
Supplementary Material for
Bayesian Joint Estimation of
Multiple Graphical Models

1 Proofs of the Main Results

In this section, we prove main results in the main paper. For simplicity, we assume sample sizes of
the K classes are the same: n1 “ ¨ ¨ ¨ “ nK “ n.

Recall our objective function is

LpΘq “
K
ÿ

k“1

´`pΘkq ` α
p
ÿ

i“1

K
ÿ

k“1

pen1pθk,iiq `
α

2

ÿ

i‰j

pen2pθijq, (1.1)

where

`pΘkq “ ´
n

2
ptrpSkΘkq ´ log detpΘkqq ,

pen1pθk,iiq “ τθk,ii,

pen2pθijq “ ´ log

ˆ

p1

p2v1q
K
e´}θij}1{v1 `

1´ p1

p2v0q
K
e´}θij}1{v0

˙

` C,

for a constant C that makes pen2p0q “ 0.

1.1 Proof of Theorem 1

In this subsection, we show LpΘq is strictly convex, under the constraints that Θk ą 0, }Θk}2 ď

B, k “ 1, . . . ,K.

Decompose LpΘq into the following two parts L1pΘq ` L2pΘq:

L1pΘq “
ÿ

k

L1pΘkq “
ÿ

k

„

´`pΘkq ´
αK

8v2
0

}Θk}
2
F



,

L2pΘq “ α
ÿ

i

ÿ

k

pen1pθk,iiq `
α

2

ÿ

i‰j

pen2pθijq `
αK

8v2
0

ÿ

k

}Θk}
2
F .

We show L1pΘq and L2pΘq are both strictly convex, so that LpΘq is strictly convex.

For L1pΘq “
ř

k L1pΘkq, the Hessian matrix of L1pΘkq is as follows:

∇2L1pΘkq “
n

2
pΘk bΘkq

´1 ´
αK

4v2
0

Ip2ˆp2 .

The minimum eigenvalue of the Hessian matrix above can be bounded by

λminp∇2L1pΘkqq “
n

2
λ´1

maxpΘk bΘkq ´
αK

4v2
0
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“
n

2
λ´2

maxpΘkq ´
αK

4v2
0

ě
n

2
}Θk}

´2
2 ´

αK

4v2
0

ě
n

2
B´2 ´

αK

4v2
0

ą 0.

Therefore, L1pΘkq, k “ 1, . . . ,K and L1pΘq “
ř

k L1pΘkq are all strictly convex.

For L2pΘq, let penpΘq “
ř

i

ř

k pen1pθk,iiq `
1
2

ř

i‰j pen2pθijq. We now quantify the magnitude
of its second-order subgradients. For any k, k1 P t1, ...,Ku and i ‰ j, we have

$

’

’

’

&

’

’

’

%

ˇ

ˇ

ˇ
∇2
θk,ij ,θk1,ij

penpΘq
ˇ

ˇ

ˇ
“ p

1

v0
´

1

v1
q2

p1
1´p1

p v0v1
qKep

1
v0
´ 1
v1
q}θij}1

”

1` p1
1´p1

p v0v1
qKep

1
v0
´ 1
v1
q}θij}1

ı2 ď
1

4v2
0

∇2
θk,ii,θk1,ii

penpΘq “ 0.

Therefore, for any pi, jq pair, we have

λminp∇2
θij ,θijpenpΘqq ą ´

K

4v2
0

.

Hence, ∇2
θij ,θij

L2pΘq is positive definite for any pi, jq pair considering

λminp∇2
θij ,θijL2pΘqq “ αλminp∇2

θij ,θijpenpΘqq `
αK

4v2
0

ą ´
αK

4v2
0

`
αK

4v2
0

“ 0,

Since ∇2
θij ,θi1j1

L2pΘq “ 0 for any different pairs pi, jq ‰ pi1, j1q, we have ∇2L2pΘq is positive
definite. Therefore, L2pΘq is strictly convex.

1.2 Proof of Theorem 2

In this subsection, we provide the proof of Theorem 2 of estimation consistency in the main paper.

