2.2. A γ-cover of a set of distributions H is a set of distributions Cγ, such that for
every H ∈ H, there exists some P ∈ Cγ such that dTV(P,H) ≤ γ.

A γ-packing of a set of distributions H is a set of distributions Pγ ⊆ H, such that for every
pair of distributions P,Q ∈ Pγ, we have that dTV(P,Q) ≥ γ.
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In this paper, we present semi-agnostic learning algorithms.

Definition 2.3. An algorithm is said to be an α-semi-agnostic learner for a class H if it has
the following guarantees. Suppose we are given X1, . . . , Xn ∼ P , where dTV(P,H) ≤ OPT. The
algorithm must output some distribution Ĥ such that dTV(P,H) ≤ c·OPT+O(α), for some constant
c ≥ 1. If c = 1, then the algorithm is said to be agnostic.

Now we define differential privacy. We say that D and D′ are neighboring datasets, denoted
D ∼ D′, if D and D′ differ by at most one observation. Informally, differential privacy requires
that the algorithm has close output distributions when run on any pair of neighboring datasets.
More formally:

Definition 2.4 ([DMNS06]). A randomized algorithm T : X∗ → R is (ε, δ)-differentially private
if for all n ≥ 1, for all neighboring datasets D,D′ ∈ Xn, and for all events S ⊆ R,

Pr [T (D) ∈ S] ≤ eε Pr[T (D′) ∈ S] + δ .

If δ = 0, we say that T is ε-differentially private.

We will also use the related notion of concentrated differential privacy:

Definition 2.5 ([DR16, BS16]). A randomized algorithm T : X∗ → R satisfies ρ-zero-concentrated
differential privacy if for all n ≥ 1, for all neighboring datasets D,D′ ∈ Xn, and for all α ∈ (1,∞),

Rα(M(D)||M(D′)) ≤ ρα,

where Rα(M(D)||M(D′)) is the α-Rényi divergence between M(D) and M(D′).2

The exponential mechanism [MT07] is a powerful ε-differentially private mechanism for selecting
an approximately best outcome from a set of alternatives, where the quality of an outcome is
measured by a score function relating each alternative to the underlying dataset. Letting R be the
set of possible outcomes, a score function q : X∗×R → R maps each pair consisting of a dataset and
an outcome to a real-valued score. The exponential mechanism ME instantiated with a dataset
D, a score function q, and a privacy parameter ε selects an outcome r in R with probability
proportional to exp (εq(D, r)/(2∆(q))), where ∆(q) is the sensitivity of the score function defined
as

∆(q) = max
r∈R,D∼D′

∣∣q(D, r)− q(D′, r)∣∣ .
Theorem 2.6 ([MT07]). For any input dataset D, score function q and privacy parameter ε > 0,
the exponential mechanismME(D, q, ε) is ε-differentially private, and with probability at least 1−β,
selects an outcome r ∈ R such that

q(D, r) ≥ max
r′∈R

q(D, r′)− 2∆(q) log(|R|/β)

ε
.

3 A First Method for Private Hypothesis Selection

In this section, we present our first algorithm for private hypothesis selection and obtain the fol-
lowing result.

2Given two probability distributions P,Q over Ω, Rα(P ||Q) = 1
α−1

log
(∑

x∈Ω P (x)αQ(x)1−α).
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Theorem 1.1. Let H = {H1, . . . ,Hm} be a set of probability distributions. Let D = {X1, . . . , Xn}
be a set of samples drawn independently from an unknown probability distribution P . There exists
an ε-differentially private algorithm (with respect to the dataset D) which has following guarantees.

Suppose there exists a distribution H∗ ∈ H such that dTV(P,H∗) ≤ α. If n = Ω
(

logm
α2 + logm

αε

)
,

then the algorithm will output a distribution Ĥ ∈ H such that dTV(P, Ĥ) ≤ (3+ζ)α with probability
at least 9/10, for any constant ζ > 0. The running time of the algorithm is O(nm2).

Note that the sample complexity bound above scales logarithmically with the size of the hy-
pothesis class. In Section 4, we will provide a stronger result (which subsumes the present one as
a special case) that can handle certain infinite hypothesis classes. For sake of exposition, we begin
in this section with the basic algorithm.

3.1 Pairwise Comparisons

We first present a subroutine which compares two hypothesis distributions. Let H and H ′ be two
distributions over domain X and consider the following set, which is called the Scheffé set :

W1 = {x ∈ X | H(x) > H ′(x)}

Define p1 = H(W1), p2 = H ′(W1), and τ = P (W1) to be the probability masses that H, H ′, and
P place on W1, respectively. It follows that p1 > p2 and p1 − p2 = dTV(H,H ′).3

Algorithm 1: Pairwise Contest: PC(H,H ′, D, ζ, α)

Input: Two hypotheses H and H ′, input dataset D of size n drawn i.i.d. from target
distribution P , approximation parameter ζ > 0, and accuracy parameter α ∈ (0, 1).

Initialize: Compute the fraction of points that fall into W1: τ̂ = 1
n |{x ∈ D | x ∈ W1}|.

If p1 − p2 ≤ (2 + ζ)α, return “Draw”.
Else If τ̂ > p1 − (1 + ζ/2)α, return H as the winner.
Else If τ̂ < p2 + (1 + ζ/2)α, return H ′ as the winner.
Else return “Draw”.

Now consider the following function of this ordered pair of hypotheses:

Γζ(H,H
′, D) =

{
n if p1 − p2 ≤ (2 + ζ)α;

n · max{0, τ̂ − (p2 + (1 + ζ/2)α)} otherwise.

When the two hypotheses are sufficiently far apart (i.e., dTV(H,H ′) > (2 + ζ)α), Γζ(H,H
′, D)

is essentially the number of points one needs to change in D to make H ′ the winner.

Lemma 3.1. Let P,H,H ′ be distributions as above. With probability at least 1− 2 exp(−nζ2α2/8)
over the random draws of D from Pn, τ̂ satisfies |τ̂ − τ | < ζα/4, and if dTV(P,H) ≤ α, then
Γζ(H,H

′, D) > ζαn/4.

Proof. By applying Hoeffding’s inequality, we know that with probability at least 1−2 exp(−nζ2α2/8),
|τ−τ̂ | < ζα/4. We condition on this event for the remainder of the proof. Consider the following two
cases. In the first case, suppose that p1−p2 ≤ (2+ζ)α. Then we know that Γζ(H,H

′, D) = n > αn.
In the second case, suppose that p1−p2 > (2+ζ)α. Since dTV(P,H) ≤ α, we know that |p1−τ | ≤ α,
and so |p1− τ̂ | < (1 + ζ/4)α. Since p1 > p2 + (2 + ζ)α, we also have τ̂ > p2 + (1 + 3ζ/4)α. It follows
that Γζ(H,H

′, D) = n(τ̂ − (p2 + (1 + ζ/2)α)) > ζαn/4. This completes the proof.
3For simplicity of our exposition, we will assume that we can evaluate the two quantities p1 and p2 exactly. In

general, we can estimate these quantities to arbitrary accuracy, as long as, for each hypothesis H, we can evaluate
the density of each point under H and also draw samples from H.

8



3.2 Selection via Exponential Mechanism

In light of the definition of the pairwise comparison defined above, we consider the following score
function S : H×X n, such that for any Hj ∈ H and dataset D,

S(Hj , D) = min
Hk∈H

Γζ(Hj , Hk, D). (1)

Roughly speaking, S(Hj , D) is the minimum number of points required to change in D in order for
Hj to lose at least one pairwise contest against a different hypothesis. When the hypothesis Hj is
very close to every other distribution, such that all pairwise contests return “Draw,” then the score
will be n.

Algorithm 2: Private Hypothesis Selection: PHS(H, D, ε)
Input: Dataset D, a collection of hypotheses H = {H1, . . . ,Hm}, privacy parameter ε.
Output a random hypothesis Ĥ ∈ H such that for each Hj

Pr[Ĥ = Hj ] ∝ exp

(
S(Hj , D)

2ε

)
where S(Hj , D) is defined in (1).

Lemma 3.2 (Privacy). For any ε > 0 and collection of hypotheses H, the algorithm PHS(H, ·, ε)
satisfies ε-differential privacy.

Proof. First, observe that for any pairs of hypotheses Hj , Hk, Γζ(Hj , Hk, ·) has sensitivity 1. As
a result, the score function S is also 1-sensitive. Then the result directly follows from the privacy
guarantee of the exponential mechanism (Theorem 2.6).

Lemma 3.3 (Utility). Fix any α, β ∈ (0, 1), and ζ > 0. Suppose that there exists H∗ ∈ H such that
dTV(P,H∗) ≤ α. Then with probability 1 − β over the sample D and the algorithm PHS, we have
that PHS(H, D) outputs an hypothesis Ĥ such that dTV(P, Ĥ) ≤ (3 + ζ)α, as long as the sample
size satisfies

n ≥ 8 ln(4m/β)

ζ2α2
+

8 ln(2m/β)

ζαε
.

