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Abstract

We propose a novel memory cell for recurrent neural networks that dynamically
maintains information across long windows of time using relatively few resources.
The Legendre Memory Unit (LMU) is mathematically derived to orthogonalize
its continuous-time history – doing so by solving d coupled ordinary differential
equations (ODEs), whose phase space linearly maps onto sliding windows of
time via the Legendre polynomials up to degree d − 1. Backpropagation across
LMUs outperforms equivalently-sized LSTMs on a chaotic time-series prediction
task, improves memory capacity by two orders of magnitude, and significantly
reduces training and inference times. LMUs can efficiently handle temporal de-
pendencies spanning 100,000 time-steps, converge rapidly, and use few internal
state-variables to learn complex functions spanning long windows of time – ex-
ceeding state-of-the-art performance among RNNs on permuted sequential MNIST.
These results are due to the network’s disposition to learn scale-invariant features
independently of step size. Backpropagation through the ODE solver allows each
layer to adapt its internal time-step, enabling the network to learn task-relevant
time-scales. We demonstrate that LMU memory cells can be implemented using
m recurrently-connected Poisson spiking neurons, O(m) time and memory, with
error scaling as O(d/

√
m). We discuss implementations of LMUs on analog and

digital neuromorphic hardware.

1 Introduction

A variety of recurrent neural network (RNN) architectures have been used for tasks that require
learning long-range temporal dependencies, including machine translation [3, 26, 34], image caption
generation [36, 39], and speech recognition [10, 16]. An architecture that has been especially
successful in modelling complex temporal relationships is the LSTM [18], which owes its superior
performance to a combination of memory cells and gating mechanisms that maintain and nonlinearly
mix information over time.

LSTMs are designed to help alleviate the issue of vanishing and exploding gradients commonly
associated with training RNNs [5]. However, they are still prone to unstable gradients and saturation
effects for sequences of length T > 100 [2, 22]. To combat this problem, extensive hyperparameter
searches, gradient clipping strategies, layer normalization, and many other RNN training “tricks” are
commonly employed [21].

Although standard LSTMs with saturating units have recently been found to have a memory of about
T = 500–1,000 time-steps [25], non-saturating units in RNNs can improve gradient flow and scale to
2,000–5,000 time-steps before encountering instabilities [7, 25]. However, signals in realistic natural
environments are continuous in time, and it is unclear how existing RNNs can cope with conditions
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as T → ∞. This is particularly relevant for models that must leverage long-range dependencies
within an ongoing stream of continuous-time data, and run in real time given limited memory.

Interestingly, biological nervous systems naturally come equipped with mechanisms that allow them
to solve problems relating to the processing of continuous-time information – both from a learning
and representational perspective. Neurons in the brain transmit information using spikes, and filter
those spikes continuously over time through synaptic connections. A spiking neural network called
the Delay Network [38] embraces these mechanisms to approximate an ideal delay line by converting
it into a finite number of ODEs integrated over time. This model reproduces properties of “time
cells” observed in the hippocampus, striatum, and cortex [13, 38], and has been deployed on ultra
low-power [6] analog and digital neuromorphic hardware including Braindrop [28] and Loihi [12, 37].

This paper applies the memory model from [38] to the domain of deep learning. In particular, we
propose the Legendre Memory Unit (LMU), a new recurrent architecture and method of weight
initialization that provides theoretical guarantees for learning long-range dependencies, even as the
discrete time-step, ∆t, approaches zero. This enables the gradient to flow across the continuous
history of internal feature representations. We compare the efficiency and accuracy of this approach
to state-of-the-art results on a number of benchmarks designed to stress-test the ability of recurrent
architectures to learn temporal relationships spanning long intervals of time.

2 Legendre Memory Unit

Memory Cell Dynamics The main component of the Legendre Memory Unit (LMU) is a memory
cell that orthogonalizes the continuous-time history of its input signal, u(t) ∈ R, across a sliding
window of length θ ∈ R>0. The cell is derived from the linear transfer function for a continuous-time
delay, F (s) = e−θs, which is best-approximated by d coupled ordinary differential equations (ODEs):

θṁ(t) = Am(t) + Bu(t) (1)
where m(t) ∈ Rd is a state-vector with d dimensions. The ideal state-space matrices, (A, B), are
derived through the use of Padé [30] approximants [37]:

A = [a]ij ∈ Rd×d, aij = (2i+ 1)

{
−1 i < j

(−1)i−j+1 i ≥ j
B = [b]i ∈ Rd×1, bi = (2i+ 1)(−1)i, i, j ∈ [0, d− 1].