We first introduce some notations that we use in the proof. Let Σ0
k denote the k’th true covariance

matrix and Wk “ Sk ´ Σ0
k denote the difference between the k’th sample covariance matrix and

Σ0
k. Use Σ0 “ pΣ0

1, . . . ,Σ
0
Kq and W “ pW1, . . . ,WKq to denote the collection of Σ0

k’s and
Wk’s, respectively. For any subset M of tpi, jq : 1 ď i, j ď pu and a p ˆ p matrix Θk, let
pΘkqM denote the submatrix of Θk with entries indexed byM; for Θ “ pΘ1, . . . ,ΘKq, let ΘM “

ppΘ1qM, . . . , pΘKqMq. We use Γ0
MM to denote the Hessian matrix ∇2

ΘM,ΘM
p´

ř

k log det Θkq

evaluated at Θ0, and pΓ0
kqMM to denote the Hessian matrix∇2

pΘkqM,pΘkqM
p´ log det Θkq evaluated

at Θ0
k.

Our proof is motivated by the proof techniques from [6] and [2] and we prove Theorem 2 through
three steps:

• Step 1. Construct a solution set A for the following constrained minimization problem:

min
ΘPΩ1

LpΘq,

where Ω1 :“ Ω X tΘ : ΘBc “ 0u with B “ tpi, jq : i “ j or |θ0
k,ij | ě

C5

a

log p{n for some ku and Ω “ tΘ : Θk ą 0, }Θk}2 ď B, k “ 1, . . . ,Ku is the
original constraint space.

• Step 2. Show that there exists Θ̃ P A such that }Θ̃´Θ0}8 ă re “ C5

b

log p
n .

• Step 3. Show that the constructed Θ̃ in Step 2 is a local minimizer of LpΘq. Then, from the
convexity of the constrained minimization problem, Θ̃ must be the global minimizer.
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Let MΓ0 “ ~pΓ0
BBq

´1~8 “ supk ~pΓ
0
kqBB

´1
~8 and MΣ0 “ supk ~Σ0

k~8 where ~ ¨ ~8 denotes
the matrix maximum absolute row sum norm. We first present a more general theorem below.
Theorem 2 in the main paper directly follows from the following theorem by checking its condition
pvq with tail conditions and standard concentration inequalities (c.f., (the proof of) Theorem 1 of [1]).

Theorem 4 Under the following conditions:

(i) rates of the hyperparameters v1, v0, p1, and τ :
α

nv1
ă C3{p1` ε1q

a

log p{n,

α

nv0
ą C4

a

log p{n,

ε2 ă
vK1 p1´ p1q

vK0 p1
ă
vK`2

1 p1´ p1q

vK`2
0 p1

ď ε1p
ε0{α,

ατ

n
ď
C3

2

a

log p{n,

where ε0 “ pC2 ´ C3qMΓ0pC4 ´ C3q with C2 ą C3 ą 0, C4 ą p1 ` ε2q{ε2rC1 ` 2pC1 `

C2qMΓ0M2
Σ0 ` 6pC1 ` C2q

2dM2
Γ0M3

Σ0{M s, and ε1 ą ε2 ą 0,

(ii) the eigenvalues of the true precision matrices:

1{ξ0 ă λminpΘ
0
kq ă λmaxpΘ

0
kq ď 1{ξ1 ă

d

2αpε0{α

KC2
3 log p

for k “ 1, . . . ,K,

(iii) the sample size n:
?
n ěM

?
log p with

M “ 2dpC1 ` C2qMΓ0 maxt2MΓ0p2MΣ0pM2
Σ0 `

3

2
dM3

Σ0q ` pM2
Σ0 `

3

2
M3

Σ0q
2q, 1, 2{ξ2

1 , ξ0u,

(iv) the bounds on the spectral norms of the estimated precision matrices:

1{ξ1 ` 2dpC1 ` C2qMΓ0

a

log p{n ă B ă

ˆ

2nv2
0

αK

˙1{2

,

(v) difference between the sample covariance matrices and the true covariance matrices: }W }8 ď

C1

a

log p{n,

we have
}Θ̂´Θ0}8 ă 2pC1 ` C2qMΓ0

a

log p{n,

where C2 is chosen such that 2pC1 ` C2qMΓ0 “ C5.

