
7 Proofs for Main Framework (Sec. 3)

Lemma 1. Let ! be a random variable with distribution Q(!) and let R(!) be a positive estimator

such that EQ(!) R(!) = p(x). Then

PMC
(!, x) = Q(!)R(!)

is an unnormalized distribution over ! with normalization constant p(x) and R(!) =

PMC
(!, x)/Q(!) for Q(!) > 0. Furthermore as defined above,

log p(x) = E
Q(!)

logR(!) + KL
⇥
Q(!)

��PMC
(!|x)

⇤
. (3)

Proof. Since PMC
(!, x) � 0 and PMC

(x) =
R
PMC

(!, x)d! = EQ(!) R(!) = p(x), it is a valid
distribution. Thus, one can apply the standard ELBO decomposition to Q(!) and PMC

(!, x). But
since R = PMC/Q, it follows that EQ(!) log

�
PMC

(!, x)/Q(!)
�
= EQ(!) logR(!).

Theorem 2. Suppose that R(!) and a(z|!) are a valid estimator-coupling pair under Q(!). Then,

Q(z,!) = Q(!)a(z|!), (5)
PMC

(z,!, x) = Q(!)R(!)a(z|!), (6)

are valid distributions, PMC
(z, x) = p(z, x), and

log p(x) = E
Q(!)

logR(!) + KL [Q(z)kp(z|x)] + KL
⇥
Q(!|z)

��PMC
(!|z, x)

⇤
. (7)

Proof. First, note that

PMC
(z, x) =

Z
PMC

(z,!, x)d!

=

Z
Q(!)R(!)a(z|!)d!

= E
Q(!)

R(!)a(z|!)

= p(z, x),

so PMC
(z,!, x) is a valid augmentation of p(z, x).

Next, observe for PMC and Q as defined,

PMC
(z,!, x)

Q(z,!)
= R(!).

Applying the ELBO decomposition from Eq. (1) to Q(z,!) and PMC
(z,!, x) we get that

logPMC
(x) = E

Q(z,!)


log

PMC
(z,!, x)

Q(z,!)

�
+KL

⇥
Q(z,!)

��PMC
(z,!|x)

⇤
.

Using the observations above and the chain rule of KL-divergence means that

log p(x) = E
Q(!)

logR(!) + KL
⇥
Q(z,!)

��PMC
(z,!|x)

⇤

= E
Q(!)

logR(!) + KL
⇥
Q(z)

��PMC
(z|x)

⇤
+KL

⇥
Q(!|z)

��PMC
(!|z, x)

⇤

= E
Q(!)

logR(!) + KL [Q(z)kp(z|x)] + KL
⇥
Q(!|z)

��PMC
(!|z, x)

⇤
.
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Claim 5. Suppose that Q(T (!)) = Q(!). Then, the antithetic estimator

R(!) =
p(!, x) + p(T (!), x)

2Q(!)

and the coupling distribution

a(z|!) = ⇡(!) �(z � !) + (1� ⇡(!)) �(z � T (!)),

⇡(!) =
p(!, x)

p(!, x) + p(T (!), x)
.

form a valid estimator / coupling pair under Q(!).

Proof.

E
Q(!)

R(!)a(z|!)

= E
Q(!)

p(!, x) + p(T (!), x)

2Q(!)
(⇡(!) �(z �!) + (1� ⇡(!)) �(z � T (!)))

= E
Q(!)

p(!, x) + p(T (!), x)

2Q(!)

⇣ p(!, x)

p(!, x) + p(T (!), x)
�(z �!)

+
p(T (!), x)

p(!, x) + p(T (!), x)
�(z � T (!))

⌘

= E
Q(!)

1

2Q(!)
(p(!, x) �(z �!) + p(T (!), x) �(z � T (!)))

= E
Q(!)

1

2

✓
1

Q(!)
p(!, x) �(z �!) +

1

Q(!)
p(T (!), x) �(z � T (!))

◆

= E
Q(!)