(2)

The key property of this dynamical system is that m represents sliding windows of u via the Legendre
[24] polynomials up to degree d− 1:

u(t− θ′) ≈
d−1∑
i=0

Pi
(
θ′

θ

)
mi(t), 0 ≤ θ′ ≤ θ, Pi(r) = (−1)i

i∑
j=0

(
i
j

)(
i+ j
j

)
(−r)j (3)

where Pi(r) is the ith shifted Legendre polynomial [32]. This gives a unique and optimal decomposi-
tion, wherein functions of m correspond to computations across windows of length θ, projected onto
d orthogonal basis functions.
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Figure 1: Shifted Legendre polynomials (d = 12).
The memory of the LMU represents the entire slid-
ing window of input history as a linear combination
of these scale-invariant polynomials. Increasing
the number of dimensions supports the storage of
higher-frequency inputs relative to the time-scale.

Discretization We map these equations onto
the memory of a recurrent neural network, mt ∈
Rd, given some input ut ∈ R, indexed at dis-
crete moments in time, t ∈ N:

mt = Āmt−1 + B̄ut (4)
where (Ā, B̄) are the discretized matrices pro-
vided by the ODE solver for some time-step ∆t
relative to the window length θ. For instance, Eu-
ler’s method supposes ∆t is sufficiently small:

Ā = (∆t/θ)A + I, B̄ = (∆t/θ)B. (5)
We also consider discretization methods such as
zero-order hold (ZOH) as well as those that can
adapt their internal time-steps [9].
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Approximation Error When d = 1, the memory is analogous to a single-unit LSTM without any
gating mechanisms (i.e., a leaky integrator with time-constant θ). As d increases, so does its memory
capacity relative to frequency content. In particular, the approximation error in equation 3 scales as
O (θω/d), where ω is the frequency of the input u that is to be committed to memory [38].
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Figure 2: Time-unrolled LMU layer. An n-
dimensional state-vector (ht) is dynamically cou-
pled with a d-dimensional memory vector (mt).
The memory represents a sliding window of ut, pro-
jected onto the first d Legendre polynomials.

Layer Design The LMU takes an input vec-
tor, xt, and generates a hidden state, ht ∈ Rn.
Each layer maintains its own hidden state and
memory vector. The state mutually interacts
with the memory, mt ∈ Rd, in order to com-
pute nonlinear functions across time, while dy-
namically writing to memory. Similar to the
NRU [7], the state is a function of the input,
previous state, and current memory:

ht = f (Wxxt + Whht−1 + Wmmt) (6)

where f is some chosen nonlinearity
(e.g., tanh) and Wx, Wh, Wm are learned
kernels. Note this decouples the size of the
layer’s hidden state (n) from the size of the
layer’s memory (d), and requires holding n+ d
variables in memory between time-steps. The
input signal that writes to the memory (via
equation 4) is:

ut = ex
Txt + eh

Tht−1 + em
Tmt−1 (7)

where ex, eh, em are learned encoding vectors. Intuitively, the kernels (W) learn to compute
nonlinear functions across the memory, while the encoders (e) learn to project the relevant information
into the memory. The parameters of the memory (Ā, B̄, θ) may be trained to adapt their time-scales
by backpropagating through the ODE solver [9], although we do not require this in our experiments.

This is the simplest design that we found to perform well across all tasks explored below, but variants
in the form of gating ut, forgetting mt, and bias terms may also be considered for more challenging
tasks. Our focus here is to demonstrate the advantages of learning the coupling between an optimal
linear dynamical memory and a nonlinear function.

