
Supplementary Material For:
Reinforcement Learning with Convex Constraints

A Online gradient descent (OGD)

Algorithm 3 Online gradient descent (OGD)

1: input: projection oracle �⇤ {�⇤(�) = argmin�02⇤

���� �0��}
2: init: �1 arbitrarily
3: parameters: step size ⌘t

4: for t = 1 to T do
5: observe convex loss function `t : ⇤! R
6: �0

t+1 = �t � ⌘tr`t(�t)

7: �t+1 = �⇤(�
0
t+1)

8: end for

Theorem A.1. (Zinkevich, 2003) Assume that for any �,�0 2 ⇤ we have

���� �0��  D and also

kr`t(�)k  G. Let ⌘t = ⌘ =
D

G
p
T

. Then the regret of OGD is

RegretT (OGD) =

TX

t=1

`t(�t)�min
�

TX

t=1

`t(�)  DG

p
T .

B Proof of Theorem 3.1

We have that

1

T

TX

t=1

g(�t,ut) =
1

T

TX

t=1

min
u2U

g(�t,u) (21)

 1

T
min
u2U

TX

t=1

g(�t,u) (22)

 min
u2U

g

1

T

TX

t=1

�t,u

!
(23)

 max
�2⇤

min
u2U

g(�,u). (24)

Eq. (21) is because the u-player is playing best response so that ut = argminu2Ug(�t,u). Eq. (22)
is because taking the minimum of each term of a sum cannot exceed the minimum of the sum as
a whole. Eqs. (23) and (24) use the concavity of g with respect to �, and the definition of max,
respectively. By letting � =

1
T RegretT , writing the definition of regret for the �-player, and using

`t(�) = �g(�,ut), we have

1

T

TX

t=1

g(�t,ut) + � =
1

T
max
�2⇤

TX

t=1

g(�,ut) � max
�2⇤

g

�,

1

T

TX

t=1

ut

!
� min

u2U
max
�2⇤

g(�,u),

where the second and third inequalities use convexity of g with respect to u and definition of min,
respectively. Combining yields

min
u2U

g

1

T

TX

t=1

�t,u

!
� min

u2U
max
�2⇤

g(�,u)� �,

and also

max
�2⇤

g

�,

1

T

TX

t=1

ut

!
 max

�2⇤
min
u2U

g(�,u) + �,

completing the proof.

11

C Proof of Theorem 3.3

Let v be the value of the game in Eq. (7):
v = min

µ2�(⇧)
dist(z(µ), C), (25)

and let `t(�) = �� · ẑt (i.e., the loss function that OGD observes).
Lemma C.1. For t = 1, 2, . . . , T we have

`t(�t) = ��t · ẑt � �v � (✏0 + ✏1).

Proof. By Eq. (5) (which must hold by Lemma 3.2), and by Eq. (25), there exists µ⇤ 2 �(⇧) such
that

v = dist(z(µ⇤
), C) = max

�2⇤
� · z(µ⇤

).

Thus, �t · z(µ⇤
)  v since �t 2 ⇤ for all t. By our assumed guarantee for the policy ⇡t returned by

the planning oracle, we have
��t · z(⇡t) � ��t · z(µ⇤

)� ✏0 � �v � ✏0.

Now using the error bound of the estimation oracle,
kz(⇡t)� ẑtk  ✏1, (26)

and the fact that k�tk  1, we have
(��t · ẑt) + ✏1 � ��t · z(⇡t).

Combining completes the proof.

Now we are ready to prove Theorem 3.3. Using the definition of mixed policy µ̄ returned by the
algorithm we have

dist(z(µ̄), C) = dist

1

T

TX

t=1

z(⇡t), C
!