Proof of Theorem 4

• Step 1. Construct a solution set for minimizing the objective function (1.1) as follows:

A “ tΘ : 0 P GpΘqB,ΘBc “ 0u X Ω,

where B “ tpi, jq : i “ j or |θ0
k,ij | ě re for some ku for re “ 2pC1 ` C2qMΓ0

a

log p{n and
GpΘq “ n

2 pS ´Θ´1 ` 2α
n ZpΘqq is the subgradient of the objective function LpΘq with

Zk,ijpΘq “ Zk,ijpθijq “

#

τ if i “ j
1
2

B
B|θk,ij |

pen2pθijqsignpθk,ijq if i ‰ j

where
B

B|θk,ij |
pen2pθijq “ wpθijq

1

v1
` p1´ wpθijqq

1

v0
,

and

signpθk,ijq “

$

&

%

1 when θk,ij ą 0,

´1 when θk,ij ă 0,

r´1, 1s when θk,ij “ 0.
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• Step 2. Show that there exists some Θ̃ P A such that }Θ̃´Θ0}8 ă re.
We only need to show for the entries of Θ indexed by B, because }pΘ̃´Θ0qBc}8 ă re by the
way that A is constructed.
Define the following mapping from RK|B| to RK|B|:

F pvecp∆Bqq “ ´
2

n
pΓ0

BBq
´1vec

´

G̃pΘ0 `∆qB

¯

` vecp∆Bq,

where G̃pΘq “ n
2 pS ´Θ´1 ` 2α

n Z̃q with Z̃ to be a member of the subgradient of the unique
minimizer of (1.1) under the constraint set Ω, and ∆ satisfies pΘ0 `∆qBc “ 0, that is, ∆Bc “

´Θ0
Bc . We will first show F pBprqq Ď Bprq for the `8 ball Bprq in RK|B| with r “ 2pC1 `

C3qMΓ0

a

log p{n ă re. Then, by Brouwer’s fixed point theorem [4], there exists a fixed point
vecp∆̃Bq P Bprq such that F pvecp∆̃Bqq “ vecp∆̃Bq. Equivalently, we have a fixed point
vecp∆̃Bq P Bprq such that G̃pΘ0 ` ∆̃qB “ 0 or 0 P GpΘ0 ` ∆̃qB.
For any vecp∆Bq P Bprq, we have

F pvecp∆Bqq “ ´ pΓ0
BBq

´1vec
ˆˆ

S ´ pΘ0 `∆q´1 `
2α

n
Z̃

˙

B

˙

` vecp∆Bq

“ ´ pΓ0
BBq

´1
`

vec
``

Σ0 ´ pΘ0 `∆q´1
˘

B

˘

´ pΓ0
BBqvecp∆Bq

˘

(1.2)

´ pΓ0
BBq

´1vec
ˆ

WB `
2α

n
Z̃B

˙

(1.3)

where pΘ0 `∆q´1 “ ppΘ0
1 `∆1q

´1, . . . , pΘ0
K `∆Kq

´1q.
For (1.2), we have

›

›´pΓ0
BBq

´1
`

vec
``

Σ0 ´ pΘ0 `∆q´1
˘

B

˘

´ pΓ0
BBqvecp∆Bq

˘
›

›

8

ď sup
k

›

›

›
´pΓ0

kqBB
´1 `

vec
``

Σ0
k ´ pΘ

0
k `∆kq

´1
˘

B

˘

´ pΓ0
kqBBvecpp∆kqBq

˘

›

›

›

8

ď sup
k
~pΓ0

kqBB
´1
~8

›

›vec
``

Σ0
k ´ pΘ

0
k `∆kq

´1
˘

B

˘

´ pΓ0
kqBBvecpp∆kqBq

›

›

8

ďMΓ0 sup
k

�

�

�

�

ż 1

0

 