3 Experiments

Tasks were selected with the goals of validating the LMU’s derivation while succinctly highlighting
its key advantages: it can learn temporal dependencies spanning T = 100,000 time-steps, converge
rapidly due to the use of non-saturating memory units, and use relatively few internal state-variables
to compute nonlinear functions across long windows of time. The source code for the LMU and our
experiments are published on GitHub.1

Proper weight initialization is central to the performance of the LMU, as the architecture is indeed
a specific way of configuring a more general RNN in order to learn across continuous-time repre-
sentations. Equation 2 and ZOH are used to initialize the weights of the memory cell (Ā, B̄). The
time-scale θ is initialized based on prior knowledge of the task. We find that Ā, B̄, θ do not require
training for these tasks since they can be appropriately initialized. We recommend equation 3 as
an option to initialize Wm that can improve training times. The memory’s feedback encoders are
initialized to em = 0 to ensure stability. Remaining kernels (Wx, Wh) are initialized to Xavier
normal [15] and the remaining encoders (ex, eh) are initialized to LeCun uniform [23]. The activation
function f is set to tanh. All models are implemented with Keras and the TensorFlow backend [1]
and run on CPUs and GPUs. We use the Adam optimizer [20] with default hyperparameters, monitor
the validation loss to save the best model, and train until convergence or 500 epochs. We note that our
method does not require layer normalization, gradient clipping, or other regularization techniques.

1https://github.com/abr/neurips2019
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3.1 Capacity Task

The copy memory task [18] is a synthetic task that stress-tests the ability of an RNN to store a fixed
amount of data—typically 10 values—and persist them for a long interval of time. We consider
a variant of this task that we dub the capacity task. It is designed to test the network’s ability to
maintain T values in memory for large values of T relative to the size of the network. We do so in a
controlled way by setting T = 1/∆t and then scaling ∆t → 0 while keeping the underlying data
distribution fixed. Specifically, we randomly sample from a continuous-time white noise process,
band-limited to ω = 10 Hz. Each sequence iterates through 2.5 seconds of this process with a
time-step of ∆t = 1/T . At each step, the network must recall the input values from biT/(k − 1)c
time-steps ago for i ∈ {0, 1, . . . k − 1}. Thus, the task evaluates the network’s ability to maintain k
points along a sliding window of length T , using only its internal state-variables to persist information
between time-steps. We compare an LSTM to a simplified LMU, for k = 5, while scaling T .
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Figure 3: Comparing LSTMs to LMUs while scal-
ing the number of time-steps between the input and
output. Each curve corresponds to a model trained
at a different window length, T , and evaluated at
5 different delay lengths across the window. The
LMU successfully persists information across 105

time-steps using only 105 internal state-variables,
and without any training. It is able to do so by
maintaining a compressed representation of the
10 Hz band-limited input signal processed with a
time-step of ∆t = 1/T .

Isolating the Memory Cell To validate the
function of the LMU memory in isolation, we
disable the kernels Wx and Wh, as well as the
encoders eh and em, set ex = 1, and set the
hidden activation f to the identity. We use d =
100 dimensions for the memory. This simplifies
the architecture to 500 parameters that connect a
linear memory cell to a linear output layer. This
is done to demonstrate that the LMU is initially
disposed to remember sequences of length θ (set
to T steps).

Model Complexity We compare the isolated
LMU memory cell to an LSTM with 100 units
connected to a 5-dimensional linear output layer.
This model contains ~41k parameters, and 200
internal state-variables—100 for the hidden
state, and 100 for the “carry” state—that can be
leveraged to maintain information between time-
steps. Thus, this task is theoretically trivial in
terms of internal memory storage for T ≤ 200.
The LMU has n = 5 hidden units and d = 100
dimensions for the memory (equation 4). Thus,
the LMU is using significantly fewer computa-
tional resources than the LSTM, 500 vs 41k parameters, and 105 vs 200 state-variables.

Results and Discussion Figure 3 summarizes the test results of each model, trained at different
values of T , by reporting the MSE for each of the k outputs separately. We find that the LSTM
can solve this task when T < 400, but struggles for T ≥ 400 due to the lack of hyperparameter
optimization, consistent with [22, 25]. The LMU solves this task near-perfectly, since θω = 10�
d [38]. In fact, the LMU does not even need to be trained for this task; testing is performed on
the initial state of the network, without any training data. LMU performance continues to improve
with training (not shown), but that is not required for the task. We note that performance improves
as T → ∞ because this yields discretized numerics that more closely follow the continuous-time
descriptions of equations 1 and 3. The next task demonstrates that the representation of the memory
generalizes to internally-generated sequences, that are not described by band-limited white noise
processes, and are learned rapidly through mutual interactions with the hidden units.

3.2 Permuted Sequential MNIST

The permuted sequential MNIST (psMNIST) digit classification task [22] is commonly used to assess
the ability of RNN models to learn complex temporal relationships [2, 7, 8, 21, 25]. Each 28× 28
image is flattened into a one-dimensional pixel array and permuted by a fixed permutation matrix.
Elements of the array are then provided to the network one pixel at a time. Permutation distorts the
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temporal structure in the image sequence, resulting in a task that is significantly more difficult than
the unpermuted version.