Proof. First, consider the m pairwise contests between H∗ and every candidate in H. Let Wj =
{x ∈ X | Hj(x) > H∗(x)} be the collection of Scheffé sets. For any event W ⊆ X , let P̂ (W ) denote
the empirical probability of event W on the dataset D. By Lemma 3.1 and an application of the
union bound, we know that with probability at least 1− 2m exp(−nζ2α2/8) over the draws of D,
|P (Wj) − P̂ (Wj)| ≤ ζα/4 and Γζ(H

∗, Hj , D) > ζαn/4 for all Hj ∈ H. In particular, the latter
event implies that S(H∗, D) > ζαn/4.

Next, by the utility guarantee of the exponential mechanism (Theorem 2.6), we know that with
probability at least 1− β/2, the output hypothesis satisfies

S(Ĥ,D) ≥ S(H∗, D)− 2 ln(2m/β)

ε
> ζαn/4− 2 ln(2m/β)

ε
.

Then as long as n ≥ 8 ln(4m/β)
ζ2α2 + 8 ln(2m/β)

ζαε , we know that with probability at least 1−β, S(Ĥ,D) > 0.

Let us condition on this event, which implies that Γζ(Ĥ,H
∗, D) > 0. We will now show that

dTV(Ĥ,H∗) ≤ (2+ζ)α, which directly implies that dTV(Ĥ, P ) ≤ (3+ζ)α by the triangle inequality.
Suppose to the contrary that dTV(Ĥ,H∗) > (2 + ζ)α. Then by the definition of Γζ , P̂ (Ŵ) >

H∗(Ŵ)+(1+ ζ/2)α, where Ŵ = {x ∈ X | Ĥ(x) > H∗(x)}. Since |P (Ŵ)− P̂ (Ŵ)| ≤ ζα/4, we have
P (Ŵ) > H∗(Ŵ)+(1+ζ/4)α, which is a contradiction to the assumption that dTV(P,H∗) ≤ α.

9



3.3 Obtaining a Semi-Agnostic Algorithm

Theorem 1.1 shows that given a hypothesis class H and samples from an unknown distribution P ,
we can privately find a distribution Ĥ ∈ H with dTV(P, Ĥ) ≤ (3 + ζ)α provided that we know
dTV(P,H) ≤ α. But what if we are not promised that P is itself close to H? We would like to
design a private hypothesis selection algorithm for the more general semi-agnostic setting, where
for any value of OPT := dTV(P,H), we are able to privately identify a distribution Ĥ ∈ H with
dTV(P, Ĥ) ≤ c · OPT +α for some universal constant c. Our goal will be to do this with sample
complexity which is still logarithmic in |H|.

Our strategy for handling this more general setting is by a reduction to that of Theorem 1.1.
We run that algorithm T = O(log(1/α)) times, doubling the choice of α in each run and producing
a sequence of candidate hypotheses H1, . . . ,HT . By the guarantees of Theorem 1.1, there is some
candidate Ht with dTV(P,Ht) ≤ 2(3 + ζ) OPT. The remaining task is to approximately select
the best candidate from H1, . . . ,HT . This is done by implementing a private version of the Scheffé
tournament which is itself semi-agnostic, but has a very poor (quadratic) dependence on the number
of candidates T .

We prove the following result, which gives a semi-agnostic learner whose sample complexity is
comparable to that of Theorem 1.1.

Theorem 3.4. Let α, β, ε ∈ (0, 1), and ζ > 0 be a constant. Let H be a set of m distributions and
let P be a distribution with dTV(P,H) = OPT. There is an ε-differentially private algorithm which
takes as input n samples from P and with probability at least 1− β, outputs a distribution Ĥ ∈ H
with dTV(P, Ĥ) ≤ 18(3 + ζ) OPT +α, as long as

n ≥ O
(

log(m/β) + log log(1/α)

α2
+

logm+ log2(1/α) · (log(1/β) + log log(1/α))

αε

)
.

As discussed above, the algorithm relies on the following variant with a much worse dependence
on m.

Lemma 3.5. Let α, β, ε ∈ (0, 1). There is an ε-differentially private algorithm which takes as
input n samples from P and with probability at least 1 − β, outputs a distribution Ĥ ∈ H with
dTV(P, Ĥ) ≤ 9 OPT +α, as long as

n ≥ O
(

log(m/β)

α2
+
m2 log(m/β)

αε

)
.

Proof sketch. We use a different variation of the Scheffé tournament which appears in [DL01].
Non-privately, the algorithm works as follows. For every pair of hypotheses H,H ′ ∈ H with Scheffé
set WH,H′ = {x ∈ X | H(x) > H ′(x)}, let H(WH,H′), H

′(WH,H′), and P (WH,H′) denote the

probability masses of H,H ′, P onWH,H′ , respectively. Moreover, let P̂ (WH,H′) denote the fraction
of points in the input sample D which lie in WH,H′ . We declare H to be the winner of the pairwise

contest between H and H ′ if |H(WH,H′)− P̂ (WH,H′)| < |H ′(WH,H′)− P̂ (WH,H′)|. Otherwise, we

declare H ′ to be the winner. The algorithm outputs the hypothesis Ĥ which wins the most pairwise
contests (breaking ties arbitrarily).

To make this algorithm ε-differentially private, we replace P̂ (WH,H′) in each pairwise contest

with the (ε/
(
m
2

)
)-differentially private estimate cH,H′ = P̂ (WH,H′) + Lap(

(
m
2

)
/εn). By the compo-

sition guarantees of differential privacy, the algorithm as a whole is ε-differentially private.
The analysis of Devroye and Lugosi [DL01, Theorem 6.2] shows that the (private) Scheffé

tournament outputs a hypothesis Ĥ with

dTV(Ĥ, P ) ≤ 9 OPT +16 max
H,H′∈H

∣∣P (WH,H′)− cH,H′
∣∣ .

10



Fix an arbitrary pair H,H ′. A Chernoff bound shows that |P (WH,H′) − P̂ (WH,H′)| ≤ α/32 with
probability at least 1−β/(2m2) as long as n ≥ O(ln(m/β)/α2). Moreover, properties of the Laplace
distribution guarantee |cH,H′ − P̂ (WH,H′)| ≤ α/32 with probability at least 1− β/(2m2) as long as
n ≥ O(m2 log(m/β)/αε). The triangle inequality and a union bound over all pairs H,H ′ complete
the proof.

Proof of Theorem 3.4. We now combine the private hypothesis selection algorithm of Theorem 1.1
with the expensive semi-agnostic learner of Lemma 3.5 to prove Theorem 3.4. Define sequences
α1 = α/126, α2 = 2α/126, . . . , αT = 2T−1α/126 and ε1 = ε/4, ε2 = ε/8, . . . , εT = 2−(T+1)ε for
T = dlog2(1/α)e + 1. For each t = 1, . . . , T , let Ht denote the outcome of a run of Algorithm 2
using accuracy parameter αt and privacy parameter εt. Finally, use the algorithm of Lemma 3.5
to select a hypothesis from H0, . . . ,HT using accuracy parameter α and privacy parameter ε/2.

Privacy of this algorithm follows immediately from composition of differential privacy. We now
analyze its sample complexity guarantee. By Lemma 3.3, we have that all T runs of Algorithm 2
succeed simultaneously with probability at least 1− β/2 as long as

n ≥ O
(

log(m/β) + log log(1/α)

α2
+

log(m/β) + log log(1/α)

αε

)
.

Condition on this event occurring. Recall that success of run t of Algorithm 2 means that if
OPT ∈ (αt−1, αt], then dTV(P,Ht) ≤ (3 + ζ)αt ≤ 2(3 + ζ) OPT. Meanwhile, if OPT ≤ α1 = α/126,
then we have dTV(P,H1) ≤ α/18. Hence, regardless of the value of OPT, there exists a run t such
that dTV(P,Ht) ≤ 2(3 + ζ) OPT +α/18. The algorithm of Lemma 3.5 is now, with probability at
least 1−β/2, able to select a hypothesis Ĥ with dTV(P, Ĥ) ≤ 9dTV(P,Ht)+α/2 ≤ 18(3+ζ) OPT +α
as long as

n ≥ O
(

log(1/β) + log log(1/α)

α2
+

log2(1/α) · (log(1/β) + log log(1/α))

αε

)
.

This gives the asserted sample complexity guarantee.

4 An Advanced Method for Private Hypothesis Selection

In Section 3, we provided a simple algorithm whose sample complexity grows logarithmically in
the size of the hypothesis class. We now demonstate that this dependence can be improved and,
indeed, we can handle infinite hypothesis classes given that their VC dimension is finite and that
the cover has small doubling dimension.

