Supplementary Material for
Bayesian Joint Estimation of
Multiple Graphical Models

1 Proofs of the Main Results
In this section, we prove main results in the main paper. For simplicity, we assume sample sizes of
the K classes are the same: ny = - -+ = ng = n.

Recall our objective function is
K p K o
Q)= kz::l —L(©) + 04; Z:: pen, (0 ii) +5 ;peHQ(&-j), (1.1)
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1.1 Proof of Theorem 1

In this subsection, we show L(0) is strictly convex, under the constraints that © > 0, ||O[2 <
B k=1,... K.

Decompose L(®) into the following two parts L1 (@) + Lo(©):
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L(O) = aXYpemu) + § Spemi0,) + G S 1ulE
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We show L;(®) and Lo (®) are both strictly convex, so that L(®) is strictly convex.
For L1(®) = >, L1(©y), the Hessian matrix of L;(©y,) is as follows:
n _ aK
V2L, (Or) = = (0L ®Oy) T 5 pzype.
2 4vg
The minimum eigenvalue of the Hessian matrix above can be bounded by

aK

)\min(ngl(Qk)) 2 max(@k ® Gk) 41}
0

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



aK

403

ak

403

n__, oK

= - —>0.

2 1w

Therefore, L1(©),k = 1,..., K and L1(©) = ], L1(Oy) are all strictly convex.
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For Ly(©), let pen(©) = 3. 3, pen; (0ri) + 3 2iz; Peny(0;;). We now quantify the magnitude
of its second-order subgradients. For any k, &k’ € {1, ..., K} and i # j, we have

P1 vo \ K (%-%)H&Hl
V2 Pen(®) = (i — i)2 1—p1 ('Ul) e ' 7 < —1
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Therefore, for any (i, j) pair, we have

K

Amin(V2 o pen(® -
(Ve,,.0,,pen(®)) > e

Hence, nggw_ L4 (©) is positive definite for any (i, j) pair considering
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Since vf%m@i/j/ L2(®) = 0 for any different pairs (i,j) # (7', j), we have V2Ly(©) is positive

definite. Therefore, Lo(®) is strictly convex.

1.2 Proof of Theorem 2

In this subsection, we provide the proof of Theorem 2 of estimation consistency in the main paper.

We first introduce some notations that we use in the proof. Let X9 denote the k’th true covariance
matrix and Wy, = Sy — 22 denote the difference between the k’th sample covariance matrix and
¥, Use 20 = (29,...,8%) and W = (W;,...,Wk) to denote the collection of X9’s and
Wy’s, respectively. For any subset M of {(i,7) : 1 < i,j < p} and a p x p matrix Oy, let
(©%) am denote the submatrix of Oy, with entries indexed by M; for ® = (04,...,0k),let O =
((©1)M; -+ (OK)m). We use T'Q 4 to denote the Hessian matrix Vg o, (— 2, logdet ©y)
evahgated at ©°, and (I'9) pq14 to denote the Hessian matrix V%@k)M (@) a (—log det ©y,) evaluated
at ©j.

Our proof is motivated by the proof techniques from [6] and [2]] and we prove Theorem 2 through
three steps:

e Step 1. Construct a solution set A for the following constrained minimization problem:

min L(0),
[CIS A
where Q) 1= Q" {® : @z = 0} with B = {(i,j) : i = jor|p ;| >

Cs+/logp/nforsome k} and 2 = {® : O > 0, |Okl2 < B, k = 1,...,K} is the
original constraint space.

e Step 2. Show that there exists @ € A such that |© — ©°|,, < 7, = Cs4/ 252,

e Step 3. Show that the constructed © in Step 2 is a local minimizer of L(®). Then, from the
convexity of the constrained minimization problem, ® must be the global minimizer.



Let Mro = [[(P%5) " lloe = sup || (P55~ oo and My = supy [| S]] where || - [|.o denotes
the matrix maximum absolute row sum norm. We first present a more general theorem below.
Theorem 2 in the main paper directly follows from the following theorem by checking its condition
(v) with tail conditions and standard concentration inequalities (c.f., (the proof of) Theorem 1 of [1]).