State-of-the-art Current state-of-the-art results on psMNIST for RNNs include Zoneout [21] with
95.9% test accuracy, indRNN [25] with 96.0%, and the Dilated RNN [8] with 96.1%. One must
be careful when comparing across studies, as each tend to use different permutation seeds, which
can impact the overall difficulty of the task. More importantly, to allow for a fair comparison of
computational resources utilized by models, it is necessary to consider the number of state-variables
that must be modified in memory as the input is streamed online during inference. In particular, if a
network has access to more than 282 = 784 variables to store information between time-steps, then
there is very little point in attempting this task with an RNN [4, 7]. That is, it becomes trivial to
store all 784 pixels in a buffer, and then apply a feed-forward network to achieve state-of-the-art. For
example, the Dilated RNN uses an internal memory of size 50 · (29− 1) ≈ 25k (i.e., 30x greater than
784), due to the geometric progression of dilated connections that must buffer hidden states in order
to skip them in time. Parameter counts for RNNs are ultimately poor measures of resource efficiency
if a solution has write-access to more internal memory than there are elements in the input sequence.

LMU Model Our model uses n = 212 hidden units and d = 256 dimensions for the memory, thus
maintaining n+ d = 468 variables in memory between time-steps. The hidden state is projected to
an output softmax layer. This is equivalent to the NRU [7] in terms of state-variables, and similar
in computational resources, while the LMU has ~102k trainable parameters compared to ~165k for
the NRU. We set θ = 784 s with ∆t = 1 s, and initialize eh = em = Wx = Wh = 0 to test the
ability of the network to learn these parameters. Training is stopped after 10 epochs, as we observe
that validation loss is already minimized by this point.

Table 1: Validation and test set accuracy for
psMNIST (extended from [7])

Model Validation Test

RNN-orth 88.70 89.26
RNN-id 85.98 86.13
LSTM 90.01 89.86
LSTM-chrono 88.10 88.43
GRU 92.16 92.39
JANET 92.50 91.94
SRU 92.79 92.49
GORU 86.90 87.00
NRU 95.46 95.38
Phased LSTM 88.76 89.61
LMU 96.97 97.15
FF-baseline 92.37 92.65

Results Table 1 is reproduced from Chandar
et al. [7] with the following adjustments. First,
the EURNN (94.50%) has been removed since
it uses 1024 state-variables. Second, we have
added the phased LSTM [29] with matched
parameter counts and α = 10−4. Third, a
feed-forward baseline is included, which simply
projects the flattened input sequence to a soft-
max output layer. This informs us of how well
we should expect a model to perform (92.65%)
supposing it linearly memorizes the input and
projects it to the output softmax layer. For the
LMU and feed-forward baseline, we extended
the code from Chandar et al. [7] in order to en-
sure that the training, validation, and test data
were identical with the same permutation seed
and batch size. All other results in Table 1 use
~165k parameters (LMU uses ~102k, and FF-
baseline uses ~8k).

Discussion The LMU surpasses state-of-the-art by achieving 97.15% test accuracy, despite using
only 468 internal state-variables and ~102k parameters. We make three important observations
regarding the LMU’s performance on this task: (1) it learns quickly, exceeding state-of-the-art in
10 epochs (the results from Chandar et al. [7] use 100 epochs for comparison); (2) it is doing more
than simply memorizing the input (by outperforming the baseline it must be leveraging the hidden
nonlinearities to perform some useful computations across the memory); and (3) since d = 256 is
significantly less than 784, and the input sequence is highly discontinuous in time, it must necessarily
be learning a strategy for writing features to the memory cell (equation 7) that minimizes the
information loss from compression of the window onto the Legendre polynomials.

3.3 Mackey-Glass Prediction

The Mackey-Glass (MG) data set [27] is a time-series prediction task that tests the ability of a network
to model chaotic dynamical systems. MG is commonly used to evaluate the nonlinear dynamical

5



processing of reservoir computers [17]. In this task, a sequence of one-dimensional observations—
generated by solving the MG differential equations—are streamed as input, and the network is tasked
with predicting the next value in the sequence. We use a parameterized version of the data set from
the Deep Learning Summer School (2015) held in Montreal, where we predict 15 time-steps into the
future with an MG time-constant of 17 steps.