To obtain this improved dependence on the hypothesis class size, we must make two improve-
ments to the analysis and algorithm. First, rather than applying a union bound over all the
pairwise contests to analyse the tournament, we use a uniform convergence bound in terms of the
VC dimension of the Scheffé sets. Second, rather than use the exponential mechanism to select a
hypothesis, we use a “GAP-MAX” algorithm [BDRS18]. This takes advantage of the fact that, in
many cases, even for infinite hypothesis classes, only a handful of hypotheses will have high scores.
The GAP-MAX algorithm need only pay for the hypotheses that are close to optimal. To exploit
this, we must move to a relaxation of pure differential privacy which is not subject to strong pack-
ing lower bounds (as we describe in Section 5). Specifically, we consider approximate differential
privacy, although results with an improved dependence are also possible under various variants of
concentrated differential privacy [DR16, BS16, Mir17, BDRS18].
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Theorem 4.1. Let H be a set of probability distributions on X . Let d be the VC dimension of
the set of functions fH,H′ : X → {0, 1} defined by fH,H′(x) = 1 ⇐⇒ H(x) > H ′(x) where
H,H ′ ∈ H. There exists a (ε, δ)-differentially private algorithm which has following guarantee. Let
D = {X1, . . . , Xn} be a set of private samples drawn independently from an unknown probability
distribution P . Let k = |{H ∈ H : dTV(H,P ) ≤ 7α}|. Suppose there exists a distribution H∗ ∈ H
such that dTV(P,H∗) ≤ α. If n = Ω

(
d+log(1/β)

α2 + log(k/β)+min{log |H|,log(1/δ)}
αε

)
, then the algorithm

will output a distribution Ĥ ∈ H such that dTV(P, Ĥ) ≤ 7α with probability at least 1− β.
Alternatively, we can demand that the algorithm be 1

2ε
2-concentrated differentially private if

n = Ω

(
d+log(1/β)

α2 +
log(k/β)+

√
log |H|

αε

)
.

Comparing Theorem 4.1 to Theorem 1.1, we see that the first (non-private) log |H| term is
replaced by the VC dimension d and the second (private) log |H| term is replaced by log k+log(1/δ).
Here k is a measure of the “local” size of the hypothesis class H; its definition is similar to that of
the doubling dimension of the hypothesis class under total variation distance.

We note that the log(1/δ) term could be large, as the privacy failure probability δ should be
cryptographically small. Thus our result includes statements for pure differential privacy (by using
the other term in the minimum with δ = 0) and also concentrated differential privacy. Note that,
since d and log k can be upper-bounded by O(log |H|), this result supercedes the guarantees of
Theorem 1.1.

4.1 VC Dimension

We begin by reviewing the definition of Vapnik-Chervonenkis (VC) dimension and its properties.

Definition 4.2 (VC dimension [VC74]). Let F be a set of functions f : X → {0, 1}. The VC
dimension of F is defined to be the largest d such that there exist x1, · · · , xd ∈ X and f1, · · · , f2d ∈ H
such that for all 1 ≤ i < j ≤ 2d there exists 1 ≤ k ≤ d such that fi(xk) 6= fj(xk).

For our setting, we must extend the definition of VC dimension from function families to hy-
pothesis classes.

Definition 4.3 (VC dimension of hypothesis class). Let H be a set of probability distributions on
a space X . For H,H ′ ∈ H, define fH,H′ : X → {0, 1} by f(x) = 1 ⇐⇒ H(x) > H ′(x). Define
F(H) = {fH,H′ : H,H ′ ∈ H}. We define the VC dimension of H to be the VC dimension of F(H).4

The key property of VC dimension is the following uniform convergence bound, which we use
in place of a union bound.

Theorem 4.4 (Uniform Convergence [Tal94]). Let F be a set of functions f : X → {0, 1} with VC
dimension d. Let P be a distribution on X . Then

PrD←Pn

[
sup
f∈F
|f(D)− f(P )| ≤ α

]
≥ 1− β

whenever n = Ω
(
d+log(1/β)

α2

)
. Here f(D) := 1

n

∑
x∈D f(x) and f(P ) := EX←P [f(X)].

4Here, for simplicity, we assume that each distribution H is given by a density function H(·). More generally,
we define the VC dimension of H to be the smallest d such that there exists a function family F ⊆ {0, 1}X of VC
dimension d with the property that, for all H,H ′ ∈ H we have dTV(H,H ′) = supf∈F EX←H [f(X)]−EX←H′ [f(X)],
where the supremum is over f measurable with respect to both H and H ′. We ignore this technicality throughout.
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It is immediate from Definition 4.2 that V C(F) ≤ blog2 |F|c. Thus Theorem 4.4 subsumes the
union bound used in the proof of Theorem 1.1.

The relevant application of uniform convergence for our algorithm is the following lemma
(roughly the equivalent of Lemma 3.1), which says that good hypotheses have high scores, and
bad hypotheses have low scores.

Lemma 4.5. Let H be a collection of probability distributions on X with VC dimension d.
Let S : H×X n → R be as in Equation 1, namely

S(H,D) = inf
H′∈H

max

{
|{x ∈ D : H(x) > H ′(x)}| − n · (PrX←H′ [H(X) > H ′(X)] + 3α),

n · I[dTV(H,H ′) ≤ 6α]

}
,

where I denotes the indicator function.
Let P be a distribution on X . Let α, β > 0 and n ≥ O( 1

α2 (d+ log(1/β))). Suppose there exists
H∗ ∈ H with dTV(P,H∗) ≤ α. Then, with probability at least 1− β over D ← Pn, we have

• S(H∗, D) > αn and

• S(H,D) = 0 for all H ∈ H with dTV(H,P ) > 7α.

Proof. For H,H ′ ∈ H, define fH,H′ : X → {0, 1} by fH,H′(x) = 1 ⇐⇒ H(x) > H ′(x). Note
that |{x ∈ D : H(x) > H ′(x)}| =

∑
x∈D fH,H′(x) and d is the VC dimension of the function class

{fH,H′ : H,H ′ ∈ H}. By Theorem 4.4, if n = Ω
(
d+log(1/β)

α2

)
, then

PrD←Pn
[
∀H,H ′ ∈ H

∣∣|{x ∈ D : H(x) > H ′(x)}| − n · PrX←P
[
H(X) > H ′(X)

]∣∣ ≤ αn] ≥ 1− β.

We condition on this event happening.
In order to prove the first conclusion – namely, S(H∗, D) > αn – it remains to show that, for

all H ′ ∈ H, we have either dTV(H∗, H ′) ≤ 6α or

|{x ∈ D : H(x) > H ′(x)}| − n · (PrX←H′
[
H∗(X) > H ′(X)

]
+ 3α) > αn.

If dTV(H∗, H ′) ≤ 6α, we are done, so assume dTV(H∗, H ′) > 6α. By the uniform convergence event
we have conditioned on,

|{x ∈ D : H(x) > H ′(x)}| ≥ n · (PrX←P
[
H(X) > H ′(X)

]
− α)

≥ n · (PrX←H∗
[
H(X) > H ′(X)

]
− dTV(P,H∗)− α)

≥ n · (dTV(H∗, H ′) + PrX←H′
[
H(X) > H ′(X)

]
− 2α)

> n · (6α+ PrX←H′
[
H(X) > H ′(X)

]
− 2α),

from which the desired conclusion follows.
In order to prove the second conclusion – namely, S(H,D) = 0 for all H ∈ H with dTV(H,P ) >

7α – it suffices to show that one H ′ ∈ H yields a score of zero for any H ∈ H with dTV(H,P ) > 7α.
In particular, we show that H ′ = H∗ yields a score of zero for any such H. That is, if dTV(H,P ) >
7α, then dTV(H,H∗) > 6α and

|{x ∈ D : H(x) > H∗(x)}| − n · (PrX←H∗ [H(X) > H∗(X)] + 3α) ≤ 0.

By the triangle inequality dTV(H,H∗) ≥ dTV(H,P )− dTV(P,H∗) > 7α− α = 6α, as required. By
the uniform convergence event we have conditioned on,

|{x ∈ D : H(x) > H∗(x)}| ≤ n · (PrX←P [H(X) > H∗(X)] + α)

≤ n · (PrX←H∗ [H(X) > H∗(X)] + dTV(P,H∗) + α)

≤ n · (PrX←H∗ [H(X) > H∗(X)] + 2α),

which completes the proof.
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4.2 GAP-MAX Algorithm

In place of the exponential mechanism for privately selecting a hypothesis we use the following
algorithm that works under a “gap” assumption. That is, we assume that there is a 5αn gap
between the highest score and the (k+1)-th highest score. Rather than paying in sample complexity
for the total number of hypotheses we pay for the number of high-scoring hypotheses k.

This algorithm is based on the GAP-MAX algorithm of Bun, Dwork, Rothblum, and Steinke
[BDRS18]. However, we combine their GAP-MAX algorithm with the exponential mechanism to
improve the dependence on the parameter k.

Theorem 4.6. Let H and X be arbitrary sets. Let S : H × X n → R have sensitivity at most 1
in its second argument – that is, for all H ∈ H and all D,D′ ∈ X n differing in a single example,
|S(H,D)− S(H,D′)| ≤ 1.

For D ∈ X n and α > 0, define

K(D, 5α) :=

∣∣∣∣{H ∈ H : S(H,D) ≥ sup
H′∈H

S(H ′, D)− 5αn

}∣∣∣∣ .
Given parameters ε, δ, β > 0 and n, k ≥ 1, there exists a (ε, δ)-differentially private randomized

algorithm M : X n → H such that, for all D ∈ X n and all α > 0,

K(D, 5α) ≤ k =⇒ Pr

[
S(M(D), D) ≥ sup

H′∈H
S(H ′, D)− αn

]
≥ 1− β

provided n = Ω
(

min{log |H|,log(1/δ)}+log(k/β)
αε

)
.

Furthermore, given ε, β > 0 and n, k ≥ 1, there exists a 1
2ε

2-concentrated differentially private
[BS16] algorithm M : X n → H such that, for all D ∈ X n and all α > 0,

K(D, 5α) ≤ k =⇒ Pr

[
S(M(D), D) ≥ sup

H′∈H
S(H ′, D)− αn

]
≥ 1− β

provided n = Ω

(√
log |H|+log(k/β)

αε

)
.