pΘ0
k ` t∆kq

´1 b pΘ0
k ` t∆kq

´1 ´ pΘ0
kq
´1 b pΘ0

kq
´1

(

dt

�

�

�

�

8

}vecpp∆kqBq}8

ďMΓ0r sup
k

ż 1

0

�

�pΘ0
k ` t∆kq

´1 b pΘ0
k ` t∆kq

´1 ´ pΘ0
kq
´1 b pΘ0

kq
´1

�

�

8
dt

ďMΓ0p2MΣ0pM2
Σ0 `

3

2
dM3

Σ0qdr ` pM2
Σ0 `

3

2
M3

Σ0q
2d2r2qr

ď
r

2
,

(1.4)

where the second inequality is because }AB}8 ď ~A~8}B}8, the third inequality is because
Γ0
k “ pΘ

0
kq
´1 b pΘ0

kq
´1, the fifth inequality is because }pΘ0

k `∆kq
´1 ´ pΘ0

kq
´1}8 ď pM

2
Σ `

3
2M

3
Σqr from Corollary 4 of [5], ~pΘ0

k `∆kq
´1 ´ pΘ0

kq
´1~8 ď d}pΘ0

k`∆kq
´1´pΘ0

kq
´1}8 and

Lemma 13 of [3], and last inequality is byMΓ0p2MΣ0pM2
Σ0`

3
2dM

3
Σ0q`pM2

Σ0`
3
2M

3
Σ0q

2qdr ă
1
2 and r ă 1

d from condition (iii).
For (1.3), we have

›

›

›

›

pΓ0
BBq

´1vec
ˆ

WB `
2α

n
Z̃B

˙
›

›

›

›

8

ď sup
k

›

›

›

›

ppΓ0
kqBBq

´1vec
ˆ

pWkqB `
2α

n
pZ̃kqB

˙
›

›

›

›

8

ď sup
k
MΓ0

ˆ

}Wk}8 `

›

›

›

›

2α

n
pZ̃kqB

›

›

›

›

8

˙

ďMΓ0

´

C1

a

log p{n` C3

a

log p{n
¯

“
r

2
, (1.5)

where the third inequality is because of the upper bound on the magnitude of the first derivatives
from Lemma 5 and }Wk}8 ď }W }8 ď C1

a

log p{n from condition (v).
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Thus, combining (1.3), (1.4), and (1.5), we have }F pvecp∆Bqq}8 ď r, that is, F pvecp∆Bqq Ď
Bprq for any vecp∆Bq P Bprq. Therefore, we have F pBprqq Ď Bprq. By Brouwer’s fixed point
theorem [4], there exists a fixed point vecp∆̃Bq P Bprq such that F pvecp∆̃Bqq “ vecp∆̃Bq, which
is equivalent to G̃pΘ0 ` ∆̃qB “ 0 or 0 P GpΘ0 ` ∆̃qB. Let Θ̃ “ Θ0 ` ∆̃, we have

"

Θ̃B “ Θ0
B ` ∆̃B

Θ̃Bc “ Θ0
Bc ` ∆̃Bc “ 0.

In addition, we have this estimate Θ̃ satisfies 0 P GpΘ̃qB, Θ̃Bc “ 0, and }pΘ̃´Θ0qB}8 ď r ă re.
As long as Θ̃ is in the parameter space of interest Ω, that is, ||Θ̃k||2 ă B and Θ̃k ą 0, we have the
statement for Step 2 as desired.
Indeed, for any k, by condition (iv), we have

}Θ̃k}2 ď }Θ̃k ´Θ0
k}2 ` }Θ

0
k}2

ď ~∆̃k~8 `
1

ξ1

ď dre `
1

ξ1
ă B,

and, by conditions (ii) and (iii), we have

λminpΘ̃kq ě λminpΘ
0
kq ´ }∆̃k}2 ě λminpΘ

0
kq ´ dre ą 0.

Therefore, we have Θ̃ P A and }Θ̃´Θ0}8 ă re.

