
Supplementary Material for Bayesian Batch Active
Learning as Sparse Subset Approximation

Robert Pinsler
Department of Engineering
University of Cambridge
rp586@cam.ac.uk

Jonathan Gordon
Department of Engineering
University of Cambridge
jg801@cam.ac.uk

Eric Nalisnick
Department of Engineering
University of Cambridge
etn22@cam.ac.uk

José Miguel Hernández-Lobato
Department of Engineering
University of Cambridge
jmh233@cam.ac.uk

A Algorithms

A.1 Active Bayesian coresets with Frank-Wolfe optimization (ACS-FW)

Algorithm A.1 outlines the ACS-FW procedure for a budget b, vectors {Ln}Nn=1 and the choice of
an inner product < ·, · > (see Section 2). After computing the norms σn and σ (Lines 2 and 3) and
initializing the weight vector w to zero (Line 4), the algorithm performs b iterations of Frank-Wolfe
optimization. At each iteration, the Frank-Wolfe algorithm chooses exactly one data point (which can
be viewed as nodes on the polytope) to be added to the batch (Line 6). The weight update for this
data point can then be computed by performing a line search in closed form [1] (Line 7), and using
the step-size to updatew (Line 8). Finally, the optimal weight vector with cardinality ≤ b is returned.
In practice, we project the weights back to the feasible space by binarizing them (not shown; see
Section 2 for more details), as working with the continuous weights directly is non-trivial.

A.2 ACS-FW with random projections

Algorithm A.2 details the process of constructing an AL batch with budget b and J random feature
projections for the weighted Euclidean inner product from Eq. (16).

B Closed-form derivations

B.1 Linear regression

Consider the following model for scalar Bayesian linear regression,

yn = θTxn + εn, εn ∼ N (0, σ2
0), θ ∼ p(θ),

where p(θ) denotes the prior. To avoid notational clutter we assume a factorized Gaussian prior with
unit variance, but what follows is easily extended to richer Gaussian priors. Given an initial labeled
dataset D0, the parameter posterior can be computed in closed form as

p(θ|D0, σ
2
0) = N (θ;µθ,Σθ) (B.18)

µθ =
(
XTX + σ2

0I
)−1

XTy

Σθ = σ2
0

(
XTX + σ2

0I
)−1

,

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

Algorithm A.1 Active Bayesian Coresets with Frank-Wolfe Optimization

1: procedure ACS-FW(b, {Ln}Nn=1, < ·, · >)
2: σn ←

√
〈Ln,Ln〉 ∀n . Compute norms

3: σ ←
∑
n
σn

4: w ← 0 . Initialize weights to 0
5: for t ∈ 1, ..., b do
6: f ← arg max

n∈N

[〈
L − L(w), 1

σn
Ln
〉]

. Greedily select point f

7: γ ←
[〈

σ
σf
Lf−L(w),L−L(w)

〉]
[〈

σ
σf
Lf−L(w), σσf

Lf−L(w)
〉] . Perform line search for step-size γ

8: w ← (1− γ)w + γ σ
σf

1f . Update weight for newly selected point
9: end for

10: return w
11: end procedure

Algorithm A.2 ACS-FW with Random Projections (for Weighted Euclidean Inner Product)

1: procedure ACS-FW(b, J)
2: θj ∼ π̂ j = 1, . . . , J . Sample parameters
3: L̂n = 1√

J
[Ln(θ1), · · · ,Ln(θJ)]

T ∀n . Compute random feature projections

4: return ACS-FW(b, {L̂n}Nn=1, (·)T (·)) . Call Algorithm A.1 using projections
5: end procedure

and the predictive posterior is given by

p(yn|xn,D0, σ
2
0) =

∫
θ

p(yn|xn,θ)p(θ|D0, σ
2
0) dθ

= N (yn;µTθxn, σ
2
0 + xTnΣθxn).

(B.19)

Using this model, we can derive a closed-form term for the inner product in Eq. (8),

〈Ln,Lm〉π̂,F = Eπ̂
[
(∇θLn)

T
(∇θLm)

]
= Eπ̂

[(
1

σ2
0

(E[yn]− xTnθ)xn

)T (
1

σ2
0

(E[ym]− xTmθ)xm

)]

=
xTnxm
σ4
0

Ê
π

[(
µTθxn − θTxn

)T (
µTθxm − θTxm

)]
=
xTnxm
σ4
0

(
xTnΣθxm

)
,

where in the second equality we have taken expectation w.r.t. p(yn|xn,D0, σ
2
0) from Eq. (B.19), and

in the third equality w.r.t. π̂ = p(θ|D0, σ
2
0) from Eq. (B.18). Similarly, we obtain

〈Ln,Ln〉π̂,F =
xTnxn
σ4
0

(
xTnΣθxn

)
.