Theorem 4 Under the following conditions:

(i) rates of the hyperparameters vy, vg, p1, and T:
e}

o < C3/(1 + €1)\/logp/n,
2> Cy/flogp/m,

nvg
K K+2
vt (1 —p) Uy " (1—p1) < €0/
€2 K K+2 sap
Yo P1 Vo P1
ar Cs
— < —A/logp/n,
— < 5 Vlogp/

where ¢ = (02 — Og)MFO(C4 — 03) with Cy > C3 > 0, Cy > (1 + 62)/62[01 + 2(01 +
Co)Mpo M2, + 6(C + C2)2dM2, My /M), and ¢, > €5 > 0,

(ii) the eigenvalues of the true precision matrices:

2apeo/a
1/€0 < Amin(09) < Amax(09) < 1/€; < 4 /m fork=1,..., K,

(iii) the sample size n: \/n = M+/log p with
3

3
M = 2d(Cy + Co) Mo max{2Mro(2Mso (Mzo + 5dMgo) + (MZo + 3 20)%),1,2/€2 &0},

(iv) the bounds on the spectral norms of the estimated precision matrices:

o2\ /2
1/€1+2d(01+C2)MF0w/10gp/n<B< (5?) s

(v) difference between the sample covariance matrices and the true covariance matrices: |W |y <
Cy+/logp/n,

we have

|6 — ©°) < 2(Cy + C2)Mrpon/log p/n,
where Cs is chosen such that 2(Cy + Co) Mo = Cs.

Proof of Theorem 4

e Step 1. Construct a solution set for minimizing the objective function (I.I) as follows:
A= {@ : OEG(@)B,G‘)BC = 0} (\Q,

where B = {(i,5) : i = jor |0 ;;| = rc for some k} for r. = 2(Cy + Ca2)Mro+/log p/n and
G(©) = 2(S — ©~! + 22 Z(©)) is the subgradient of the objective function L(©) with
T ifi =7
Zrii(©) = Z4(0i5) = . e,
ki (©) ki (6i5) {%awf,ijpe“2(0ii)51g“(9k7ij) ifi+#j
where
_0 en,y(6;;) = (g)i +(1 (6,)) £
a\ﬁmﬂp W) = Wi vy Wi vg’
and
1 when 6y, ;; > 0,
sign(fy ;) = 4 —1 when 6, ;; < 0,

[-1,1] when Ok, = 0.



e Step 2. Show that there exists some © € A such that [© — @°|, < 7.

We only need to show for the entries of © indexed by B, because ||(@ — @%) 3¢ |, < 7. by the
way that A is constructed.

Define the following mapping from R8I to R¥I5I:

F(vec(Ap)) = f%(F%B)*lvec (é(@o + A)B) + vec(Ag),

where G(©) = 2(§-067!+ %"‘Z ) with Z to be a member of the subgradient of the unique
minimizer of @) under the constraint set €2, and A satisfies (@0 + A)pe = 0, that is, Age =
—@%.. We will first show F(B(r)) < B(r) for the £y, ball B(r) in REIBl with r = 2(Cy +
C3)Mro+/logp/n < 1. Then, by Brouwer’s fixed point theorem [4]], there exists a fixed point
vec(Ag) € B(r) such that F(vec(Ag)) = vec(Ag). Equivalently, we have a fixed point
vec(Ap) € B(r) such that G(©° + A)s = 0or 0 e G(O° + A)p.