1

2

✓
1

Q(!)
p(!, x) �(z �!) +

1

Q(T (!))
p(T (!), x) �(z � T (!))

◆
(10)

= E
Q(!)

1

2

✓
1

Q(!)
p(!, x) �(z �!) +

1

Q(!)
p(!, x) �(z �!)

◆
(11)

= E
Q(!)

✓
1

Q(!)
p(!, x) �(z �!)

◆

=

Z
(p(!, x) �(z � !)) d!

= p(z, x)

Here, Eq. (10) follows from the fact that Q(T (!)) = Q(!) while Eq. (11) follows from the fact that
T (!) is equal in distribution to ! when ! ⇠ Q.
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8 Measure-Theoretic Details

The content of this section draws from [14, 15]. We do not use sans-serif font in this section.

8.1 Measures, KL, ELBO

Let (⌦,A) be a measurable space and Q and P be two measures over it. Write Q ⌧ P when Q is
absolutely continuous with respect to P , i.e. when P (A) = 0 ) Q(A) = 0. Whenever Q ⌧ P ,
there exists measurable f : ⌦ ! R such that

Q(A) =

Z

A
f dP.

The function f is the Radon-Nikodym derivative, denoted as f =
dQ
dP . Write Q ⇠ P when Q ⌧ P

and P ⌧ Q; in this case dQ
dP =

⇣
dP
dQ

⌘�1
Q-a.e.

For two probability measures Q ⌧ P , the KL-divergence is

KL [QkP ] =

Z
log

✓
dQ

dP

◆
Q(d!) = E

Q(!)
log

dQ

dP
.

For a probability measure Q and measure P̂ (not necessarily a probability measure) with Q ⌧ P̂ ,
the evidence lower bound or “ELBO” is

ELBO

h
Q
���P̂

i
= �E

Q
log

dQ

dP̂
.

When Q ⇠ P̂ , we can equivalently write ELBO

h
Q
���P̂

i
= EQ log

dP̂
dQ .

Let (Z,B) be a measurable space. Let Pz,x be an unnormalized distribution over z representing the
joint distribution over (z, x) for a fixed x. Write either Pz,x(B) or Pz,x(z 2 B) for the measure of
B 2 B. Define

p(x) = Pz,x(Z)

to be the total measure or the normalization constant of Pz,x, and write Pz|x(z 2 B) := Pz,x(z 2
B)/p(x) for the corresponding normalized measure, which represents the conditional distribution
of z given x. Henceforth, x will always denote a fixed constant, and, for any u, the measure Pu,x is
unnormalized with total measure p(x).

The following gives a measure-theoretic version of the “ELBO decomposition” from Eq. (1).
Lemma 6. Given a probability measure Q and a measure Pz,x on (Z,B), whenever Q ⌧ Pz,x we

have the following "ELBO decomposition":

log p(x) = ELBO [QkPz,x] + KL
⇥
Q
��Pz|x

⇤
.

Proof. It is easy to check that dQ
dPz|x

= p(x) dQ
dPz,x

.3 Then

KL
⇥
Q
��Pz|x

⇤
= E

Q
log

dQ

dPz|x
= E

Q
log

✓
p(x)

dQ

dPz,x

◆

= log p(x) + E
Q
log

dQ

dPz,x
= log p(x)� ELBO [QkPz,x] .

Rearranging, we see the ELBO decomposition.

3R
A
p(x) dQ

dPz,x
dPz|x =

R
A

dQ
dPz,x

dPz,x = Q(z 2 A).
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8.2 Conditional, Marginal, and Joint Distributions

Standard Borel and product spaces We will assume that each relevant measure space is a standard

Borel space, that is, isomorphic to a Polish space (a separable complete metric space) with the Borel
�-algebra. Standard Borel spaces capture essentially all spaces that arise in practice in probability
theory [15]. Let (⌦,A) and (Z,B) be standard Borel spaces. The product space (⌦⇥ Z,A⌦ B) is
the measurable space on ⌦ ⇥ Z with A ⌦ B = {A ⇥ B : A 2 A, B 2 B}, and is also a standard
Borel space.