Proof. We begin by describing the algorithm.

1. Let m =
⌈
k2

β

⌉
and let G : H → [m] be a uniformly random function.5

2. Randomly select B ∈ [m] with

Pr[B = b] ∝ exp
(ε

4
sup {S(H,D) : H ∈ H, G(H) = b}

)
.

3. Define HB = {H ∈ H : G(H) = B}. Let H1
B = argmaxH∈HB S(H,D) and H2

B =
argmaxH∈HB\{H1

B}
S(H,D), breaking ties arbitrarily. (That is, HB is the B-th “bin” and

H1
B and H2

B are the items in this bin with the largest and second-largest scores respectively.)
Define S′B : HB ×X n → R by

S′B(H,D) =
1

2
max{0, S(H,D)− S(H2

B, D)}.

(Note that S′B has sensitivity 1 and S′B(H,D) = 0 whenever H 6= H1
B.)

5It suffices for G to be a drawn from a universal hash function family.
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4. Let D be a distribution on R such that adding a sample from D to a sensitivity-1 function
provides (ε/4, δ/2)-differential privacy (or, respectively, 1

6ε
2-concentrated differential privacy).

For example, D could be a Laplace distribution with scale 4/ε truncated to the interval [−t, t]
for t = 4(1 + log(1/δ))/ε (or unbounded if δ = 0). To attain concentrated differential privacy,
we can set D = N

(
0, 3

ε2

)
, a centered Gaussian with variance 3/ε2.

5. Draw a sample ZH i.i.d. from D corresponding to every H ∈ HB.

6. Return H∗ = argmaxH∈HB S
′
B(H,D) + ZH .

The selection of B is an instantiation of the exponential mechanism [MT07] and is (ε/2, 0)-
differentially private. The selection of H∗ in the final step is a GAP-MAX algorithm [BDRS18] and
is (ε/2, δ)-differentially private. By composition, the entire algorithm is (ε, δ)-differentially private
(or, respectively, 1

2ε
2-concentrated differentially private).

For the utility analysis, in order for the algorithm to output a good H∗, it suffices for the
following three events to occur.

• S(H1
B, D) ≥ supH′∈H S(H ′, D)− αn.

That is, restricting the search toHB, rather than all ofH, only reduces the score of the optimal
choice by αn. The exponential mechanism ensures that this happens with probability at least
1− β/4, as long as n ≥ 4 log(2k/β)

εα .

• S(H2
B, D) < supH′∈H S(H ′, D)− 5αn.

That is, the second-highest score within HB is at least 5αn less than the highest score over-
all. We have assumed that there are at most k elements H ∈ H such that S(H,D) ≥
supH′∈H S(H ′, D) − 5αn. Call these “large elements.” Since G is random and m ≥ k2/β,
the probability that more than one large element satisfies G(H) = B is at most β/2. That is
to say, with high probability there are no collisions under the hash function G of the k large
elements. This suffices for the event to occur.

• supH∈HB |ZH | ≤ αn.
If the noise distribution D is supported on [−αn, αn], then this condition holds with probabil-
ity 1. For the truncated Laplace distribution, this is possible whenever n ≥ 1+4 log(1/δ)/αε.
Alternatively, we can use unbounded Laplace noise and a union bound to show that this event
occurs with probability at least 1−β/4 whenever n ≥ 4 log(4|HB|/β)/εα. For Gaussian noise,
n ≥ 3

εα

√
log(4|HB|/β) suffices.

Assuming the first and second events occur, we have S′B(H1
B, D) =

S(H1
B ,D)−S(H2

B ,D)
2 > 2αn.

Given this, the third event implies H∗ = H1
B. Finally, the first event then implies S(H∗, D) ≥

supH′∈H S(H ′, D)−αn, as required. A union bound over the three events completes the proof.

Now we can combine the VC-based uniform convergence bound with the GAP-MAX algorithm
to prove our result.

Proof of Theorem 4.1. By Lemma 4.5, with high probability over the draw of the dataset D, our
score function satisfies supH∈H S(H,D) ≥ S(H∗, D) > αn and S(H,D) = 0 whenever dTV(H,P ) >
7α. This requires n = Ω(d/α2).

Note that the score function S has sensitivity-1, since it is the supremum of counts. Conditioned
on the uniform convergence event, the maximum score is at least αn and there are at most k elements
of H with score greater than 0. Thus we can apply the GAP-MAX algorithm of Theorem 4.6. If
n = Ω((min{log |H|, log(1/δ)} + log(k))/αε), then with high probability, the algorithm outputs
Ĥ ∈ H with score at least 4

5αn, as required.
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5 Packings, Lower Bounds, and Relations to Covers

In this section, we show that the sample complexity of our algorithms for private hypothesis selection
with pure differential privacy cannot be improved, at least for constant values of the proximity
parameter α. We first apply a packing argument [HT10, BBKN14] to show a lower bound which
is logarithmic in the packing number of the class of distributions (Lemma 5.1). We then state
a folklore relationship between the sizes of maximal packings and minimal covers (Lemma 5.2),
which shows that instantiating our private hypothesis selection algorithm with a minimal cover
gives essentially optimal sample complexity (Theorem 5.3).

Lemma 5.1. Suppose there exists an α-packing Pα of a set of distributions H. Then any ε-
differentially private algorithm which takes as input samples X1, . . . , Xn ∼ P for some P ∈ H and
produces a distribution Ĥ such that dTV(P, Ĥ) ≤ α with probability ≥ 9/10 requires

n = Ω

(
log |Pα|

ε

)
.

Proof. Let M be a ε-differentially private algorithm with the stated accuracy requirement, and
denote by M(Pn) the distribution on hypotheses obtained by running M on n i.i.d. samples
from a distribution P ∈ H. For each P ∈ Pα, let BP denote the set of distributions which
are at total variation distance at most α from P . Then the accuracy requirement implies that

PrĤ←M(Pn)

[
Ĥ ∈ BP

]
≥ 9/10. Let P0 ∈ Pα be an arbitrary packing element. Then by group

privacy applied to groups of size n, we have

PrĤ←M(Pn0 )

[
Ĥ ∈ BP

]
≥ e−εn · 9/10

for every P ∈ Pα. The fact that Pα is an α-packing implies that the sets BP are all disjoint, and
hence

1 ≥
∑
P∈Pα

PrĤ←M(Pn0 )

[
Ĥ ∈ BP

]
≥ |Pα| · e−εn · 9/10.

Rearranging gives us the stated lower bound on n.

Lemma 5.2. For a set of distributions H, let pα and cα be the size of the largest α-packing and
smallest α-cover of H, respectively. Then

p2α ≤ cα ≤ pα.

Proof. We first prove the inequality on the left. Let Cα be a cover of H of size cα. If cα = ∞, we
are done. Otherwise, let S be any set of points of size at least cα + 1. By the pigeonhole principle,
there exists P ∈ Cα and two distributions Q,Q′ ∈ S such that dTV(P,Q) ≤ α and dTV(P,Q′) ≤ α.
Hence dTV(Q,Q′) ≤ 2α by the triangle inequality, so S cannot be (2α)-packing of H. This suffices
to show that p2α ≤ cα.

Next, we prove the inequality on the right. Let Pα be a maximal α-packing with size |Pα| =
pα. If pα = ∞, we are done. Otherwise, we claim that Pα is also an α-cover of H, and hence
cα ≤ |Pα| = pα. To see this, suppose for the sake of contradiction that there were a distribution
P ∈ H with dTV(P,Pα) > α. Then we could add P to Pα to produce a strictly larger packing,
contradicting the maximality of Pα.
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Theorem 5.3. Let H be a set of distributions, and let n∗α denote the minimum number of samples
such that there exists an ε-differentially private algorithm which takes as input samples X1, . . . , Xn∗α ∼
P for some P ∈ H and outputs a distribution Ĥ such that dTV(P, Ĥ) ≤ α with probability ≥ 9/10.
Then there exists a cover of H such that the instantiation of the algorithm underlying Theo-
rem 1.1 with this cover outputs a Ĥ such that dTV(P, Ĥ) ≤ 7α with probability ≥ 9/10 for any
n = Ω(n∗α · (ε/α2 + 1/α)).

Proof. Let pα denote the size of the largest α-packing of H. By Lemma 5.1, we have n∗α =
Ω(log pα/ε). On the other hand, by Lemma 5.2, we know that there exists an α-cover Cα of H with
|Cα| ≤ pα. Hence log |Cα| ≤ O(ε · n∗α) and the asserted sample complexity guarantee follows from
Corollary 1.2.

6 Applications of Hypothesis Selection

In this section, we give a number of applications of Theorem 1.1, primarily to obtain sample com-
plexity bounds for learning a number of distribution classes of interest. Recall Corollary 1.2, which
is an immediate corollary of Theorem 1.1. This indicates that we can privately semi-agnostically
learn a class of distributions with a number of samples proportional to the logarithm of its covering
number.

Corollary 1.2. Suppose there exists an α-cover Cα of a set of distributions H, and that we are
given a set of samples X1, . . . , Xn ∼ P , where dTV(P,H) ≤ α. For any constant ζ > 0, there
exists an ε-differentially private algorithm (with respect to the input {X1, . . . , Xn}) which outputs
a distribution H∗ ∈ Cα such that dTV(P,H∗) ≤ (6 + 2ζ)α with probability ≥ 9/10, as long as

n = Ω

(
log |Cα|
α2

+
log |Cα|
αε

)
.