For any vec(Ap) € B(r), we have

n

= — (D) " (vec ((Z° — (©° + A)*I)B) — (D) vec(Ap)) (1.2)

200 ~
— (Tp) " 'vec (WB + ;ZB> (1.3)

F(vec(Ag)) = — (I'%y) 'vec (<s — @+ A+ 2“2) B) + vec(Ap)

where (@7 + A)™! = (B + Ay)7L, ..., (O% + Ak)™H).
For (I.2), we have

Hf(FOBB)*l (vec (20— (©° + A)*l)B) — (F%B)VCC(AB))HOO
< s%p H—(F%)Bl{l (vec ((Z — () + Ak)_l)B) — (Fg)ggvec((Ak)B))Hoo

< sup I@T)s5 " oo [vee (% — (02 + Ax)71) ) — (TY)ssvec((Ar)s)|

fo {00 +1A5) 1 @ (80 + 1A,) ! — (O @ (69) "} dt

<Myosup [vec((Ak)5) e

[o¢]

1
<Mror supJ |H(®2 + tAk)_l ® (@2 + tAk)_l — (@2)_1 ® (92)_1“|OO dt
k Jo

3 3
gMFO (QMEU(M%O + §dM%o)d7" + (M)%o + §Mgo)2d2’l"2>’r

<

)

N3

(1.4)
where the second inequality is because |AB| o < || A« B ], the third inequality is because
22 = (09)"1 ® (69)7L, the fifth inequality is because [[(OF + Ag)~! — (O9) 7|, < (ME +
3 ME)r from Corollary 4 of [3], [| (9 + Ar) ™! — (©0) e < d(O%+A%) "1 —(02) 7|5 and
Lemma 13 of [3], and last inequality is by Mro (2Ms0 (MZe + SdMgo) + (MEo + 3 M3 )?)dr <
% and r < % from condition (iii).

For (T3], we have

20 ~
‘(F%B)lvec <WB + :éZB> H <sup
k

(o) vee (W05 + 22208 |

< Mo (Cm/logp/n + ng/logp/n> = %, (1.5)

where the third inequality is because of the upper bound on the magnitude of the first derivatives
from Lemmaand [Willoo < [W oo < C14/logp/n from condition (v).

0
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Thus, combining (T.3), (T.4), and (T.3), we have ||F(vec(Ag))| < r, thatis, F'(vec(Ag)) <
B(r) for any vec(Ag) € B(r). Therefore, we have F'(B(r)) < B(r). By Brouwer’s fixed point

theorem [4], there exists a fixed point vec(Ag) € B(r ) such that F(vec(AB)) = vec(Ap), which
is equivalent to G(@° + A)z = 0or0e G(O° + A)s. Let ® = @° + A, we have

(:')B =®B+A§
@Bc = @%L +ABC = O

In addition, we have this estimate © satisfies 0 € G(@)5, @ = 0,and |(© —0O°)z], < r < 7.

As long as @ is in the parameter space of interest €2, that is, ||©||2 < B and O}, > 0, we have the
statement for Step 2 as desired.

Indeed, for any k, by condition (iv), we have

1Okll2 < 16k — OF2 + |O}]2

. 1
< Akl + &
1
1
<dre+ — < B,

&
and, by conditions (ii) and (iii), we have
)\min<ék) = )\min(e)(]i) - HAkHQ = )\min((ag) - dTe > 0.
Therefore, we have @ € A and |© — ©°|,, < 7.

Step 3. Show that the constructed © in Step 2 is a local minimizer of L(®).

It suffices to show that there exists some € > 0 such that H(A) = L(© + A) — L(©) = 0 for
any A with [A|, < €. We have

= Z g {tr (AR(Sk — O 1) + tr(ALO ) — [logdet((:);C + Ag) — 1ogdet(ék)]}

ta Z Z Ay + % > [Penz(éij +Ai5) - Peng(éij)] :

k=1i=1 i#j

Under the condition v/n = 4(Cy + C3) Mrody/log /§1 and with the same proof for Theorem 1 in
[7], we have the following upper bound on log det(@k + Ag) — log det(@k)

~ ~ ~ 1
log det(Oy + Ag) — logdet(0y) < tr(AO, ") — Z§%HA;€H%, k=1,..., K. (1.6)

For any (4, j) pair in B¢ with ¢ # j, we have 515 = 0 and therefore, for some u; in (0, 1),
pen, (57‘.7 + A”) — pen, (é”) = Vgij pen, (U1 Aij)Aij. (17)