Conditional distributions We require tools to augment a distribution with a new random variable
and define the conditional distribution of one random variable with respect to another. We begin with
a Markov kernel, which we will use to augment a distribution P! with a new random variable to
obtain a joint distribution P!,z .

Formally, a Markov kernel [15, Def. 8.24] from (⌦,A) to (Z,B) is a mapping a(B|!) that satisfies:

1. For fixed !, a(B|!) is a probability measure on (Z,B).
2. For fixed B, a(B|!) is an A-measurable function of !.

Let P! be a measure on (⌦, A) and a(B|!) a Markov kernel from (⌦, A) to (Z,B). These define a
unique measure P!,z over the product space defined as

P!,z(! 2 A, z 2 B) =

Z

A
a(z 2 B|!)P!(d!),

such that if P! is a probability measure, then P!,z is also a probability measure [15, Cor. 14.23].

Alternately, we may have a joint distribution P!,z (a measure on the product space (⌦⇥ Z,A⌦ B))
and want to define the marginals and conditionals. The marginal distribution Pz is the measure on
(Z,B) with Pz(z 2 B) = P!,z(! 2 ⌦, z 2 B), and the marginal P! is defined analogously. Since
the product space is standard Borel [15, Thm 14.8], there exists a regular conditional distribution

P!|z(! 2 A|z) [15, Def. 8.27, Thm. 8.36], which is a Markov kernel (as above) and satisfies the
following for all A 2 A, B 2 B:

P!,z(! 2 A, z 2 B) =

Z

B
P!|z(! 2 A|z)Pz(dz).

The regular conditional distribution is unique up to null sets of Pz .

The conditional distribution Pz|! is defined analogously.

8.3 KL Chain Rule

Let P!,z and Q!,z be two probability measures on the standard Borel product space (⌦⇥ Z,A⌦ B)
with Q!,z ⌧ P!,z . The conditional KL-divergence KL

⇥
Q!|z

��P!|z
⇤

is defined4 as [14, Ch. 5.3]

KL
⇥
Q!|z

��P!|z
⇤
= E

Q!,z

✓
dQ!|z

dP!|z

◆
,

where dQ!|z
dP!|z

(!|z) =

⇣
dQ!,z

dP!,z
(!, z)

⌘⇣
dQz

dPz
(z)

⌘�1
when dQz

dPz
(z) > 0 and 1 otherwise. When all

densities exist, dQ!|z
dP!|z

(!|z) = q(!|z)
p(!|z) . Under the same conditions as above, we have the chain rule for

KL-divergence [14, Lem. 5.3.1]

KL [Q!,zkP!,z] = KL [Q!kP!] + KL
⇥
Q!|z

��P!|z
⇤
= KL [QzkPz] + KL

⇥
Qz|!

��Pz|!
⇤
.

4While this (standard) notation for the divergence refers to “Q!|z” it is a function of the joint Q!,z and
similiarly for P!,z .
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8.4 Our Results

Now consider a strictly positive estimator R(!) over probability space (⌦,A, Q!) such that EQ! R =
R
RdQ! = p(x). We wish to define PMC

!,x so that dPMC
!,x

dQ!
= R, to justify interpreting EQ! logR as

an ELBO. This is true when R =
dPMC

!,x

dQ!
is the Radon-Nikodym derivative, i.e., a change of measure

from Q! to PMC
!,x , and is strictly positive. This leads to the definition

PMC
!,x (! 2 A) =

Z

A
RdQ!.

Lemma 7. Let R(!) be an almost-everywhere positive random variable on (⌦,A, Q!) with

EQ! R = p(x) and define PMC
!,x (! 2 A) =

R
A RdQ!. The ELBO decomposition applied to

Q! and PMC
!,x gives:

log p(x) = E
Q!

logR+KL

h
Q!

���PMC
!|x

i
.