Note that the factor of (6 + 2ζ)α in the corollary statement (versus (3 + ζ)α in the statement
of Theorem 1.1) is due to the fact the algorithm is semi-agnostic, and the closest element in the
cover is 2α-close to P , rather than just α-close.

We instantiate this result to give the sample complexity results for semi-agnostically learning
product distributions (Section 6.1), Gaussian distributions (Section 6.2), sums of some indepen-
dent random variable classes (Section 6.3), piecewise polynomials (Section 6.4), and mixtures (Sec-
tion 6.5). Furthermore, we mention an application to private PAC learning (Section 6.6), when the
distribution of unlabeled examples is known to come from some hypothesis class.

6.1 Product Distributions

As a first application, we first give an ε-differentially private algorithm for learning product distri-
butions over discrete alphabets.

Definition 6.1. A (k, d)-product distribution is a distribution over [k]d, such that its marginal
distributions are independent (i.e., the distribution is the product of its marginals).

We start by constructing a cover for product distributions.

Lemma 6.2. There exists an α-cover of the set of (k, d)-product distributions of size

O

(
kd

α

)d(k−1)

.

17



Proof. Consider some fixed product distribution P , with marginal distributions (P1, . . . , Pd). We
will construct a cover that contains a distribution Q (with marginals (Q1, . . . , Qd)) that is α-close
in total variation distance.

First, by triangle inequality, we have that dTV(P,Q) ≤
∑d

i=1 dTV(Pi, Qi), so it suffices to
approximate each marginal distribution to accuracy α/d. Stated another way, we must generate an
(α/d)-cover of distributions over [k], and we can then take its d-wise Cartesian product. Raising
the size of this underlying cover to the power d gives us the size of the overall cover.

To (α/d)-cover a distribution over [k], we will additively grid the probability of each symbol at
granularity Θ

(
α
kd

)
, choosing the probability of the last symbol k such that the sum is normalized.

This will incur Θ
(
α
kd

)
error per symbol (besides for symbol k), and summing over the k − 1

symbols accumulates error Θ
(
α
d

)
. It can also be argued that the error on symbol k is O

(
α
d

)
– with

an appropriate choice of granularity, this gives us an (α/d)-cover for distributions over [k]. The

size of this cover is O
(
kd
α

)k−1
, which allows us to conclude the lemma statement.

With this cover in hand, applying Corollary 1.2 allows us to conclude the following sample
complexity upper bound.

Corollary 6.3. Suppose we are given a set of samples X1, . . . , Xn ∼ P , where P is α-close to
a (k, d)-product distribution. Then for any constant ζ > 0, there exists an ε-differentially private
algorithm which outputs a (k, d)-product distribution H∗ such that dTV(P,H∗) ≤ (6 + 2ζ)α with
probability ≥ 9/10, so long as

n = Ω

(
kd log

(
kd

α

)(
1

α2
+

1

αε

))
.

This gives the first Õ(d) sample algorithm for learning a binary product distribution in total
variation distance under pure differential privacy, improving upon the work of Kamath, Li, Singhal,
and Ullman [KLSU19] by strengthening the privacy guarantee at a minimal cost in the sample
complexity. The natural way to adapt their result from concentrated to pure differential privacy
would require Ω(d3/2) samples.

Remark 6.4. Properly learning a product distribution over {0, 1}d to total variation distance ≤ 1
2

implies learning its mean µ ∈ [0, 1]d up to `1 error ≤ 2
√
d; see Lemma 6.5 below.

Thus Corollary 6.3 implies a ε-differentially private algorithm which takes n = Õ(d/ε) samples
from a product distribution P on {0, 1}d and, with high probability, outputs an estimate µ̂ of its
mean µ with ‖µ̂− µ‖1 ≤ 2

√
d.

In contrast, for non-product distributions over the hypercube, estimating the mean to the same
accuracy under ε-differential privacy requires n = Ω(d3/2/ε) samples [HT10, SU15]. Thus we
have a polynomial separation between estimating product and non-product distributions under pure
differential privacy.

Lemma 6.5. If P and Q are product distributions on Rd with dTV(P,Q) ≤ 1
2 and per-coordinate

variance at most σ2, then
‖EX←P [X]−EX←Q[X]‖1 ≤ 4

√
dσ2.

Proof. Let µ = EX←P [X] ∈ Rd and µ′ = EX←Q[X] ∈ Rd. Let τ = ‖µ−µ′‖1. Let ν = sign(µ−µ′) ∈
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{−1,+1}d so that 〈ν, µ− µ′〉 = τ . We have

1

2
≥ dTV(P,Q) ≥ PrX←P [〈ν,X〉 ≥ t]− PrX←Q[〈ν,X〉 ≥ t]

= PrX←P [〈ν,X − µ〉 ≥ t− 〈ν, µ〉]− PrX←Q
[
〈ν,X − µ′〉 ≥ t− 〈ν, µ〉+ 〈ν, µ− µ′〉

]
(set t = 〈ν, µ〉 − τ

2
) = PrX←P

[
〈ν,X − µ〉 ≥ −τ

2

]
− PrX←Q

[
〈ν,X − µ′〉 ≥ +

τ

2

]
= 1− PrX←P

[
〈ν,X − µ〉 < −τ

2

]
− PrX←Q

[
〈ν,X − µ′〉 ≥ +

τ

2

]
(Chebyshev’s inequality) ≥ 1−

EX←P
[
〈ν,X − µ〉2

]
(τ/2)2

−
EX←Q

[
〈ν,X − µ′〉2

]
(τ/2)2

= 1− 4

τ2

d∑
i=1

EX←P
[
(Xi − µi)2

]
+ EX←Q

[
(Xi − µ′i)2

]
≥ 1− 8dσ2

τ2
.

Rearranging yields τ ≤ 4
√
dσ2, as required.

6.2 Gaussian Distributions

We next give private algorithms for learning Gaussian distributions.

Definition 6.6. A Gaussian distribution N (µ,Σ) in Rd is a distribution with PDF

p(x) =
exp

(
−1

2(x− µ)TΣ−1(x− µ)
)√

(2π)d|Σ|
.

We describe covers for Gaussian distributions with known and unknown covariance.

Lemma 6.7. There exists an α-cover of the set of Gaussian distributions N (µ, I) in d dimensions
with ‖µ‖2 ≤ R of size

O

(
dR

α

)d
.

Proof. It is well-known that estimating a Gaussian distribution with unknown mean in total vari-
ation distance corresponds to estimating µ in `2-distance (see, e.g., [DKK+16]). By the triangle
inequality, in order to α-cover the space, it suffices to (α/d)-cover each standard basis direction.
Since we know the mean in each direction is bounded by R, a simple additive grid in each direction
with granularity Θ

(
α
d

)
will suffice, resulting in a cover for each direction of size O

(
dR
α

)
. Taking

the Cartesian product over d dimensions gives the desired result.

Lemma 6.8. There exists an α-cover of the set of Gaussian distributions N (µ,Σ) in d-dimensions
with ‖µ‖2 ≤ R and I � Σ � κI of size

O

(
dR

α

)d
·O
(
dκ

α

)d(d+1)/2

.

Proof. The former term is obtained similarly to the expression in Lemma 6.7. Since I � Σ, we
can still bound the total variation contribution by the `2-distance between the mean vectors. We
thus turn our attention to the latter term. To construct our cover, we must argue about the total
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variation distance between N (0,Σ) and N (0, Σ̂). If |Σ(i, j)− Σ̂(i, j)| ≤ γ, and I � Σ, Proposition
32 of [VV10] implies:

dTV(N (0,Σ),N (0, Σ̂)) ≤ O(dγ).

We will thus perform a gridding, in order to approximate each entry of Σ to an additive O(γ) =
O(α/d). However, in order to ensure that the resulting matrix is PSD, we grid over entries of Σ̂’s
Cholesky decomposition, rather than grid for Σ̂ itself. Since the largest element of Σ is bounded by
κ, the larest element of its Cholesky decomposition must be bounded by

√
κ. An additive grid over

the range [0,
√
κ] with granularity O(γ/

√
κ) suffices to get Σ̂ which bounds the entrywise distance

as O(γ). This requires O(dκ/α) candidates per entry, and we take the Cartesian product over all
d(d+ 1)/2 entries of the Cholesky decomposition, giving the desired result.

In addition, we can obtain bounds of the VC dimension of the Scheffé sets of Gaussian distri-
butions.

Lemma 6.9. The set of Gaussian distributions with fixed variance – i.e., all N (µ, I) with µ ∈ Rd
– has VC dimension d + 1. Furthermore, the set of Gaussians with unknown variance – i.e., all
N (µ,Σ) with µ ∈ Rd and Σ ∈ Rd×d positive definite – has VC dimension O(d2).

Proof. For Gaussians with fixed variance, the Scheffé sets correspond to linear threshold functions,
which have VC dimension d+1. For Gaussians with unknown variance, the Scheffé sets correspond
to quadratic threshold functions, which have VC dimension

(
d+2

2

)
= O(d2) [Ant95].

