Supplementary Material For:
Reinforcement Learning with Convex Constraints

A Online gradient descent (OGD)

Algorithm 3 Online gradient descent (OGD)

input: projection oracle 'y {I'x(A) = argminy/ ¢y [|A = X'[|}
init: A; arbitrarily
parameters: step size 7;
fort =1to T do
observe convex loss function ¢; : A — R
Xt+1 Utvgt(kt)
Ary1 = FA(>\
end for
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Theorem A.1. (Zinkevich, 2003) Assume that for any X\, X' € A we have H/\ -\ H < D and also
(IVe:(N)|| < G. Letpy =n = L\F' Then the regret of OGD is

T
Regret,(OGD) Zﬁt (At) m)%nz&()\) < DGVT.

B Proof of Theorem 3.1

‘We have that
T 1 T
Zj g(Aewy) = Tg%g(xt,m 1)
1 T
< Tgleig;g(&,m (22)
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Eq. (21) is because the u-player is playing best response so that u; = argmin,c,,9(A¢, u). Eq. (22)
is because taking the minimum of each term of a sum cannot exceed the minimum of the sum as
a whole. Egs. (23) and (24) use the concavity of g with respect to A, and the definition of max,
respectively. By letting § = %RegretT, writing the definition of regret for the A-player, and using
l(A) = —g(A, uz), we have

T T
1 1
f§ g(As, uy) +5——r)r‘1€aj}\<g g( A, uy) >maxg<)\ T;:l >>{11161{{1r)r‘1€axg()\ u),

where the second and third 1nequahtles use convexity of g with respect to u and definition of min,
respectively. Combining yields

ucld ueld AeA

T
1
mlng(T ;)\t,u> > mlnmaxg()\ u) — 4,
and also

AEA AEA ueld

maxg()\ Zut> < maxmlng()\ u) + 0,

completing the proof.
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C Proof of Theorem 3.3

Let v be the value of the game in Eq. (7):

= min_dist(zZ(u),C), 25
v=min dist(z(x),C) (25)

and let £;(A) = —\ - Z; (i.e., the loss function that OGD observes).
Lemma C.1. Fort =1,2,...,T we have
ft()\t) = —At . it Z —U — (60 + 61).

Proof. By Eq. (5) (which must hold by Lemma 3.2), and by Eq. (25), there exists p* € A(II) such
that
= dist(z(pn*),C) = A-zZ(p").
v =dist(z(n"),C) = max A -z(u")
Thus, A; - z(u*) < v since A\; € A for all t. By our assumed guarantee for the policy 7; returned by
the planning oracle, we have
=X Z(m) > =N - Z(p") — €9 > —v — €.
Now using the error bound of the estimation oracle,
[Z(7e) — 24| < en, (26)
and the fact that || A;|| < 1, we have
(_)\t . it) + € Z _>‘t . Z(?Tt).
Combining completes the proof. O

Now we are ready to prove Theorem 3.3. Using the definition of mixed policy j returned by the
algorithm we have

1 T
dist(Z(7),C) = dist (T (m), c)
t=1

. I
= I}I\léi[)\()\' (T Zz(m)> 27)
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T
= —Tké%;&()\)—i—q (29)

T T
1 . 1
_TI)\HGIR tzglgt()\) + €1 + T E (gt()\t) + €1 +60+’U) (30)

t=1

IA

T T
1 . 1
= v+ <T g\nelkl tzg 1 gt()\) + T ;:1 gt(At)> +2€1 + €

- Regret,(OGD)
T

Here, Eq. (27) is by Eq. (5). Eq. (28) uses Eq. (26) and the fact that |A|| < 1. Eq. (31) uses

Lemma C.1.

+ 2¢1 + €.

The diameter of decision set A = C° N B is at most 1. The gradient of the loss function V(¢;(A)) =
—2; has norm at most ||Z(m;)|| + €1 < % + €1. Therefore, setting n = ((% + el)\FT)*l based
on Theorem A.1, we get

Regret,(OGD) < B
T “\1l—7

+ €1>T_1/2
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D APPROPO for feasibility

Algorithm 4 APPROPO — Feasibility

1. input projection oracle I'¢(+) for target set C which is a convex cone,
positive response oracle PosPlan(-), estimation oracle Est(-),
step size 7, number of iterations T’
2. define A = C°N B, and its projection operator I'y (x) = (x — ['¢(x))/max{1,||x — Tc(x)|/}
3. initialize \; arbitrarily in A
4 fort =1toT do
5. Call positive response oracle for the standard RL with scalar reward r = —\; - z:
7y + PosPlan(\;)
6.  Call the estimation oracle to approximate long-term measurement for m;:
Z; < Est(m)
7. Update using online gradient descent with the loss function £;(A) = — X - 2;:
)\t+1 — FA (At —+ nit)
8 if ly(A) < —(eo + €1) then
9: return problem is infeasible
10:  end if
11: end for
12: return i, a uniform mixture over my, ...,

D.1 Proof of Theorem 3.4

Lemma D.1. If the problem is feasible, then fort =1,2,...,T we have
Zt(At) = —At . it Z —(60 + 61).