= max
�2⇤

� ·

1

T

TX

t=1

z(⇡t)

!
(27)

=
1

T
max
�2⇤

TX

t=1

� · z(⇡t)

 1

T
max
�2⇤

TX

t=1

� · ẑt + ✏1 (28)

= � 1

T
min
�2⇤

TX

t=1

`t(�) + ✏1 (29)

 � 1

T
min
�2⇤

TX

t=1

`t(�) + ✏1 +
1

T

TX

t=1

(`t(�t) + ✏1 + ✏0 + v) (30)

= v +

� 1

T
min
�2⇤

TX

t=1

`t(�) +
1

T

TX

t=1

`t(�t)

!
+ 2✏1 + ✏0

= v +
RegretT (OGD)

T
+ 2✏1 + ✏0.

Here, Eq. (27) is by Eq. (5). Eq. (28) uses Eq. (26) and the fact that k�k  1. Eq. (31) uses
Lemma C.1.

The diameter of decision set ⇤ = C� \ B is at most 1. The gradient of the loss function r(`t(�)) =
�ẑt has norm at most kz(⇡t)k+ ✏1  B

1�� + ✏1. Therefore, setting ⌘ =
�
(

B
1�� + ✏1)

p
T
��1 based

on Theorem A.1, we get
RegretT (OGD)

T

✓

B

1� �
+ ✏1

◆
T

�1/2

12

D APPROPO for feasibility

Algorithm 4 APPROPO – Feasibility

1: input projection oracle �C(·) for target set C which is a convex cone,
positive response oracle PosPlan(·), estimation oracle Est(·),
step size ⌘, number of iterations T

2: define ⇤ , C� \ B, and its projection operator �⇤(x) , (x� �C(x))/max{1, kx� �C(x)k}
3: initialize �1 arbitrarily in ⇤

4: for t = 1 to T do
5: Call positive response oracle for the standard RL with scalar reward r = ��t · z:

⇡t PosPlan(�t)

6: Call the estimation oracle to approximate long-term measurement for ⇡t:
ẑt Est(⇡t)

7: Update using online gradient descent with the loss function `t(�) = �� · ẑt:
�t+1 �⇤

�
�t + ⌘ẑt

�

8: if `t(�t) < �(✏0 + ✏1) then
9: return problem is infeasible

10: end if
11: end for
12: return µ̄, a uniform mixture over ⇡1, . . . ,⇡T

D.1 Proof of Theorem 3.4

Lemma D.1. If the problem is feasible, then for t = 1, 2, . . . , T we have

`t(�t) = ��t · ẑt � �(✏0 + ✏1).

Proof. If the problem is feasible, then there exists µ⇤ such that z(µ⇤
) 2 C. Since all �t 2 C�, they

all have non-positive inner product with every point in C including z(µ⇤
). Since ��t · z(µ⇤

) � 0,
we can conclude that max⇡2⇧ R(⇡) = max⇡2⇧��t · z(⇡) � 0. Therefore, by our guarantee for
the positive response oracle,

R(⇡t) = ��t · z(⇡) � �✏0.
Now using Eq. (26) and the fact that k�tk  1, we have

(��t · ẑt) + ✏1 � ��t · z(⇡t).

Combining completes the proof. The proof of Theorem 3.4 is similar to
that of Theorem 3.3. If the algorithm reports infeasibility then the problem is infeasible as a result of
Lemma D.1. Otherwise, we have

1

T

TX

t=1

(`t(�t) + ✏1 + ✏0) � 0,

which can be combined with Eq. (29) as before. Continuing this argument as before yields

dist(z(µ), C) 
✓

B

1� �
+ ✏1

◆
T

�1/2
+ 2✏1 + ✏0,

completing the proof.

E Proof of Lemma 3.5

Let C0
= C ⇥ {} and q be the projection of x̃ = x� hi onto C̃ = cone(C0

), i.e.,

q = argmin
y2C̃
kx̃� yk.

Let r be the last coordinate of q. We prove the lemma in cases based on the value of r (which cannot
be negative by construction).

13

(a) r > 

(b) 0 < r < 

(c) r = 0

Figure 3: Geometric Interpretation of the proof of Lemma 3.5

Case 1 (r > ): Since q 2 cone(C0
) with r > 0, there exists ↵ > 0 and q0 2 C0 so that q = ↵q0.