Combining the covers of Lemmas 6.7 and 6.8 and the VC bound of Lemma 6.9 with Theorem
4.1 implies the following corollaries for Gaussian estimation.

Corollary 6.10. Suppose we are given a set of samples X1, . . . , Xn ∼ P , where P is α-close to
a Gaussian distribution N (µ, I) in d-dimensions with ‖µ‖ ≤ R. Then for any constant ζ > 0,
there exists an ε-differentially private algorithm which outputs a Gaussian distribution H∗ such
that dTV(P,H∗) ≤ (6 + 2ζ)α with probability ≥ 9/10, so long as

n = Ω

(
d

α2
+

d

αε
log

(
dR

α

))
.

Corollary 6.11. Suppose we are given a set of samples X1, . . . , Xn ∼ P , where P is α-close
to a Gaussian distribution N (µ,Σ) in d-dimensions with ‖µ‖ ≤ R and I � Σ � κI. Then for
any constant ζ > 0, there exists an ε-differentially private algorithm which outputs a Gaussian
distribution H∗ such that dTV(P,H∗) ≤ (6 + 2ζ)α with probability ≥ 9/10, so long as

n = Ω

(
d2

α2
+

1

αε

(
d log

(
dR

α

)
+ d2 log

(
dκ

α

)))
.

Similar to the product distribution case, these are the first Õ(d) and Õ(d2) sample algorithms
for learning Gaussians total variation distance under pure differential privacy, improving upon the
concentrated differential privacy results of Kamath, Li, Singhal, and Ullman [KLSU19].

6.2.1 Gaussians with Unbounded Mean

Extending Corollary 6.10, we consider multivariate Gaussian hypotheses with known covariance
and unknown mean, without assuming bound on the mean (the parameter R in the discussion
above). To handle the unbounded mean we must relax to approximate differential privacy.

In place of Lemma 6.7, we construct a locally small cover:
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Lemma 6.12. For any d ∈ N and α ∈ (0, 1/30], there exists an α-cover Cα of the set of Gaussian
distributions N (µ, I) in d dimensions satisfying

∀µ ∈ Rd |{H ∈ Cα : dTV(H,N (µ, I)) ≤ 7α}| ≤ 215d.

Proof. For µ, µ′ ∈ Rd, we have

dTV(N (µ, I),N (µ′, I)) = 2Pr

[
N (0, 1) ∈

[
0,

1

2
‖µ− µ′‖2

]]
=

√
2

π

∫ 1
2
‖µ−µ′‖2

0
e−x

2/2dx

≤ ‖µ− µ
′‖2√

2π
.

Furthermore, for any c > 0,

dTV(N (µ, I),N (µ′, I)) ≥


‖µ−µ′‖2√

2π
· e−c2/2 if 1

2‖µ− µ
′‖2 ≤ c

c·e−c2/2√
2π

if 1
2‖µ− µ

′‖2 ≥ c
.

Let

Cα =

{
N

(
m · α

√
8π√
d
, I

)
: m ∈ Zd

}
.

Fix µ ∈ Rd. Let µ∗ = µ
√
d

α
√

8π
∈ Rd and let m ∈ Zd be µ∗ rounded to the nearest integer coordinate-

wise, so that ‖m− µ∗‖∞ ≤ 1
2 . Then

dTV

(
N (µ, I),N

(
m · α

√
8π√
d
, I

))
= dTV

(
N

(
µ∗ · α

√
8π√
d
, I

)
,N

(
m · α

√
8π√
d
, I

))

≤ 1√
2π

α
√

8π√
d
‖µ∗ −m‖2

≤ α,

since ‖µ∗ −m‖2 ≤
√
d‖µ∗ −m‖∞ ≤

√
d

2 . This proves that Cα is a α-cover of {N (µ, I) : µ ∈ Rd}.
It remains to show that the cover is “locally small”. Let m′ ∈ Zd. Then

dTV

(
N (µ, I),N

(
m′ · α

√
8π√
d
, I

))
= dTV

(
N

(
µ∗ · α

√
8π√
d
, I

)
,N

(
m′ · α

√
8π√
d
, I

))

≥ c · e−c2/2√
2π

if
1

2
‖µ∗ −m′‖2

α
√

8π√
d
≥ c

> 7α if ‖µ∗ −m′‖2 ≥ 30

√
d√

2π
,
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where the final inequality follows by setting c = 30α ≤ 1. Thus

|{H ∈ Cα : dTV(H,N (µ, I)) ≤ 7α}| ≤

∣∣∣∣∣
{
m′ ∈ Zd : ‖µ∗ −m′‖2 < 30

√
d√

2π

}∣∣∣∣∣
≤

∣∣∣∣∣
{
m′ ∈ Zd : ‖m−m′‖2 < 30

√
d√

2π
+ ‖µ∗ −m′‖2

}∣∣∣∣∣
≤
∣∣∣{m′ ∈ Zd : ‖m−m′‖2 < 13

√
d
}∣∣∣

≤
∣∣∣{w ∈ Zd : ‖w‖1 < 13d

}∣∣∣ .
Now we note that any w ∈ Zd with ‖w‖1 ≤ r can be written as w = x − y where x, y ∈ Zd with∑d

i=1 xi+yi = r and, for all i ∈ [d], we have xi ≥ 0 and yi ≥ 0. Instead of counting these w vectors,
we can count such (x, y) vector pairs. We can interpret a pair of x, y vectors as a way of putting r
balls into 2d bins or r “stars” and 2d− 1 “bars”. We can thus count∣∣∣{w ∈ Zd : ‖w‖1 < 13d

}∣∣∣ ≤ ∣∣∣{x, y ∈ Zd : ‖x‖1 + ‖y‖2 = 13d− 1, x ≥ 0, y ≥ 0
}∣∣∣ ≤ (15d− 2

2d− 1

)
≤ 215d.

Applying Theorem 4.1 with the cover of Lemma 6.12 and the VC bound from Lemma 6.9 now
yields an algorithm.

Corollary 6.13. Suppose we are given a set of samples X1, . . . , Xn ∼ P , where P is a spherical
Gaussian distribution N (µ, I) in d-dimensions. Then there exists a (ε, δ)-differentially private
algorithm which outputs a spherical Gaussian distribution H∗ such that dTV(P,H∗) ≤ 7α with
probability ≥ 1− 2−d, so long as

n = Ω

(
d

α2
+
d+ log(1/δ)

αε

)
.

Karwa and Vadhan [KV18] give an algorithm for estimating a univariate Gaussian with un-
bounded mean. One can consider applying their algorithm independently to the d coordinates

(which is done in [KLSU19]), giving a sample complexity bound of Õ
(
d
α2 + d

αε +
√
d log3/2(1/δ)

ε

)
,

which our bound dominates except for very small values of α.

6.2.2 Univariate Gaussians with Unbounded Mean and Variance

Our methods also allow us to derive learning algorithms for univariate Gaussians with unknown
mean and variance.

Lemma 6.14. For all α less then some absolute constant, there exists an α-cover Cα of the set of
univariate Gaussian distributions satisfying

∀µ, σ ∈ R
∣∣{H ∈ Cα : dTV(H,N (µ, σ2)) ≤ 7α

}∣∣ ≤ O(1).

Proof. For all µ, µ̃ ∈ R and all σ, σ̃ > 0, we have [DMR18, Thm 1.3]

1

200
min

{
1,max

{
|σ̃2 − σ2|

σ̃2
,
40|µ̃− µ|

σ̃

}}
≤ dTV(N (µ, σ2),N (µ̃, σ̃2)) ≤ 3|σ̃2 − σ2|

2σ̃2
+
|µ̃− µ|

2σ̃
.
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Let β = α and γ = log(1 + α/2). Define the set of distributions

Cα =
{
N
(
βeγnm, e2γn

)
: n,m ∈ Z

}
.

We first show that Cα is an α-cover: Let µ ∈ R and σ > 0. Let n =
[

log σ
γ

]
and m =

[
µ

βeγn

]
, where

[x] denotes the nearest integer to x, satisfying |x − [x]| ≤ 1
2 . Let σ̃ = eγn and µ̃ = βeγnm so that

e−γ ≤ σ̃2

σ2 ≤ eγ and |µ − µ̃| ≤ 1
2βe

γn = 1
2βσ̃. Thus N (µ̃, σ̃2) ∈ Cα and dTV(N (µ, σ2),N (µ̃, σ̃2)) ≤

3
2 (eγ − 1) + β

4 ≤ α, as required.
It only remains to show that the cover size is locally small. Let µ ∈ R and σ > 0.∣∣{H ∈ Cα : dTV(H,N (µ, σ2)) ≤ 7α

}∣∣ =
∣∣{n,m ∈ Z : dTV(N

(
βeγnm, e2γn

)
,N (µ, σ2)) ≤ 7α

}∣∣
≤
∣∣∣∣{n,m ∈ Z : max

{
|e2γn − σ2|

e2γn
,
40|βeγnm− µ|

eγn

}
≤ 1400α

}∣∣∣∣
=

∣∣∣∣∣
{
n,m ∈ Z :

− log(1+1400α)
2γ ≤ n− log σ

γ ≤ − log(1−1400α)
2γ

−35αβ ≤ m−
µ

βeγn ≤ 35αβ

}∣∣∣∣∣
≤
(
− log(1− 1400α)

2γ
− − log(1 + 1400α)

2γ
+ 1

)
· (35− (−35) + 1)

=
1

2 log(1 + α/2)
log

(
1 + 1400α

1− 1400α

)
· 71 + 71

= O(1).