For this model, BALD [2, 3] can also be evaluated in closed form:

αBALD(xn;D0) = H
[
θ|D0, σ

2
0

]
− Ep(yn|xn,D0)

[
H
[
θ|xn, yn,D0, σ

2
0

]]
=

1

2
Eπ̂
[
log

σ2
0 + xTnΣθxn

σ2
0

+
σ2
0 + (µTθxn − θTxn)2

σ2
0 + xTnΣθxn

− 1

]
=

1

2
log

(
σ2
0 +

xTnΣθxn
σ2
0

)
.

2

1.0 0.5 0.0 0.5 1.0

10

5

0

5

10

(a) αBALD

1.0 0.5 0.0 0.5 1.0

10

5

0

5

10

(b) αACS/x
T
nxn

Figure B.5: αBALD and αACS (without the magnitude term) evaluated on synthetic data drawn from a
linear regression model with yn = xn+ε, where ε ∼ N (0, 5). αBALD and αACS/x

T
nxn are equivalent

(up to a constant factor) in this model.

We can make a direct comparison with BALD by treating the squared norm of a data point with itself
as an acquisition function, αACS(xn;D0) = 〈Ln,Ln〉π̂,F , yielding,

αACS(xn;D0) =
xTnxn
σ4
0

xTnΣθxn.

Viewing αACS as a greedy acquisition function is reasonable as (i) the norm of Ln is related to the
magnitude of the reduction in Eq. (5), and thus can be viewed as a proxy for greedy optimization.
(ii) This establishes a link to notions of sensitivity from the original work on Bayesian coresets [1, 4],
where σn = ‖Ln‖ is the key quantity for constructing the coreset (i.e. by using it for importance
sampling or Frank-Wolfe optimization).

As demonstrated in Fig. B.5, dropping xTnxn from αACS makes the two quantities proportional—
exp(2αBALD(xn;D0)) ∝ αACS(xn;D0)—and thus equivalent under a greedy maximizer.

B.2 Logistic regression and probit regression

The probit regression model used in the main section of the paper is closely related to logistic
regression. Since the latter is more common in pratice, we will start from a Bayesian logistic
regression model and apply the standard probit approximation to render inference tractable.

Consider the following Bayesian logistic regression model,

p(yn|xn,θ) = Ber
(
σ(θTxn)

)
, σ (z) :=

1

1 + exp(−z)
, θ ∼ p(θ),

where we again assume p(θ) is a factorized Gaussian with unit variance. The exact parameter
posterior distribution is intractable for this model due to the non-linear likelihood. We assume an
approximation of the form p(θ|D0) ≈ N (θ;µθ,Σθ). More importantly, the posterior predictive is
also intractable in this setting. For the purpose of this derivation, we use the additional approximation

p(yn|xn,D0) =

∫
θ

p(yn|xn,θ)p(θ|D0) dθ

≈
∫
θ

Φ(θTxn)N (θ;µθ,Σθ) dθ

= Ber

(
Φ

(
µTθxn√

1 + xTnΣxn

))
,

where in the second line we have plugged in our approximation to the parameter posterior, and used
the well-known approximation σ(z) ≈ Φ(z), where Φ(·) represents the standard Normal cdf [5].

3

Next, we derive a closed-form approximation for the weighted Fisher inner product in Eq. (8). We
begin by noting that

〈Ln,Lm〉π̂,F ≈ x
T
nxm

(
Ê
π

[
Φ
(
θTxn

)
Φ
(
θTxm

)]
− Φ(ζn)Φ(ζm)

)
, (B.20)

where we define ζi =
µTθ xi√

1+xTi Σθxi
, and use σ(z) ≈ Φ(z) as before. Next, we employ the identity [6]∫

Φ(a+ bz)Φ(c+ dz)N (z; 0, 1)dz = BvN
(

a√
1 + b2

,
c√

1 + d2
, ρ =

bd√
1 + b2

√
1 + d2

)
,

where BvN(a, b, ρ) is the bi-variate Normal (with correlation ρ) cdf evaluated at (a, b). Plugging this,
and Eq. (B.22) into Eq. (B.20) yields

Ê
π

[
(∇θLn)

T
(∇θLm)

]
≈ xTnxm

(
BvN

(
ζn, ζm, ρn,m

)
− Φ(ζm)Φ(ζm)

)
,

where ρn,m =
xTnΣθxm√

1+xTnΣθxn
√

1+xTnΣθxm
.

