Appendix

A Supplementary Figures

Sea slug Wine bottle Vending machine Scuba diver

Partridge (label: Quail)

King snake Windsor tie (label: Envelope) Gyromitra Cougar

Pay phone Sea urchin

Indian cobra

Figure Supp.1: Examples from the Saccader model.

14

(a) (b)

0.9 0.9
A
0.84 N t
0.84 r 0.7 L
0.64 L
g 5
0.7/ s g
50 5054 ,
S]
© ©
‘g_ n 0.4 3
2 &)
0.6+ ~}~ Saccader (learned) r 0.3 L
-}~ DRAM (learned)
—}+~ BagNet-77-lowD (ordered logits) 0.24 H
BagNet-77-lowD (Sobel mean)
051 BagNet-77-lowD (Sobel varian¢e) 0.14 r
-]+~ BagNet-77-lowD (random)
0.1 0:2 0:3 014 0:5 016 017 018 0.9 0'00_1 0:2 0:3 0:4 0:5 0:6 017 018 0.9
covered area occluded area

Figure Supp.2: Top-5 accuracy vs. area covered/occluded. (a) Top-5 classification accuracy of
models as a function of area covered by glimpses. The learned Saccader model achieves significantly
higher accuracy while attending to a relatively small area of the image. (b) Top-5 classification
accuracy of ResNet-v2-50 model on images where attention patches are occluded. Occluding
attention areas predicted by the Saccader model significantly impairs classification. See Figure 3] for
top-1 accuracy. Error bars indicate £ SD computed from training models from 5 different random
initializations.

-+~ Saccader (learned)
-+~ Saccader (learned without location pretraining)
—}~ Saccader (learned without attention network)

0.74 : 0.90
0.724
0.881
0.70+
0.861
>0.68 L2
e e
S 0.66 L2 0.
© ©
— un
Q Q
$0.64 e
0.821
0.62
0.80
0.60

0581 02 03 04 05 06 07 08 09 10 0.1 02 03 04 05 06 07 08 09 L0
covered area covered area
Figure Supp.3: Pretraining and attention network helps attain high accuracy. Comparison
between Saccader models with and without location network pretraining, and with and without
attention network. Error bars indicate & SD computed from training models from 5 different random
initializations.

15

Representation Network

64 conv 3x3 s1
64 conv 1x1 s1 l

64 conv 3x3 s2 256 conv 1x1 s2
256 conv 1x1 s1

I AR
64 conv 1x1 s1
64 conv 3x3 s1
256 conv 1x1 s1

I
64 conv 1x1 s1

64 conv 1x1 s1
256 conv 1x1 s1

128 conv 1x1 s1

128 conv 3x3 s2 512 conv 1x1 s2

512 conv 1x1 s1

128 conv 1x1 s1

128 conv 3x3 s1

512 conv 1x1 s1
-
e
128 conv 1x1 s1 x2

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

I

|

|

I

|

|

I

|

|

I

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| 128 conv 1x1 s1
} 512 conv 1x1 s1
| B —
|
I
|
|
I
|
|
I
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
\

256 conv 1x1 s1
256 conv 3x3 s2 1024 conv 1x1 s2
1024 conv 1x1 s

256 conv 1x1 s1
256 conv 3x3 s1
1024 conv 1x1 s1

E— S

256 conv 1x1 s1 x4
256 conv 1x1 s1
1024 conv 1x1 s1

512 conv 1x1 s1
512 conv 3x3 s1 2048 conv 1x1 st
2048 conv 1x1 s1

512 conv 1x1 s1
512 conv 3x3 s1
2048 conv 1x1 s1

—

512 conv 1x1 s1
512 conv 1x1 s1
2048 conv 1x1 s1

512 conv 1x1 s1

Figure Supp.4: The BagNet-77-lowD architecture. All convolutions are followed by BN+ReLU,
and all 3 x 3 convolutions use “valid" padding. Components within the red-dashed box are used in
the Saccader representation network.

16

1024 conv 1x1 s1

i

[1024 conv 3x3 s1 dilation 2 }

i

512 conv 1x1 s1

i

[512 conv 1x1 s1 dilation 2 }

Figure Supp.5: The attention network. All layers are followed by BN+ReLU.

Cell state (C)

(
II Ct—l
-1e5
®

state Y
state ‘o

attention
policy at time ¢

Cell attention
weights (a)

mixed features (F)

Figure Supp.6: The saccader cell The component of the Saccader model that predicts the visual
attention location at each time.

17

B Supplementary Tables

Table Supp.1: Number of parameters.

Model Parameters
BagNet-77-LowD 20,628,393
ResNet-v2-50 25,615,849
Saccader 35,583,913
DRAM 45,610,219
Saccader-NASNet 124,537,764

Table Supp.2: CNNs hyperparameters (ImageNet 224 x 224)

Model learning rate batch size epochs A

ResNet-v2-50 0.9 2048 120 8 x 107°
BagNet-77 0.5 2048 120 8 x 107
BagNet-77-lowD 0.5 2048 120 8 x 107°
NASNet 1.6 4096 156 8 x 1077
NASNet-77* 0.001 1024 120 8 x 107°

* Fine tuning starting from a trained NASNet using crops of size 77 x 77 identified by Saccader.