Combining Lemma 6.14 with Lemma 6.9 and Theorem 4.1 yields the following.

Corollary 6.15. Suppose we are given a set of samples X1, . . . , Xn ∼ P , where P is a univariate
Gaussian distribution N (µ, σ2). Then there exists a (ε, δ)-differentially private algorithm which
outputs a univariate Gaussian distribution H∗ such that dTV(P,H∗) ≤ 7α with probability ≥ 9/10,
so long as

n = Ω

(
1

α2
+

log(1/δ)

αε

)
.

This sample complexity is comparable to to that of Karwa and Vadhan [KV18], who give an

(ε, δ)-DP algorithm with sample complexity Õ
(

1
α2 + 1

αε + log(1/δ)
ε

)
.

6.3 Sums of Independent Random Variables

In this section, we apply our results to distribution classes which are defined as the sum of inde-
pendent (but not necessarily identical) distributions. These are all generalizations of the classical
Binomial distribution, and they have enjoyed a great deal of study into the construction of sparse
covers. To the best of our knowledge, we are the first to provide private learning algorithms for
these classes.

We start with the Poisson Binomial distribution.

Definition 6.16. A k-Poisson Binomial Distribution (k-PBD) is the sum of k independent Bernoulli
random variables.

We next consider sums of independent integer random variables, which generalize PBDs (which
correspond to the case d = 2).
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Definition 6.17. A (k, d)-Sum of Independent Integer Random Variables ((k, d)-SIIRV) is the
sum of k independent random variables over {0, . . . , d− 1}.

Finally, we consider Poisson Multinomial distributions, which again generalize PBDs (which,
again, correspond to the case d = 2).

Definition 6.18. A (k, d)-Poisson Multinomial Distribution ((k, d)-PMD) is the sum of k inde-
pendent d-dimensional categorical random variables, i.e., distributions over {e1, . . . , ed}, where ei
is the ith basis vector.

We start with a covering result for SIIRVs (including the special case of PBDs), which appears
in [DKS16b]. Previous covers for PBDs and SIIRVs appear in [DP09, DP15b, DDO+13].

Lemma 6.19 ([DKS16b]). There exists an α-cover of the set of (k, d)-SIIRVs of size

k · 2O(d log2(1/α)+d log2 d).

Using this cover, we can apply Corollary 1.2 to attain the following learning result for PBDs
and SIIRVs.

Corollary 6.20. Suppose we are given a set of samples X1, . . . , Xn ∼ P , where P is α-close to a
(k, d)-SIIRV. Then for any constant ζ > 0, there exists an ε-differentially private algorithm which
outputs a (k, d)-SIIRV H∗ such that dTV(P,H∗) ≤ (6 + 2ζ)α with probability ≥ 9/10, so long as

n = Ω

((
log k + d log2(1/α) + d log2 d

)( 1

α2
+

1

αε

))
.

Next, we move on to PMDs. The following cover does not appear verbatim in any single location,
but is a combination of results from a few different sources. The proofs for the best bounds on
first term appears in [DDKT16], the second in [DKT15], and the third in [DKS16a]. Larger covers
previously appeared in [DP08, DP15a].

Lemma 6.21 ([DKT15, DDKT16, DKS16a]). For any d > 2, there exists an α-cover of the set of
(k, d)-PMDs of size

kO(d) ·min
{

2poly(d/α), (1/α)O(d log(d/α)/ log log(d/α))d−1
}
.

This implies the following learning result for PMDs.

Corollary 6.22. Suppose we are given a set of samples X1, . . . , Xn ∼ P , where P is α-close to a
(k, d)-PMD, for any d > 2. Then there exists an ε-differentially private algorithm which outputs a
(k, d)-PMD H∗ such that dTV(P,H∗) ≤ (6 + 2ζ)α with probability ≥ 9/10, so long as

n = Ω̃

((
d log k + min

{
poly

(
d

α

)
, O

(
d log(d/α)

log log(d/α)

)d−1

· log(1/α)

})(
1

α2
+

1

αε

))
.

6.4 Piecewise Polynomials

In this section, we apply our results to semi-agnostically learn piecewise polynomials. This class
of distributions is very expressive, allowing us to approximate a wide range of natural distribution
classes.
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Definition 6.23. A (t, d, k)-piecewise polynomial distribution is a distribution P over [k], such
that there exists a partition of [k] into t disjoint intervals I1, . . . , It such that on each interval

Ij ⊆ [k], the probability mass function of P takes the form pj(x) =
∑d

i=0 c
(j)
i xi for some coefficients

c
(j)
i , for all x ∈ Ij.

We construct a cover for piecewise polynomials.

Lemma 6.24. There exists a universal constant c > 0 such that there is an α-cover of the set of
(t, d, k)-piecewise polynomials of size

(
k

t− 1

)
·

(
tk · ecd1/2

α

)(d+1)t

.

Proof. We specify an element of the cover by

1. Selecting one of
(
k
t−1

)
partitions of [k] into t intervals I1, . . . , It, and

2. For each interval Ij , selecting an element of an (α/t)-cover Cj of the set of degree-d polynomials
over Ij which are uniformly bounded by 1.

The total size of the cover is
(
k
t−1

)∏t
j=1 |Cj |. The theorem follows from Proposition 6.25 below,

which constructs an (α/t)-cover Cj of size at most

(
tk·ecd1/2

α

)d+1

for every interval Ij .

Proposition 6.25. There exist constants b, c > 0 for which the following holds. Let I ⊆ [k] be an
interval and let P be the set of polynomials p : I → R of degree d such that |p(x)| ≤ 1 for all x ∈ I.
There exists an α-cover of P of size

min


(

2k

α

)|I|
,

(
ckd2 · ebd2/|I|

α

)d+1
 .

The proof of Proposition 6.25 relies on two major results in approximation theory, which we
now state.

Lemma 6.26 (Duffin and Schaeffer [DS41]). Let p : [−1, 1]→ R be a polynomial such that |p(x)| ≤
1 for all x of the form x = cos(jπ/d) for j = 0, 1, . . . , d. Then |p′(x)| ≤ d2 for all x ∈ [−1, 1].

Lemma 6.27 (Coppersmith and Rivlin [CR92]). There exist constants a, b > 0 for which the
following holds. Let p : R → R be a polynomial of degree d, and suppose that |p(t)| ≤ 1 for all
t = 0, 1, . . . ,m. Then |p(t)| ≤ a exp(bd2/m) for all t ∈ [0,m].

Proof of Proposition 6.25. We consider two cases, corresponding to the two terms in the minimum.
First, consider the function f : I → R where f(t) is obtained by rounding p(t) to the nearest
multiple of α/k. Then f satisfies

∑
t∈I |f(t) − p(t)| ≤ α. There are at most (2k/α)|I| functions f

which can be constructed this way, giving the first term in the maximum.
For the second term, we construct a cover for P by approximately interpolating through d+ 1

carefully chosen points in the continuous interval corresponding to I. By applying an affine shift,
we may assume that I = {0, 1, . . . ,m} for some integer m ≤ k− 1. Let p ∈ P and for x ∈ [0,m] let
p̂(x) be the value of p(x) rounded to the nearest integer multiple of α/(2kd2). Let q : [0,m] → R
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be the unique degree-d polynomial obtained by interpolating through the points (xj , p̂(xj)) where
xj = m(1 + cos(jπ/d))/2 for j = 0, 1, . . . , d.

We first argue that the polynomial q so defined satisfies
∑m

t=0 |p(t) − q(t)| ≤ α. Let r(x) =
p(x)− q(x) for x ∈ [0,m]. Then by construction, |r(xj)| ≤ α/(2kd2) for all interpolation points xj .
By the Duffin-Schaeffer Inequality (Lemma 6.26), we therefore have |r′(x)| ≤ α

km for all x ∈ [0,m].

By the Fundamental Theorem of Calculus, r(t) = r(0)+
∫ t

0 r
′(t) dt satisfies |r(t)| ≤ (t+1)· αkm ≤ α/k,

and hence
∑m

t=0 |r(t)| ≤ α.
We now argue that the set of polynomials q that can be constructed in this fashion has size

(ckd2 exp(bd2/m)/α)d+1. By the Coppersmith-Rivlin Inequality (Lemma 6.27), there are constants
a, b > 0 such that |p(x)| ≤ a exp(bd2/m) for all x ∈ [0,m]. Therefore, for each p ∈ P and each
interpolation point xj , there are at most 4a · kd2 exp(bd2/m)/α possible values that p̂(xj) can take.
Hence, the polynomial q can take one of at most (4a · kd2 exp(bd2/m)/α)d+1 possible values, as we
wanted to show.

Lemma 6.28. The VC dimension of (t, d, k)-piecewise polynomial distributions is at most 2t(d+1).

Proof. Consider two piecewise polynomial distributions. The difference between their probability
mass functions is a piecewise polynomial of degree ≤ d. The number of intervals needed to represent
this piecewise function is ≤ 2t. It follows that this difference can change sign at most 2td+ 2t− 1
times – each polynomial can change sign at most d times and the sign can change at the interval
boundaries. Thus such a function cannot label 2td + 2t + 1 points with alternating signs, which
implies the VC bound.