• Step 3. Show that the constructed Θ̃ in Step 2 is a local minimizer of LpΘq.
It suffices to show that there exists some ε ą 0 such that Hp∆q “ LpΘ̃`∆q ´ LpΘ̃q ě 0 for
any ∆ with }∆}8 ă ε. We have

Hp∆q “
K
ÿ

k“1

n

2

!

trp∆kpSk ´ Θ̃´1
k qq ` trp∆kΘ̃´1

k q ´

”

log detpΘ̃k `∆kq ´ log detpΘ̃kq

ı)

` α
K
ÿ

k“1

p
ÿ

i“1

τ∆k,ii `
α

2

ÿ

i‰j

”

pen2pθ̃ij `∆ijq ´ pen2pθ̃ijq
ı

.

Under the condition
?
n ě 4pC1 `C2qMΓ0d

?
log p{ξ2

1 and with the same proof for Theorem 1 in
[7], we have the following upper bound on log detpΘ̃k `∆kq ´ log detpΘ̃kq:

log detpΘ̃k `∆kq ´ log detpΘ̃kq ď trp∆kΘ̃´1
k q ´

1

4
ξ2
1}∆k}

2
F , k “ 1, . . . ,K. (1.6)

For any pi, jq pair in Bc with i ‰ j, we have θ̃ij “ 0 and therefore, for some u1 in p0, 1q,

pen2pθ̃ij `∆ijq ´ pen2pθ̃ijq “ ∇θijpen2pu1∆ijq∆ij . (1.7)

For any pi, jq pair in B with i ‰ j, for some u2 in p0, 1q, we have

pen2pθ̃ij `∆ijq ´ pen2pθ̃ijq “
ÿ

k:θ̃k,ij“0

B

B|θk,ij |
pen2pθ̃ijq|∆k,ij | `

ÿ

k:θ̃k,ij‰0

B

Bθk,ij
pen2pθ̃ijq∆k,ij

`
1

2
∆T
ij∇2

θij ,θijpen2pθ̃ij ` u2∆ijq∆ij .

(1.8)

Combining (1.7) and (1.8), we have the following lower bound for Hp∆q:

Hp∆q ě
K
ÿ

k“1

n

2

˜

ÿ

i,j

∆k,ijpsk,ij ´ Θ̃´1
k,ijq `

1

4
ξ2
1}∆k}

2
F

¸

` α
K
ÿ

k“1

p
ÿ

i“1

τ∆k,ii

`
α

2

ÿ

i‰j, pi,jqPBc

K
ÿ

k“1

B

B|θk,ij |
pen2pu1∆ijq|∆k,ij |

5



`
α

2

ÿ

i‰j, pi,jqPB

«

ÿ

k:θ̃k,ij“0

B

B|θk,ij |
pen2pθ̃ijq|∆k,ij | `

ÿ

k:θ̃k,ij‰0

B

Bθk,ij
pen2pθ̃ijq∆k,ij

`
1

2
∆T
ij∇2

θij ,θijpen2pθ̃ij ` u2∆ijq∆ij

ff

“ (I) + (II) + (III),

where

(I) “
n

2

K
ÿ

k“1

ÿ

θ̃k,ij‰0,pi,jqPB

∆k,ij

ˆ

sk,ij ´ Θ̃´1
k,ij `

2α

n
Zk,ijpθ̃ijq

˙

`
n

2

K
ÿ

k“1

ÿ

θ̃k,ij“0,pi,jqPB

„

∆k,ij

´

sk,ij ´ Θ̃´1
k,ij

¯

` |∆k,ij |
α

n

B

B|θk,ij |
pen2pθ̃ijq



,

(II) “
K
ÿ

k“1

n

8
ξ2
1}∆k}

2
F `

ÿ

i‰j, pi,jqPB

α

4
∆T
ij∇2

θij ,θijpen2pθ̃ij ` u2∆ijq∆ij ,

(III) “
n

2

ÿ

i‰j,pi,jqPBc

K
ÿ

k“1

„

∆k,ijpsk,ij ´ Θ̃´1
k,ijq ` |∆k,ij |

α

n

B

B|θk,ij |
pen2pu1∆ijq



.