Task Difficulty Due to the “butterfly effect” in chaotic strange attractors (i.e., the effect that
arbitrarily small perturbations to the state cause future trajectories to exponentially diverge), this task
is both theoretically and practically challenging. Essentially, the network must use its observations to
estimate the underlying dynamical state of the attractor, and then internally simulate its dynamics
forward some number of steps. Takens’ theorem [35] guarantees that this can be accomplished by
representing a window of the input sequence and then applying a static nonlinear transformation
to this delay embedding. Nevertheless, since any perturbations to the estimate of the underlying
state diverge exponentially over time (at a rate given by its Lyapunov exponent), the time-horizon of
predictions with bounded-error scales only logarithmically with the precision of the observer [33].

Model Specification We compare three architectures: one using LSTMs; one using LMUs; and a
hybrid that is half LSTMs and LMUs in alternating layers. Each model stacks 4 layers and contains
~18k parameters. To balance the number of parameters, each LSTM layer contains 25 units, while
each LMU layer contains n = 49 units and d = 4 memory dimensions. We set θ = 4 time-steps, and
did not try any other values of θ or d. All other settings are kept as their defaults. Lastly, since our
LMU lacks any explicit gating mechanisms, we evaluated a hybrid approach that interleaves two
LMU layers of 40 units with two LSTM layers of 25 units.

Table 2: Mackey-Glass results

Model Test
NRMSE

Training Time
(s/epoch)

LSTM 0.079 20.34 s
LMU 0.054 12.89 s
Hybrid 0.050 16.21 s

Evaluation Metric We report the normalized root
mean squared error (NRMSE):√√√√E

[
(Y − Ŷ )2

]
E [Y 2]

(8)

where Y is the ideal target and Ŷ is the prediction,
such that a baseline solution that always predicts 0
obtains an NRMSE of 1. For this data set, the identity
function (predicting the future output to be equal to the input) obtains an NRMSE of ~1.623.

4 Characteristics of the LMU

Linear-Nonlinear Processing Linear units maximize the information capacity of dynamical sys-
tems, while nonlinearities are required to compute useful functions across this information [19]. The
LMU formalizes this linear-nonlinear trade-off by decoupling the functional role of d linear memory
units from that of n nonlinear hidden units, and then using backpropagation to learn their coupling.

Parameter-State Trade-offs One can increase d to improve the linear memory (m) capacity at
the cost of a linear increase in the size of the encoding parameters, or, increase n to improve the
complexity of nonlinear interactions with the memory (h) at the expense of a quadratic increase in the
size of the recurrent kernels. Thus, d and n can be set independently to trade storage for parameters
while balancing linear memory capacity with hidden nonlinear processing.

Optimality and Uniqueness The memory cell is optimal in the sense of being derived from
the Padé [30] approximants of the delay line expanded about the zeroth frequency [38]. These
approximants have been proven optimal for this purpose. Moreover, the phase space of the memory
maps onto the unique set of orthogonal polynomials over [0, θ] (the shifted Legendre polynomials) up
to a constant scaling factor [24]. Thus the LMU is provably optimal with respect to its continuous-
time memory capacity, which provides a nontrivial starting point for backpropagation. To validate
this characteristic, we reran the psMNIST benchmark with the diagonals of Ā perturbed by ε ∈
{−0.01,−0.001, 0.001, 0.01}. Despite retraining the network for each ε, this achieved sub-optimal
test performance in each case, and resulted in chance-level performance for larger |ε|.
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Figure 4: LMU memory (d = 10,240) given ut = 1.

102 103 104

m (# Neurons)

10 1R
M

S
E

d
m

Poisson

Figure 5: O(d/
√
m) scaling.

Scalability Equations 1 and 2 have been scaled to d = 10,240 to accurately maintain information
across θ = 512,000,000 time-steps, as shown in Figure 4 [37]. This implements the dynamical
system using O(d) time and memory, by exploiting the structure of (A, B) as shown in Figure 6. We
find that the most difficult sequences to remember are pure white noise signals, which requires O(d)
dimensions to accurately maintain a window of d time-steps.

5 Spiking Implementation

The LMU can be implemented with a spiking neural network [38], and on neuromorphic hard-
ware [28], while consuming several orders less energy than traditional computing architectures [6, 37].
Here we review these findings and their implications for neuromorphic deep learning.