As a corollary, we obtain the following learning algorithm.

Corollary 6.29. Suppose we are given a set of samples X1, . . . , Xn ∼ P , where P is α-close to a
(t, d, k)-piecewise polynomial. Then there exists an ε-differentially private algorithm which outputs
a (t, d, k)-piecewise polynomial H∗ such that dTV(P,H∗) ≤ (6 + 2ζ)α with probability ≥ 9/10, so
long as

n = Ω

(
(d+ 1)t

α2
+

(d+ 1)t

αε
·
(√

d+ 1 log k + log

(
t

α

)))
.

We compare with the work of Diakonikolas, Hardt, and Schmidt [DHS15]. They present an ef-

ficient algorithm for (t, 1, k)-piecewise polynomials, with sample complexity Õ
(
t
α2 + t log k

αε

)
, which

our algorithm matches6. They also claim their results extend to (t, d, k)-piecewise polynomials,
though no theorem statement is provided. While we have not investigated the details of this exten-
sion, we believe the resulting sample complexity should be qualitatively similar to ours, plausibly

with the factor of t(d+1)3/2 log k
αε replaced by t(d+1) log k

αε .

6.5 Mixtures

In this section, we show that our results immediately extend to learning mixtures of classes of
distributions.

Definition 6.30. Let H be some set of distributions. A k-mixture of H is a distribution with
density

∑k
i=1wiPi, where each Pi ∈ H.

6As stated in [DHS15], their algorithm guarantees approximate differential privacy, but swapping in an appropriate
pure DP subroutine gives this result.
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Our results follow roughly due to the fact that a cover for k-mixtures of a class can be written
as the Cartesian product of k covers for the class. More precisely, we state the following result
which bounds the size of the cover of the set of k-mixtures.

Lemma 6.31. Consider the class of k-mixtures of H, where H is some set of distributions. There

exists a 2α-cover of this class of size |Cα|k
(
k

2α + 1
)k−1

, where Cα is an α-cover of H.

Proof. Each element in the cover of the class of mixtures will be obtained by taking k distributions
from Cα, in combination with k mixing weights, which are selected from the set

{
0, 2α

k ,
4α
k , . . . , 1

}
,

such that the sum of the mixing weights is 1. The size of this cover is |Cα|k ·
(
k

2α + 1
)k−1

. We reason

about the accuracy of the cover as follows. Fix some mixture of k distributions as
∑k

i=1w
(1)
i P

(1)
i ,

and we will reason about the closest element in our cover,
∑k

i=1w
(2)
i P

(2)
i . By triangle inequality,

we have that

dTV

(
k∑
i=1

w
(1)
i P

(1)
i ,

k∑
i=1

w
(2)
i P

(2)
i

)
≤

k∑
i=1

1

2

∣∣∣w(1)
i − w

(2)
i

∣∣∣+ w
(1)
i dTV

(
P

(1)
i , P

(2)
i

)
.

Since Cα is an α-cover and
∑k

i=1w
(1)
i = 1, the total variation distance incurred by the second term

will be at most α. As for the mixing weights, note that for the first k − 1 weights, the nearest
weight is at distance at most α

k , contributing a total of less than α
2 . The last mixing weight can

be rewritten in terms of the sum of the errors of the other mixing weights, similarly contributing
another total of less than α

2 . This results in the total error being at most 2α, as desired.

With this in hand, the following corollary is almost immediate from Corollary 1.2. The factor
of (9 + 3ζ)α (as opposed to (6 + 2ζ)α) is because the closest distribution in the cover of mixture
distributions is 3α-close to be P (rather than 2α).

Corollary 6.32. Let X1, . . . , Xn ∼ P , where P is α-close to a k-mixture of distributions from some
set H. Let Cα be an α-cover of the set H, and ζ > 0 be a constant. There exists an ε-differentially
private algorithm which outputs a distribution which is (9+3ζ)α-close to P with probability ≥ 9/10,
as long as

n = Ω

(
(k log |Cα|+ k log(k/α))

(
1

α2
+

1

αε

))
.

For example, instantiating this for mixtures of Gaussians (and disregarding terms which depend

on R and κ), we get an algorithm with sample complexity Õ
(
kd2

α2 + kd2

αε

)
.

6.6 Supervised Learning

We describe an application of our results to the task of binary classification, as modeled by differ-
entially private PAC learning [KLN+11]. Let F = {f : X → {0, 1}} be a publicly known concept
class of Boolean functions over a domain X. Let P be an unknown probability distribution over
X, and let f be an unknown function from F . Given a sequence {(xi, f(xi))}ni=1 of i.i.d. samples
from P together with their labels under f , the goal of a PAC learner L is to identify a hypothesis
h : X → {0, 1} such that Prx∼P [h(x) 6= f(x)] ≤ α for some error parameter α > 0. We say that L is
(α, β)-accurate if for every f ∈ F and every distribution P , it is able to identify such a hypothesis
h with probability at least 1− β over the choice of the sample and any internal randomness of L.

One of the core results of statistical learning theory is that the sample complexity of non-private
PAC learning is characterized, up to constant factors, by the VC dimension of the concept class F .
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When one additionally requires the learner L to be differentially private with respect to its input
sample, such a characterization is unknown. However, it is known that the sample complexity of
private learning can be arbitrarily higher than that of non-private learning. For example, when
F = {ft : t ∈ X} is the class of threshold functions defined by ft(x) = 1 ⇐⇒ x ≤ t over a totally
ordered domain X, the sample complexity of PAC learning under the most permissive notion of
(ε, δ)-differential privacy is Ω(log∗ |X|) [BNSV15, ALMM19]. Meanwhile, the VC dimension of this
class, and hence the sample complexity of non-private learning, is a constant independent of |X|.

While this separation shows that there can be a sample cost of privacy for PAC learning, this
cost can be completely eliminated if the distribution P on examples is known. This was observed
by Beimel, Nissim, and Stemmer [BNS16], who showed that if a good approximation to P is known,
e.g., from public unlabeled examples or from differentially private processing of unlabeled examples,
then the number of labeled examples needed for private PAC learning is only O(V C(F)).

Theorem 6.33. Let ε > 0, F = {f : X → {0, 1}}, and P be a publicly known distribution
over X. For n = O

(
1
α2ε

(V C(F) log(1/α) + log(1/β))
)
, there exists an ε-differentially private al-

gorithm L : (X × {0, 1})n → F such that for every f ∈ F , with probability at least 1 − β over the
choice of x1, . . . , xn ← P , we have that L((x1, f(x1)), . . . , (xn, f(xn))) produces h ∈ F such that
Prx∼P [f(x) 6= h(x)] ≤ α.

Our results suggest a natural two-step algorithm for private PAC learning when the distribution
P itself is not known, but is known to (approximately) come from a set of distributions H: The
algorithm first uses private hypothesis selection to select Ĥ with dTV(P, Ĥ) ≤ α/2, and then runs
the algorithm of [BNS16] using Ĥ in place of P with error parameter α/2. Using the fact that
dTV(P, Ĥ) ≤ α/2 implies |Prx∼P [f(x) 6= h(x)] − Prx∼Ĥ [f(x) 6= h(x)]| ≤ α/2, the following result
holds by combining Theorem 6.33 with Corollary 1.2.

Corollary 6.34. Let H be a set of distributions over X with an α-cover Cα. Let P be a distribution
over X with dTV(P,H) ≤ α/(4(3 + ζ)). Then for

n = O

(
log |Cα|
α2

+
log |Cα|
αε

+
V C(F) log(1/α)

α2ε

)
there exists an ε-differentially private algorithm L : (X × {0, 1})n → F such that for every f ∈ F ,
with probability at least 3/4 over the choice of x1, . . . , xn ← P , we have that L((x1, f(x1)), . . . , (xn, f(xn)))
produces h ∈ F such that Prx∼P [f(x) 6= h(x)] ≤ α.

Theorem 6.33 can, of course, also be combined with the more refined guarantees of Theorem 4.1.
As an example application, combining Theorem 6.33 with Corollary 6.13 gives a (ε, δ)-differentially
private algorithm for learning one-dimension thresholds with respect to univariate Gaussian distri-
butions on the reals. In contrast, this task is impossible without making distributional assumptions.

7 Conclusions

In this paper, we presented differentially private methods for hypothesis selection. The sample
complexity can be bounded by the logarithm of the number of hypotheses. This allows us to
provide bounds on the sample complexity of (semi-agnostically) learning a class which depend on
the logarithm of the covering number, complementing known lower bounds which depend on the
logarithm of the packing number. There are many interesting questions left open by our work, a
few of which we outline below.
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1. Our algorithms for learning classes of distributions all use cover-based arguments, and thus
are not computationally efficient. For instance, we provide the first Õ(d) sample complexity
upper bound on ε-differentially privately learning a product distribution and Gaussian with
known covariance. One interesting question is whether there is an efficient algorithm which
achieves this sample complexity.

2. The running time of our method is quadratic in the number of hypotheses – is it possible to
reduce this to a near-linear time complexity?

3. Our main theorem obtains an approximation factor which is arbitrarily close to 3, which is
optimal for this problem, even without privacy. This factor can be reduced to 2 if one is
OK with outputting a mixture of hypotheses from the set [BKM19]. Is this achievable with
privacy constraints?
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