Due to the construction of Θ̃, we have (I) ě 0.
For (II), by condition (ii) and the upper bound on the magnitude of the second derivatives of
pen2pθijq in Lemma 5, we have

(II) ě
ÿ

i,j

K
ÿ

k“1

n

8
ξ2
1∆2

k,ij ´
ÿ

i‰j, pi,jqPB

nC2
3 log p

4αpε0{α

4

˜

K
ÿ

k“1

∆k,ij

¸2

ě
ÿ

i‰j, pi,jqPB

n

ˆ

1

8K
ξ2
1 ´

C2
3 log p

16αpε0{α

˙

˜

K
ÿ

k“1

∆k,ij

¸2

ě 0.

In (III), we have the following upper bound on the magnitude of sk,ij ´ Θ̃´1
k,ij :

ˇ

ˇ

ˇ
sk,ij ´ Θ̃´1

k,ij

ˇ

ˇ

ˇ
ď |sk,ij ´ σ

0
k,ij | ` |Θ̃

´1
k,ij ´ σ

0
k,ij |

ď C1

c

log p

n
`M2

Σ0
k
re `

3

2
dkM

3
Σ0
k
r2
e ,

where |Θ̃´1
k,ij ´ σ

0
k,ij | ăM2

Σ0
k
re `

3
2dkM

3
Σ0
k
r2
e is by Corollary 4 in [5].

For the rest of the first derivative inside the inner summation in (III), we have

lim
∆ijÑ0

α

n

B

B|θk,ij |
pen2pu1∆ijq “

α

n

„

wp0q
1

v1
` p1´ wp0qq

1

v0



ą p1´ wp0qq
α

nv0

ą
ε2

1` ε2

α

nv0

ą C1

c

log p

n
`M2

Σ0
k
re `

3

2
dkM

3
Σ0
k
r2
e

ě

ˇ

ˇ

ˇ
sk,ij ´ Θ̃´1

k,ij

ˇ

ˇ

ˇ
,

where the second inequality is due to ε2 ă vK1 p1 ´ p1q{pv
K
0 p1q. Therefore, there exists some

small enough ε ą 0 such that (III) ě 0.
Hence, there exists some ε ą 0 such thatHp∆q ě (I) + (II) + (III) ě 0. Due to the strict convexity
of our problem, we conclude that the constructed Θ̃ is equal to the unique global solution Θ̂.
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1.3 Proof of Theorem 3

In this subsection, we provide the proof of Theorem 3 of selection consistency in the main paper.

• When θ0
ij “ 0, we have the estimate θ̂ij “ 0. Therefore,

wpθ̂ijq “ wp0q “
1

1` 1´p1
p1
p v1v0
qK

ď t.

• On the other hand, when θ0
ij ‰ 0, by the minimal signal strength assumption in Theorem 3, we

have }θ̂ij}1 ą pL0 ´ C5q
a

log p{n with probability going to one. Thus,

wpθ̂ijq “
1

1` 1´p1
p1
p v1v0
qK exp

!

´p 1
v0
´ 1

v1
q}θ̂ij}1

)

ą
1

1` 1´p1
p1
p v1v0
qKp´pC4´C3qpL0´C5q{α

ą t.

Therefore, we have
PpŜ “ S0q Ñ 1.

2 Other Proof

The following lemma gives the upper bounds on the magnitudes of the first derivative and second
derivative of pen2pθijq when θij is Op

a

log p{nq away from the zero point 0.

Lemma 5 Under condition (i) in Theorem 4, if }θij}1 ě 2pC2 ´ C3qMΓ0

a

log p{n, then for any k
and k1, we have

α

n

ˇ

ˇ

ˇ

ˇ

B

Bθk,ij
pen2pθijq

ˇ

ˇ

ˇ

ˇ

ă C3

a

log p{n.