For any (4, j) pair in B with ¢ # j, for some us in (0, 1), we have
. 5 P 5 P -
peny (6s; + Agj) —peny(655) = ] mpeng(eij)lm,ijl + ) 0. Pena(0i) Arij
kib, ;=0 Rt hil iy 20
Uk,ij Uk,ij
1 ~
SALV. 6,0ens (055 + usAij) Ay
(1.8)

Combining (I.7) and (T.8), we have the following lower bound for H(A):

H(A Z (ZA’“J (Sk,ij — k”)"' 51|AkF> +042 ZTAku

k=1i=1

[0
+§ Z Z aw ‘penz ulAm)‘Ak z]|
i#37, (1,5)eBe k=1 k.ij
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where

~ 200 -
@ = Z Z Ak,ij <$k7ij - @k}j + nZMj(B,-j))

LGy, 4;7#0,(i,5)eB
L X ~_q
+3 Z [AW (Sk,z‘j - Gk,ij) + | Ag il = 0 0ns |Pen2(9ij)] ;
k=1 j:O,(i,j)EB
K
an = Z %ff“AkH%’ + Z AT Vo .0, pen2(0u +u2 i) A,
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n ~_ a 0
I = = E E Ay Jij Sk Jij @kz ) + |Ak,ij|—7pen2(u1Aij) .
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Due to the construction of ©, we have =0
For (II), by condition (ii) and the upper bound on the magnitude of the second derivatives of
pen,(6;;) in Lemma 5| we have

nCZ log p 2
(H) >Z Z 51 k i Z 4apeo/a (Z Ak U)

J k= 8 i#], (i,5)eB
2
1 5 03 log p

> —_— = 0.
/- Z n<8K£1 160[p60/a ZAkzj =0

i#j, (i,5)EB

In (III), we have the following upper bound on the magnitude of sy, ;; — @,: i

‘sk ij @k K% |Skﬂ] Uk l]‘ + |®k; K¥ Ulg,ij|

logp 3
<aw:f+M%u+?m@gg

where [0, 1. — o ;.| < MZ,re + 3dx M3, r? is by Corollary 4 in [3].
5 s k

For the rest of the first derivative inside the inner summation in (III), we have

a 0 o) 1 1
im £ 2 Aii) = 2 w0 = + (1 - w(0)—
i & e 1 Ag) = & | w(0)-+ (1= w(0)

1—-w(0))—
(1 - ()2
@ o
1+ €5 nug

/1
> Cl o8P + MQQTE + dkMgo’l"Q

A1
= ‘Sk,ij - Gk,ij )

where the second inequality is due to eo < v (1 — p;1)/(vEp1). Therefore, there exists some
small enough € > 0 such that (II) > 0.

Hence, there exists some € > 0 such that H(A) > (I) + (I) + (IIT) > 0. Due to the strict convexity
of our problem, we conclude that the constructed ® is equal to the unique global solution ©.



1.3 Proof of Theorem 3

In this subsection, we provide the proof of Theorem 3 of selection consistency in the main paper.

e When O?j = 0, we have the estimate éij = 0. Therefore,

N 1
w(0;5) = w(0) = W <t
p1 Vo

e On the other hand, when B?j # 0, by the minimal signal strength assumption in Theorem 3, we
have |@;;]1 > (Lo — Cs)+/log p/n with probability going to one. Thus,

) :
w\Viz) = - . -
14+ 22 (2)K exp { — (L — 2)1011 |
1
1+ LBL (91K p=(Ca=Cs)(Lo=C5)
>t

Therefore, we have

P(S=38" —1.

2 Other Proof

The following lemma gives the upper bounds on the magnitudes of the first derivative and second
derivative of pen,(0,;) when 6,; is O(/log p/n) away from the zero point O.