Proof. If the problem is feasible, then there exists u* such that zZ(u*) € C. Since all A; € C°, they
all have non-positive inner product with every point in C including z(p*). Since —\; - zZ(p*) > 0,
we can conclude that max e R(7m) = max e —A¢ - Z(w) > 0. Therefore, by our guarantee for
the positive response oracle,

R(?Tt) = —At 'Z(?T) Z —€Q.

Now using Eq. (26) and the fact that ||A;|| < 1, we have
(_)\t . it) + €1 Z _)‘t . Z(ﬂ't).

Combining completes the proof. CThe proof of Theorem 3.4 is similar to
that of Theorem 3.3. If the algorithm reports infeasibility then the problem is infeasible as a result of
Lemma D.1. Otherwise, we have

1

T
720

Z li(A) +e1+€) >0,

t=1

which can be combined with Eq. (29) as before. Continuing this argument as before yields
B
dist(z(p),C) < <1 + €1>T1/2 + 2¢1 + €g,
-7

completing the proof.

E Proof of Lemma 3.5

Let C' = C x {k} and q be the projection of X = x @ (x) onto C = cone(C’), i.e.,

q = argmin ||x — y||.
yeC

Let r be the last coordinate of q. We prove the lemma in cases based on the value of r (which cannot
be negative by construction).
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Figure 3: Geometric Interpretation of the proof of Lemma 3.5

Casel (r > k): Since q € cone(C’) with r > 0, there exists &« > 0 and q’ € C’ so that q = aq’.
See Figure 3a. Consider the plane defined by the three points X, q, q'. Since the origin 0 is on the
line passing through q and ¢’, it must also be in this plane. Now consider the line that passes through
x and q’. Note that all points on this line have last coordinate equal to r, and they are all also in the
aforementioned plane. Let v @ (k) be the projection of 0 onto this line (v € R%).
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Note that the two triangles A(X, q,q’) and A(0, v & (x), q’) are similar since they are right triangles
with opposite angles at q’. Therefore, by triangle similarity,
'l X —d|  dist(x,C") _ dist(x,C)

[ve (w) — Ix—al = dist(x,C) dist(%,C)’

Since q' € C’, we have ||q'|| < v/(maxxec [|x]])2 + #2, resulting in

l 2 2
ol _ Vmaxcee XD+ 52 qmgs g
[v & ()l "

by the choice of « given in the lemma. Combining completes the proof for this case.

Case2 (r = k): Since q € cone(C’) with & as last coordinate, we have q € C'. Thus,
dist(x,C) = dist(%,C’) < ||x — q|| = dist(x,C)

which completes the proof for this case.

Case 3 (0 < r < k): The proof for this case is formally identical to that of Case 1, except that,
in this case, the two triangles A(x,q,q’) and A(0, v & (k), q’) are now similar as a result of being
right triangles with a shared angle at q'. See Figure 3b.

Case4 (r = 0): Since q € cone(C’), g must have been generated by multiplying some o > 0
by some point in C’. Since all points in C’ have last coordinate equal to x > 0, and since r = 0, it
must be the case that & = 0, and thus, q = 0. Let q’ be the projection of x onto C’. See Figure 3c.
Consider the plane defined by the three points X,q = 0, q’. Let q” be the projection of X onto the
line passing through q and q’. Then

1% — a"| < [I%]| = dist(%,C).

Now consider the line passing through % and ¢’. Note that all points on this line have last coordinate
equal to k and are also in the aforementioned plane. Let v @ (x) be the projection of 0 onto this line
(v € RY). Note that the two triangles A(X,q”,q’) and A(0,v & (x),q’) are similar since they are
right triangles with a shared angle at q'. Therefore, by triangle similarity,

la'll  _ Ix=dl  dist(x,C") _ dist(x,C)
[ve wI  IIx—q" = dist(x,C) dist(x,C)

The rest of the proof for this case is exactly as in Case 1.

F Additional experimental details

All the models were trained using the following hyperparameters: policy network consists of 2-layer
fully-connected MLP with ReLU activation and 128 hidden units and a A2C learning rate of 1072,
For APPROPO, the constant x (§3.3) is set to be 20. In the following figures, the performance of the
algorithms has been depicted using different hyperparamters; showing average and standard deviation
over 25 runs,.
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Figure 4: Performance of APPROPO using different hyperparameters. The two numbers are learning
rate for the online learning algorithm and n (§3.4) respectively. In all figures, the x-axis is number
samples. The vertical axes correspond to the three constraints, with thresholds shown as a dashed
line; for reward (middle) this is a lower bound; for the others it is an upper bound.
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Figure 5: Performance of APPROPO with diversity constraints using different hyperparameters. The
two numbers are learning rate for the online learning algorithm and n (§3.4) respectively. In all
figures, the x-axis is number samples. The vertical axes correspond to the three constraints, with

thresholds shown as a dashed line; for reward (middle) this is a lower bound; for the others it is an
upper bound.
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Figure 6: Performance of RCPO using different learning rates for Lagrange multiplier. In all figures,
the x-axis is number samples. The vertical axes correspond to the three constraints, with thresholds
shown as a dashed line; for reward (middle) this is a lower bound; for the others it is an upper bound.
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