and
α

n

ˇ

ˇ

ˇ

ˇ

B2

Bθk,ijBθk1,ij
pen2pθijq

ˇ

ˇ

ˇ

ˇ

ă
C2

3 log p

4αpε0{α

Proof

• For the first derivative, we have

1

n

ˇ

ˇ

ˇ

ˇ

B

Bθk,ij
pen2pθijq

ˇ

ˇ

ˇ

ˇ

“
1

n

p1
vK`1
1

e´}θij}1{v1 ` 1´p1
vK`1
0

e´}θij}1{v0

p1
vK1
e´}θij}1{v1 ` 1´p1

vK0
e´}θij}1{v0

“
1

nv1
`

1
v0
´ 1

v1

n
”

p1vK0
p1´p1qvK1

e}θij}1p1{v0´1{v1q ` 1
ı

ď
1

nv1

¨

˚

˝

1`

p1´p1qv
K`1
1

p1v
K`1
0

e}θij}1p1{v0´1{v1q

˛

‹

‚

ď
1

nv1
p1` ε1q ,
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where the last line is because
#

p1´p1qv
K`1
1

p1v
K`1
0

ă ε1p
ε0{α,

e}θij}1p1{v0´1{v1q ą p2ε0{α.

Therefore,

α

n

ˇ

ˇ

ˇ

ˇ

B

Bθk,ij
pen2pθijq

ˇ

ˇ

ˇ

ˇ

ď
α

nv1
p1` ε1q

ď C3

a

log p{n.

• For the second derivative, we have

1

n

ˇ

ˇ

ˇ

ˇ

B2

Bθk,ijBθk1,ij
pen2pθijq

ˇ

ˇ

ˇ

ˇ

“

´

1
v0
´ 1

v1

¯2
p1v

K
0

p1´p1qvK1
e´}θij}1p1{v0´1{v1q

n
”

p1vK0
p1´p1qvK1

e´}θij}1p1{v0´1{v1q ` 1
ı2

ď

´

1
v0
´ 1

v1

¯2

n
”

p1vK0
p1´p1qvK1

e}θij}1p1{v0´1{v1q ` 1
ı

ď
1

nv2
1

p1´p1qv
K`2
1

p1v
K`2
0

e}θij}1p1{v0´1{v1q

ď
1

nv2
1

ε1
pε0{α

.

Therefore,

α

n

ˇ

ˇ

ˇ

ˇ

B2

Bθk,ijBθk1,ij
pen2pθijq

ˇ

ˇ

ˇ

ˇ

ď
α

nv2
1

ε1
pε0{α

ď
α

n

n2

α2

C2
3

p1` ε1q2
log p

n

ε1
pε0{α

ď
C2

3 log p

4αpε0{α
.

3 Computation: an EM algorithm

In this section, we present an EM algorithm for the computation. We treat Γ “ pγijq as latent
variables and estimate Θ by applying the Expectation step (E-step) and Maximization step (M-step)
iteratively.

3.1 E-step

In the E-step, we compute the Q function defined as the expectation of the full log likelihood with
respect to the joint posterior distribution of the latent variables, Γ, given Y and Θptq, the current
estimate of Θ:

QpΘ | Θptqq “ EΓ|Θptq,Y log
´

ppY | Θ,Γq
1
α ppΘ,Γq

¯

“ EΓ|Θptq,Y

˜

´
ÿ

iăj

K
ÿ

k“1

„

rk,ij
|θk,ij |

v1
` p1´ rk,ijq

|θk,ij |

v0



¸
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`
1

α
log ppY | Θq ´

p
ÿ

i“1

K
ÿ

k“1

τθk,ii ` C,

where C is some constant with respect to Θ.

For any i ă j, we have

ppγij , | Θptq, Y q9

«

p1

K
ź

k“1

LPpθptqk,ij , v1q

ffγij «

p1´ p1q

K
ź

k“1

LPpθptqk,ij , v0q

ff1´γij

,

and therefore,

EΓ|Θptq,Y pγijq “
1

1` 1´p1
p1
p v1v0
qK exp

!