Table Supp.3: CNNs hyperparameters (ImageNet 331 x 331)

Model learning rate batch size epochs A
NASNet 1.6 4096 156 8 x 107°
NASNet-113** 0.001 1024 120 8 x 107

* Fine tuning starting from a trained NASNet using crops of size 113 x 113 identified by Saccader.
Note the Saccader model operates on 77 x 77 patches from ImageNet 224; the corresponding
patches from ImageNet 331 are of size 113 x 113.

Table Supp.4: DRAM hyperparameters (ImageNet 224 x 224)

Model learning rate batch size epochs A\ v
DRAM (pretraining 200 x 200)* 0.8 2048 120 8x 1075 N/A
DRAM (pretraining 77 x 77)** 0.001 2048 120 8x 1075 N/A
DRAM*#* 0.01 1024 120 8x107° 0
* First stage of classification weights pretraining with a wide receptive field.
** Second stage of classification weights pretraining with a narrow receptive field.
*%% Full training starts from the model learned in the pretraining stage.
Table Supp.5: Saccader hyperparameters (ImageNet (224 x 224))
Model learning rate batch size epochs A v
Saccader (pretraining)* 0.2 1024 120 N/A 0
Saccader** 0.01 1024 120 8x107° 8x107°
Saccader (no pretraining)*** 0.01 1024 120 8§x107° 8x107°
Saccader (no atten. network)*** (.01 1024 120 8x107% 8x107°

* Training for attention network weights; other weights are initialized and fixed from
BagNet-77-lowD.
** Weights initialized from Saccader (pretraining).
% Training starts from BagNet-77-lowD directly without location pretraining. ** Modified model
with attention network ablated. Representation network initialized from trained BagNet-77-lowD.

18

C Optimization and hyperparameters

Models were trained on 1,231,121 examples from ImageNet. We used 50,046 examples to tune the
optimization hyper-parameters. The results were then reported on the separate test subset of 50,000
examples. We optimized all models using Stochastic Gradient Descent with Nesterov momentum
of 0.9. We preprocessed images by subtracting the mean and dividing by the standard deviation
of training examples. During optimization, we augmented the training data by taking a random
crop within the image and then performing bicubic resizing to model’s resolution. For all models
except NASNet, we used a cosine learning schedule with linear warm up for 10 epochs. For NASNet,
we trained with a batch size of 4096 using linear warmup to a learning rate of 1.6 over the first 10
epochs, decaying the learning rate exponentially by a factor of 0.975/epoch thereafter and taking an
exponential moving average of weights with a decay of 0.9999. We used Tensor Processing Unit
(TPU) accelerators in all our training.

Convolutional neural networks

We show the architecture of the BagNet-77-lowD model used in Saccader experiments in Fig-
ure [Supp.4} For BagNet classification models, we optimized the typical cross-entropy objective:

A N
J (6) = —log (Po(yrargec| X)) + 5 Y6} (7)

i=1

where X is the input image, Yarget are the class labels, and @ are model parameters (see Table[Supp.3
for hyperparameters). For the NASNet model, we additionally used label smoothing of 0.1, scheduled
drop path over 250 epochs, and dropout of 0.7 on the penultimate layer.

DRAM model

We used the DRAM model from Ba et al. [2014]] and adapted changes similar to those proposed
by [Sermanet et al.|[2015]. In particular, the model consists of a powerful CNN (here we used
ResNet-v2-50) that process a multi resolution crops concatenated along channels. The high resolution
crop has the smallest receptive field, the lowest resolution crop receptive field is of the full image size,
and the middle resolution crop receptive field is halfway between the highest and lowest resolution.
The location information is specified by adding 2 channels with coordinate information similar to|Liu
et al. [2018b||. The features identified by the CNN is then sent as an input to an LSTM classification
layer of size 1024. The output of the LSTM classification layer is then fed to another LSTM layer of
size 1024 for location prediction. The output of the location LSTM is passed to fully connected layer
of 1024 units with ReLU activation, then passed to a 2D fully connected layer with tanh activation,
which represents the normalized coordinates to glimpse at in the next time step.

The best DRAM model from [Sermanet et al.|[2015], Ba et al.|[2014] uses multi-resolution glimpses at
different receptive field sizes to enhance the classification performance. This approach compromises
the interpretability of the model, as the lowest-resolution glimpse covers nearly the entire image. To
ensure that the DRAM model is similarly interpretable compared to the Saccader model, we limited
the input to the classification component to the 77 x 77 high resolution glimpses and blocked the
wide-receptive-field middle and low resolutions by feeding the spatial average per channel instead.
On the other hand, we allowed the location prediction component of the DRAM model to have a wide
receptive field (size of the whole image) by providing all three (high, middle and low) resolutions to
the location LSTM layer.