The challenge in this section pertains to the substitution of static nonlinearities that emit multi-bit
activities every time-step (i.e., “rate” neurons) with spiking neurons that emit temporally sparse
1-bit events. We consider Poisson neurons since they are stateless, and thus serve as an inexpensive
mechanism for sparsifying signals over time – but this is not a strict requirement. More generally,
by reducing the amount of communication and converting weight multiplies into additions, spikes
can trade precision for energy-efficiency on neuromorphic hardware [6, 12]. Moreover, this can be
accomplished while preserving the optimizations afforded by deep learning [31].

Neural Precision The dynamical system for the memory cell can be implemented by mapping
each state-variable onto the postsynaptic currents of d individual populations of p Poisson spiking
neurons with fixed heterogeneous tuning curves [14, 38]. We consider the error between the ideal
input to the original rate neuron representing some dimension, versus the weighted summation of
spike events representing the same dimension. Theorem 3.2.1 from [37] proves that this error has a
variance of O(1/p). By the variance sum law, repeating this for d independent populations yields
an overall RMSE of O(

√
d/p). Letting m = pd be the total number of neurons, we find that the

error scales as O(d/
√
m), as validated in Figure 5. This grants access to a free parameter that trades

precision for energy-efficiency, while scaling to the original network in the limit of large m [37].

u

0

m1

m2

m3

m4

m5

m

Figure 6: Connection structure (d = 6) adapted
from [37]. Forward arrow heads indicate addition,
circular heads indicate subtraction. The ith state-
variable continuously integrates its input with a
gain of (2i+ 1) θ−1.

Neuromorphic Implementation This spik-
ing neural network has been implemented
on neuromorphic hardware including Brain-
drop [28] and Loihi [37]. Each population is
coupled to one another to implement equation 1
by converting the postsynaptic filters into inte-
grators [38]. This results in a specific connectiv-
ity pattern, shown in Figure 6, that exploits the
alternating structure of equation 2. An ideal im-
plementation of this system requires m nonlin-
earities, O(m) additions, and d state-variables.
Spiking neurons may also be used to implement
the hidden state of the LMU by nonlinearly en-
coding the memory vector [38]. Since this scales
linearly in time and memory, with sqrt preci-
sion, the LMU offers a promising architecture
for low-power RNNs.
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6 Discussion

Advanced regularization techniques, such as recurrent batch normalization [11] and Zoneout [21]
are able to improve standard RNNs to perform near state-of-the-art on the recent psMNIST bench-
mark (95.9%). Without relying on such techniques, our recurrent architecture surpasses state-of-the-
art by a full percent (97.15%), while using fewer internal units and state-variables (468) than image
pixels (784). Nevertheless, recurrent batch normalization and Zoneout are both fully compatible with
our architecture, and the potential benefits should be explored.

To our knowledge, the LMU is the first recurrent architecture capable of handling temporal depen-
dencies across 100,000 time-steps. Its strong performance is attributed to the cell structure being
derived from first principles to project continuous-time signals onto d orthogonal dimensions. The
mathematical derivation of the LMU is critical for its success. Specifically, we find that the LMU’s
dynamical system, when coupled with a nonlinear function, endows the RNN with several non-
trivial advantages in terms of learning long-range dependencies, training quickly, and representing
task-relevant information within sequences whose length exceeds the size of the network.

The LMU is a rare example of deriving RNN dynamics from first principles to have some desired
characteristics, showing that neural activity is consistent with such a derivation, and demonstrating
state-of-the-art performance on a machine learning task. As such, it serves as a reminder of the value
in pursuing diverse perspectives on neural computation and combining tools in mathematics, signal
processing, and deep learning.

The basic design of our layer, which consists of a nonlinear hidden state and linear memory cell,
presents several opportunities for extension. Preliminary work in this direction has indicated that
introducing an input gate is beneficial for problems that require latching onto individual values (as
required by the adding task [18]). Likewise, a forget gate yields improved performance on problems
where it is helpful to selectively reset the memory (such as language modelling). Lastly, we have
proposed a single memory cell per layer, but in theory one can have multiple independent memory
cells, each coupled to the same hidden state with a different set of encoders and kernels. Multiple
memories would enable the same hidden units to write multiple streams in parallel, each along
different time-scales, and compute across all of them simultaneously.
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