Lemma 5 Under condition (i) in Theorem if0i;]1 = 2(Ca — Cs)Mron/log p/n, then for any k
and k', we have

0

(67

— | ==—peny(0;;)| < Cs+/log p/n.
n (70;“-]-
and ) )
o 0 C%logp
B D 0, 3
n 80k,ij80k’,ijpen2( J) < 4apeg/a
Proof

e For the first derivative, we have

P1_o—[0i;l1/v1 | 1=P1 o801 /vo
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'Ul UU
1 _ 1
— 1 Vo V1
- K
nor o [eel el /ve-1/o) 41
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where the last line is because

1—pp)vE+?
{ | 12{4&1 < 6lpeo/a7
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Therefore,
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< C3+/logp/n.
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e For the second derivative, we have
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Vg v1 (lfpl)vﬁ
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n [%fuowl(uvrum) n 1]
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3 Computation: an EM algorithm

In this section, we present an EM algorithm for the computation. We treat I' = (-y;;) as latent
variables and estimate ® by applying the Expectation step (E-step) and Maximization step (M-step)
iteratively.

3.1 E-step

In the E-step, we compute the ) function defined as the expectation of the full log likelihood with
respect to the joint posterior distribution of the latent variables, T', given Y and ®*), the current
estimate of ®:

QO |01") = Erjern y log (p(Y | ©,1)7p(0,T))

c |05 |0k.i51
=Erew,y | — Z Z Tk,ijTl +(1 - Tk,z‘j)T

i<j k=1



p K
logp (Y [©)= > > 70k + C,
i=1k=1
where C is some constant with respect to ©.

For any 7 < j, we have

p(vij,| ©D, Y )oc

K Vi K 1=7ij
o] o wogm|

and therefore,

1
Erjow v (Vi) = —————— = w(OY). 3.1
L R () K ep { (5 — 1051 |
Thus, we have the @) function as
p
Q(@ ‘ G‘)(t) Z {logdet ®kr) — —tr(SkG)k) Z Tak,ii
- (2% - (2% oY
Ok i Ok i
- o)) 2k 1—w(@e®y) Zkis
;[w( = (1 w0f)) SR o

where C is some constant with respect to ©.

3.2 M-step

In the M-step, we update the estimate of © by maximizing the Q function (3.2) under the constraints
that Oy, > 0 and |O]2 < B fork = 1,..., K. It is worth noting that Q(® | @®) is a summation
of K terms with each to be a function of ©y, only. Therefore, our constrained optimization problem
can be paralleled by maximizing

1 1 1 ®) ]

—10 det ——tr 70k i — — — — — Jw(6;. Oriil, 3.3

giet(©0) = SE(5,0,) + Y. 7, ot () o9 sl 63
under the constraints of ©; > 0 and O]z < B for k = 1,..., K. For each sub-problem of
maximizing (3.3, we adopt the BAGUS algorithm [2]] and update O, sequentially in the same
column by column fashion. The time complexity of our algorithm is thus O(p?), the same as the
state-of-the-art algorithms for graphical Lasso problems. In addition, our final estimates ©y’s are all
symmetric and positive definite as guaranteed in [2]].

The maximization of (3.3)) can be interpreted as a graphical Lasso problem with adaptive shrinkage

where the weight of the penalty is a decreasing function of HOS) |1. Therefore, for a group with
large signals, every entry within the group would not be shrunk heavily. This adaptive shrinkage is
advantageous compared to individual estimation methods, because it takes into account the group
information to adjust the adaptive weights of penalization for each entry. For example, when small
signals are presented in a group with large signals, their estimates will get shrunk less compared to
individual estimation methods.

3.3 Algorithm

The algorithm is summarized as Algorithm [I] The outputs from the algorithm are the posterior
inclusion probability matrix of common structures P and the estimates of the K precision matrices
Oy’s. For each entry of P, we can threshold a pre-specified level, e.g., 0.5, to get an estimate of the
sparsity structure.



Algorithm 1 Joint estimation of multiple graphical models.

repeat
Calculate P = (w(afj))) using
for k = 1to K do
Update O, by maximizing (3.3)
end for
until Convergence
Return Pand O, k=1,..., K
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