Next, we derive an expression for the squared norm, i.e.

〈Ln,Ln〉π̂,F = Ê
π

[
(∇θLn)

T
(∇θLn)

]
= Ê

π

[((
E[yn]− σ

(
xTnθ

))
xn
)T ((E[yn]− σ

(
xTnθ

))
xn
)]

= xTnxn

(
Φ(ζn)2 − 2Φ(ζn) Ê

π

[
σ
(
θTxn

)]
+ Ê

π

[
σ
(
θTxn

)2])
.

(B.21)

Here, we again use the approximation σ(z) ≈ Φ(z), and the following identity [6]:∫ (
Φ
(
θTx

))2N (θ;µθ,Σθ) dθ = Φ (ζ)− 2T

(
ζ,

1√
1 + 2xTΣθx

)
, (B.22)

where T(·, ·) is Owen’s T function5 [6]. Plugging Eq. (B.22) back into Eq. (B.21) and taking
expectation w.r.t. the approximate posterior, we have that

Ê
π

[
(∇θLn)

T
(∇θLn)

]
= xTnxn

(
Φ (ζn) (1− Φ (ζn))− 2T

(
ζn,

1√
1 + 2xTnΣθxn

))
.

C Experimental details

Computing infrastructure All experiments were run on a desktop Ubuntu 16.04 machine. We
used an Intel Core i7-3820 @ 3.60GHz x 8 CPU for experiments on yacht, boston, energy and power,
and a GeForce GTX TITAN X GPU for all others.

Hyperparameter selection We manually tuned the hyper-parameters with the goal of trading off
performance and stability of the model training throughout the AL process, while keeping the protocol
similar across datasets. Although a more systematic hyper-parameter search might yield improved
results, we anticipate that the gains would be comparable across AL methods since they all share the
same model and optimization procedure.

C.1 Regression experiments

Model We use a deterministic feature extractor consisting of two fully connected hidden layers
with 30 (year: 100) units, interspersed with batch norm and ReLU activation functions. Weights

5Efficient open-source implementations of numerical approximations exist, e.g. in scipy.

4

and biases are initialized from U(−
√
k,
√
k), where k = 1/Nin, and Nin is the number of incoming

features. We additionally apply L2 weight decay with regularization parameter λ = 1 (power, year:
λ = 3). The final layer performs exact Bayesian inference. We place a factorized zero-mean Gaussian
prior with unit variance on the weights of the last layer L, θL ∼ N (θL; 0, I), and an inverse Gamma
prior on the noise variance, σ2

0 ∼ Γ−1(σ2
0 ;α0, β0), with α0 = 1, β0 = 1 (power, year: β0 = 3).

Inference with this prior can be performed in closed form, where the predictive posterior follows
a Student’s T distribution [7]. For power and year, we use J = 10 projections during the batch
construction of ACS-FW.

Optimization Inputs and outputs are normalized during training to have zero mean and unit
variance, and un-normalized for prediction. The network is trained for 1000 epochs with the Adam
optimizer, using a learning rate of α = 10−2 (power, year: 10−3) and cosine annealing. The training
batch size is adapted during the AL process as more data points are acquired: we set the batch size
to the closest power of 2 ≤ |D0|/2 (e.g. for boston we initially start with a batch size of 8), but not
more than 512. For power and yacht, we divert from this protocol to stabilize the training process,
and set the batch size to min(|D0|, 32).

C.2 Classification experiments

Model We employ a deterministic feature extractor consisting of a ResNet-18 [8], followed by one
fully-connected hidden layer with 32 units with a ReLU activation function. All weights are initialized
with Glorot initialization [9]. We additionally apply L2 weight decay with regularization parameter
λ = 5 · 10−4 to all weights of this feature extractor. The final layer is a dense layer that returns
samples using local reparametrization [10], followed by a softmax activation function. The mean
weights of the last layer are initialized from N (0, 0.05) and the log standard deviation weights of the
variances are initialized fromN (−4, 0.05). We place a factorized zero-mean Gaussian prior with unit
variance on the weights of the last layer L, θL ∼ N (θL; 0, I). Since exact inference is intractable,
we perform mean-field variational inference [11, 12] on the last layer. The predictive posterior is
approximated using 100 samples. We use J = 10 projections during the batch construction of
ACS-FW.