´p 1
v0
´ 1

v1
q}θ

ptq
ij }1

) “ wpθ
ptq
ij q. (3.1)

Thus, we have the Q function as

QpΘ | Θptqq “

K
ÿ

k“1

#

nk
2α

log detpΘkq ´
nk
2α

trpSkΘkq ´

p
ÿ

i“1

τθk,ii

´
ÿ

iăj

„

wpθ
ptq
ij q
|θk,ij |

v1
`

´

1´ wpθ
ptq
ij q

¯

|θk,ij |

v0



+

` C,

(3.2)

where C is some constant with respect to Θ.

3.2 M-step

In the M-step, we update the estimate of Θ by maximizing the Q function (3.2) under the constraints
that Θk ą 0 and }Θk}2 ď B for k “ 1, . . . ,K. It is worth noting that QpΘ | Θptqq is a summation
of K terms with each to be a function of Θk only. Therefore, our constrained optimization problem
can be paralleled by maximizing

nk
2α

log detpΘkq ´
nk
2α

trpSkΘkq `

p
ÿ

i“1

τθk,ii ´
ÿ

iăj

„

1

v0
`

ˆ

1

v1
´

1

v0

˙

wpθ
ptq
ij q



|θk,ij |, (3.3)

under the constraints of Θk ą 0 and }Θk}2 ď B for k “ 1, . . . ,K. For each sub-problem of
maximizing (3.3), we adopt the BAGUS algorithm [2] and update Θk sequentially in the same
column by column fashion. The time complexity of our algorithm is thus Opp3q, the same as the
state-of-the-art algorithms for graphical Lasso problems. In addition, our final estimates Θ̂k’s are all
symmetric and positive definite as guaranteed in [2].

The maximization of (3.3) can be interpreted as a graphical Lasso problem with adaptive shrinkage
where the weight of the penalty is a decreasing function of }θptqij }1. Therefore, for a group with
large signals, every entry within the group would not be shrunk heavily. This adaptive shrinkage is
advantageous compared to individual estimation methods, because it takes into account the group
information to adjust the adaptive weights of penalization for each entry. For example, when small
signals are presented in a group with large signals, their estimates will get shrunk less compared to
individual estimation methods.

3.3 Algorithm

The algorithm is summarized as Algorithm 1. The outputs from the algorithm are the posterior
inclusion probability matrix of common structures P and the estimates of the K precision matrices
Θk’s. For each entry of P , we can threshold a pre-specified level, e.g., 0.5, to get an estimate of the
sparsity structure.

9



Algorithm 1 Joint estimation of multiple graphical models.
repeat

Calculate P “ pwpθptqij qq using (3.1)
for k “ 1 to K do

Update Θk by maximizing (3.3)
end for

until Convergence
Return P and Θk, k “ 1, . . . ,K

References
[1] Cai, T., Liu, W., and Luo, X. (2011). A constrained `1 minimization approach to sparse precision

matrix estimation. Journal of the American Statistical Association, 106(494):594–607.

[2] Gan, L., Narisetty, N. N., and Liang, F. (2019). Bayesian regularization for graphical models
with unequal shrinkage. Journal of the American Statistical Association, 114(527):1218–1231.

[3] Loh, P.-L. and Wainwright, M. J. (2017). Support recovery without incoherence: A case for
nonconvex regularization. The Annals of Statistics, 45(6):2455–2482.

[4] Ortega, J. M. and Rheinboldt, W. C. (1970). Iterative solution of nonlinear equations in several
variables, volume 30. Siam.

[5] Ravikumar, P., Wainwright, M. J., Raskutti, G., and Yu, B. (2008). High-dimensional co-
variance estimation by minimizing `1-penalized log-determinant divergence. arXiv preprint
arXiv:0811.3628.

[6] Ravikumar, P., Wainwright, M. J., Raskutti, G., and Yu, B. (2011). High-dimensional covariance
estimation by minimizing `1-penalized log-determinant divergence. Electronic Journal of Statistics,
5:935–980.

[7] Rothman, A. J., Bickel, P. J., Levina, E., and Zhu, J. (2008). Sparse permutation invariant
covariance estimation. Electronic Journal of Statistics, 2:494–515.

10


	Proofs of the Main Results
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	Other Proof
	Computation: an EM algorithm
	E-step
	M-step
	Algorithm