See Figure 3a. Consider the plane defined by the three points x̃,q,q0. Since the origin 0 is on the
line passing through q and q0, it must also be in this plane. Now consider the line that passes through
x̃ and q0. Note that all points on this line have last coordinate equal to , and they are all also in the
aforementioned plane. Let v � hi be the projection of 0 onto this line (v 2 Rd).

14

Note that the two triangles �(x̃,q,q0
) and �(0,v�hi,q0

) are similar since they are right triangles
with opposite angles at q0. Therefore, by triangle similarity,

kq0k
kv � hik =

kx̃� q0k
kx̃� qk �

dist(x̃, C0
)

dist(x̃, C̃)
=

dist(x, C)
dist(x̃, C̃)

.

Since q0 2 C0, we have kq0k 
p
(maxx2C kxk)2 + 2, resulting in

kq0k
kv � hik 

p
(maxx2C kxk)2 + 2


=
p
1 + 2�  1 + �

by the choice of  given in the lemma. Combining completes the proof for this case.

Case 2 (r = ): Since q 2 cone(C0
) with  as last coordinate, we have q 2 C0. Thus,

dist(x, C) = dist(x̃, C0
)  kx̃� qk = dist(x̃, C̃)

which completes the proof for this case.

Case 3 (0 < r < ): The proof for this case is formally identical to that of Case 1, except that,
in this case, the two triangles �(x̃,q,q0

) and �(0,v � hi,q0
) are now similar as a result of being

right triangles with a shared angle at q0. See Figure 3b.

Case 4 (r = 0): Since q 2 cone(C0
), q must have been generated by multiplying some ↵ � 0

by some point in C0. Since all points in C0 have last coordinate equal to  > 0, and since r = 0, it
must be the case that ↵ = 0, and thus, q = 0. Let q0 be the projection of x̃ onto C0. See Figure 3c.
Consider the plane defined by the three points x̃,q = 0,q0. Let q00 be the projection of x̃ onto the
line passing through q and q0. Then

kx̃� q00k  kx̃k = dist(x̃, C̃).

Now consider the line passing through x̃ and q0. Note that all points on this line have last coordinate
equal to  and are also in the aforementioned plane. Let v � hi be the projection of 0 onto this line
(v 2 Rd). Note that the two triangles �(x̃,q00

,q0
) and �(0,v � hi,q0

) are similar since they are
right triangles with a shared angle at q0. Therefore, by triangle similarity,

kq0k
kv � hik =

kx̃� q0k
kx̃� q00k �

dist(x̃, C0
)

dist(x̃, C̃)
=

dist(x, C)
dist(x̃, C̃)

.

The rest of the proof for this case is exactly as in Case 1.

F Additional experimental details

All the models were trained using the following hyperparameters: policy network consists of 2-layer
fully-connected MLP with ReLU activation and 128 hidden units and a A2C learning rate of 10�2.
For APPROPO, the constant  (§3.3) is set to be 20. In the following figures, the performance of the
algorithms has been depicted using different hyperparamters; showing average and standard deviation
over 25 runs,.

15

(a) n = 10

(b) n = 20

Figure 4: Performance of APPROPO using different hyperparameters. The two numbers are learning
rate for the online learning algorithm and n (§3.4) respectively. In all figures, the x-axis is number
samples. The vertical axes correspond to the three constraints, with thresholds shown as a dashed
line; for reward (middle) this is a lower bound; for the others it is an upper bound.

16

(a) n = 10

(b) n = 20

Figure 5: Performance of APPROPO with diversity constraints using different hyperparameters. The
two numbers are learning rate for the online learning algorithm and n (§3.4) respectively. In all
figures, the x-axis is number samples. The vertical axes correspond to the three constraints, with
thresholds shown as a dashed line; for reward (middle) this is a lower bound; for the others it is an
upper bound.

17

Figure 6: Performance of RCPO using different learning rates for Lagrange multiplier. In all figures,
the x-axis is number samples. The vertical axes correspond to the three constraints, with thresholds
shown as a dashed line; for reward (middle) this is a lower bound; for the others it is an upper bound.

18