Trying to enhance the accuracy of the DRAM model, we extended the pretraining of the classification
weights to two stages (120 epochs on wide receptive field of size 200 x 200 followed by 120 epochs
on the small receptive field of size 77 x 77. Each stage combines all the different glimpses (similar
to Figure 4 |Sermanet et al.| [2015]) with the change of averaging the logits to compute one cross
entropy loss instead of having multiple cross entropy losses for each combination of views. During
pretraining, we unrolled the model for 2 time steps using a random uniform policy. We then trained
all the weights with the hybrid loss specified in|Ba et al.| [2014]).

We used REINFORCE loss weight of 0.1 and used location sampling from a Gaussian distribution
with network output mean and standard deviation (o) of 0.1 (we also tried REINFORCE loss weight

19

of 1. and o of 0.05). We also used accuracy as a baseline to center the reward and 2 MC samples to
reduce the variance in the gradient estimates. We tuned the £-regularization weight and found that
no regularization for the location weights give the best performance. Table[Supp.4/summarizes the
hyperparameters we used in the optimization.

Saccader model

Starting from a pretrained BagNet-77-LowD, we trained the location weights of the Saccader model
to match the locations of the sorted logits. We then trained the whole model as discussed in Section

[3.2] See Table [Supp.3|for the optimization hyper-parameters.

D Robustness to adversarial examples

Luo et al.[[2015] previously suggested that foveation-based vision mechanisms enjoy natural robust-
ness to adversarial perturbation. This hypothesis is attractive because it provides a natural explanation
for the apparent robustness of human vision to adversarial examples. However, no attention-based
model we tested is meaningfully robust in a white box setting.

We generated adversarial examples using both the widely-used projected gradient descent method
(PGD) [Madry et al.,|2018] and the non-gradient-based simultaneous perturbation stochastic approxi-
mation (SPSA) method [Spall, [1992], suggested by |Uesato et al.|[2018]. We used implementations
provided as part of the CleverHans library [Papernot et al., [2018]. For both attacks, we fixed the
size of the perturbation to ¢ = 2/255 with respect to the ¢*° norm, which yields images that are
perceptually indistinguishable from the originals. For PGD, we used a step size of 0.5/255 and
performed up to 300 iterations. Note that, although the attention mechanisms of the DRAM and
Saccader models are non-differentiable, the classification network provides a gradient with respect to
the input, which is used when performing PGD. For SPSA, we used the hyperparameters specified in
Appendix B of [Uesato et al.[[2018]. Bicubic resampling can result in pixel values not in [0, 1], so we
clipped pixels to this range before performing attacks. We report clean accuracy after clipping.

The SPSA attack is computationally expensive. With the selected hyperparameters, the attack fails for
a given example only after computing predictions for 819,200 inputs. Thus, we restricted our analysis
to 3906 randomly-chosen examples from the ImageNet validation set. We report clean accuracy after
clipping and perturbed accuracy on this subset in Table

Table Supp.6: Adversarial robustness of models investigated to gradient-based PGD attack non-
gradient-based SPSA attack, at e = 2/255. Results are reported on a 3906-image subset of the
ImageNet validation set.

Model Clean Acc. SPSA Acc. PGD Acc.
Saccader 70.1% 0.3% 0.2%
DRAM 66.6% 5.2% 0.9%
ResNet-v2-50 76.7% 0.1% 0.0%
BagNet-77-lowD 72.0% 0.6% 5.5%

For all models we investigated, one or both attacks reduced accuracy to <1% at e = 2/255. Thus,
at least when used in isolation, hard attention does not result in meaningful adversarial robustness.
For comparison with approaches that explore robustness through training instead of model class or
architecture, the state-of-the-art defense proposed by Xie et al.|[2019] achieves 42.6% accuracy with
a perturbation of € = 16, and their adversarial training baseline achieves 39.2%.

It is possible that additional robustness could be achieved by using a stochastic rather than determin-
istic attention mechanism, as implied by [Luo et al. [2015]. However, [Luo et al. [2015] only tested the
transferability of an adversarial example designed for one crop to other crops, rather than constructing
adversarial examples that fool models across many crops. |Athalye et al.|[2018] show that it is possible
to construct adversarial examples for ordinary feed-forward CNNs that are robust to a wide variety of
image transformations, including rescaling, rotation, translation. Moreover, non-differentiability of
the attention mechanism evidently does not in itself improve robustness, and may hinder adversarial
training.

20

	Introduction
	Related Work
	Methods
	Architecture
	Training Procedure

	Results
	Saccader Makes Accurate Predictions on ImageNet
	Saccader Attends to Locations Relevant to Classification
	Higher Classification Network Capacity and Better Data Quality Improve Accuracy Further

	Conclusion
	Supplementary Figures
	Supplementary Tables
	Optimization and hyperparameters
	Robustness to adversarial examples