Optimization We use data augmentation techniques during training, consisting of random cropping
to 32px with padding of 4px, random horizontal flipping and input normalization. The entire network
is trained jointly for 1000 epochs with the Adam optimizer, using a learning rate of α = 10−3, cosine
annealing, and a fixed training batch size of 256.

D Probabilistic methods for active learning

One surprising result we found in our experiments was the strong performance of the probabilistic
baselines MAXENT and BALD, especially considering that a number of previous works have reported
weaker results for these methods (e.g. [13]).

Probabilistic methods rely on the parameter posterior distribution p(θ|D0). For neural network based
models, posterior inference is usually intractable and we are forced to resort to approximate inference
techniques [14]. We hypothesize that probabilistic AL methods are highly sensitive to the inference
method used to train the approximate posterior distribution q(θ) ≈ p(θ|D0). Many works use Monte
Carlo Dropout (MCDropout) [15] as the standard method for these approximations [16, 17], but
commonly only use MCDropout on the final layer.

In our work, we find that a Bayesian multi-class classification model on the final layer of a powerful
deterministic feature extractor, trained with variational inference [11, 12] tends to lead to significant
performance gains compared to using MCDropout on the final layer. A comparison of these two
methods is shown in Fig. D.6, demonstrating that for cifar10, SVHN and Fashion MNIST a neural
linear model is preferable to one trained with MCDropout in the AL setting. In future work, we
intend to further explore the trade-offs implied by using different inference procedures for AL.

5

0 5000 10000 15000 20000
Number of samples from pool set

0.70

0.73

0.76

0.79

0.82

0.85

0.88

Ac
cu

ra
cy

(a) cifar10

0 2000 4000 6000 8000 10000 12000
Number of samples from pool set

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

(b) SVHN

0 2000 4000 6000 8000 10000 12000
Number of samples from pool set

0.82

0.84

0.86

0.88

0.90

0.92

0.94

Ac
cu

ra
cy

BALD
BALD (MCDropout)
MaxEnt
MaxEnt (MCDropout)
Random

(c) Fashion MNIST

Figure D.6: Test accuracy on classification tasks over 5 seeds. Error bars denote two standard errors.

6

References
[1] Trevor Campbell and Tamara Broderick. Automated scalable Bayesian inference via Hilbert

coresets. The Journal of Machine Learning Research, 20(1):551–588, 2019.

[2] David JC MacKay. Information-based objective functions for active data selection. Neural
computation, 4(4):590–604, 1992.

[3] Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máté Lengyel. Bayesian active learning
for classification and preference learning. arXiv Preprint arXiv:1112.5745, 2011.

[4] Jonathan Huggins, Trevor Campbell, and Tamara Broderick. Coresets for scalable Bayesian
logistic regression. In Advances in Neural Information Processing Systems, pages 4080–4088,
2016.

[5] Kevin P Murphy. Machine learning: A probabilistic perspective. MIT Press, 2012.

[6] Donald B Owen. Tables for computing bivariate normal probabilities. The Annals of Mathemat-
ical Statistics, 27(4):1075–1090, 1956.

[7] Christopher M Bishop. Pattern recognition and machine learning. Springer, 2006.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778,
2016.

[9] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In International Conference on Artificial Intelligence and Statistics, pages
249–256, 2010.

[10] Durk P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local reparam-
eterization trick. In Advances in Neural Information Processing Systems, pages 2575–2583,
2015.

[11] Martin J Wainwright, Michael I Jordan, et al. Graphical models, exponential families, and
variational inference. Foundations and Trends R© in Machine Learning, 1(1–2):1–305, 2008.

[12] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty
in neural networks. arXiv Preprint arXiv:1505.05424, 2015.

[13] Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. In International Conference on Learning Representations, 2018.

[14] Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science &
Business Media, 2012.

[15] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

[16] Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing
model uncertainty in deep learning. In International Conference on Machine Learning, pages
1050–1059, 2016.

[17] Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep Bayesian active learning with image
data. arXiv Preprint arXiv:1703.02910, 2017.

7

	Algorithms
	Active Bayesian coresets with Frank-Wolfe optimization (ACS-FW)
	ACS-FW with random projections

	Closed-form derivations
	Linear regression
	Logistic regression and probit regression

	Experimental details
	Regression experiments
	Classification experiments

	Probabilistic methods for active learning