Proof. By construction, R =
dPMC

!,x

dQ!
and PMC

!,x ⇠ Q!, since R is positive Q-a.e. There-

fore EQ! logR = EQ! log
dPMC

!,x

dQ = ELBO
⇥
Q
��PMC

!,x

⇤
, where the final equality uses the def-

inition of the ELBO for the case when PMC
!,x ⇠ Q!. Now apply Lem. 6 and the fact that

ELBO
⇥
Q
��PMC

!,x

⇤
= EQ! logR.

Lem. 7 provides distributions Q! and PMC
!,x so that EQ! logR = ELBO

⇥
Q!

��PMC
!,x

⇤
, which justifies

maximizing the likelihood bound EQ! logR as minimzing the KL-divergence from Q! to the
“target” PMC

!|x . However, neither distribution contains the random variable z from the original target
distribution Pz|x, so the significance of Lem. 7 on its own is unclear. We now describe a way to
couple PMC

!,x to the original target distribution using a Markov kernel a(z 2 B|!).
Definition 8. A valid estimator-coupling pair with respect to target distribution Pz,x is an estimator
R(!) on probability space (⌦,A, Q!) and Markov kernel a(z 2 B|!) from (⌦,A) to (Z,B) such
that:

E
Q!

R(!)a(z 2 B|!) = Pz,x(z 2 B).

Lemma 9. Assume R(!) and a(z 2 B|!) are a valid estimator-coupling pair with respect to target

Pz,x, and define

PMC
!,z,x(! 2 A, z 2 B) =

Z

A
a(z 2 B|!)R(!)Q!(d!).

Then PMC
!,z,x admits Pz,x as a marginal, i.e., PMC

z,x (z 2 B) = Pz,x(z 2 B).

Proof. We have

PMC
z,x (z 2 B) = PMC

!,z,x(! 2 ⌦, z 2 B)

=

Z

⌦
a(z 2 B|!)R(!)Q!(d!).

= E
Q!

R(!)a(z 2 B|!)

= Pz,x(z 2 B).

The second line uses the definition of PMC
!,z,x . The last line uses the definition of a valid estimator-

coupling pair.

Theorem 10. Let Pz,x be an unnormalized distribution with normalization constant p(x). Assume

R(!) and a(z 2 B|!) are a valid estimator-coupling pair with respect to Pz,x. Define PMC
!,z,x as in

Lem. 9 and define Q!,z(! 2 A, z 2 B) =
R
A a(z 2 B|!)Q!(d!). Then
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log p(x) = E
Q!

logR+KL
⇥
Qz

��Pz|x
⇤
+KL

h
Q!|z

���PMC
!|z,x

i
.

Proof. From Lem. 7, we have

log p(x) = E
Q!

logR+KL

h
Q!

���PMC
!|x

i
.

We will show by two applications of the KL chain rule that the second term can be expanded as

KL

h
Q!

���PMC
!|x

i
= KL

⇥
Qz

��Pz|x
⇤
+KL

h
Q!|z

���PMC
!|z,x

i
, (12)

which will complete the proof.

We first apply the KL chain rule as follows:

KL

h
Q!,z

���PMC
!,z|x

i
= KL

h
Q!

���PMC
!|x

i
+KL

h
Qz|!

���PMC
z|!,x

i

| {z }
=0

. (13)

We now argue that the second term is zero, as indicated in the equation. Note from above that
dPMC

!,x

dQ!
= R. It is also true that dPMC

!,z,x

dQ!,z
= R. To see this, observe that

Z

A⇥B
R(!)Q!,z(d!, dz) =

Z

A

⇣Z

B
R(!)a(z 2 dz|!)

⌘
Q!(d!)

=

Z

A
R(!)

⇣Z

B
a(z 2 dz|!)

⌘
Q!(d!)

=

Z

A
R(!) a(z 2 B|!)Q!(d!)

= PMC
!,z,x(! 2 A, z 2 B).

The first equality above uses a version of Fubini’s theorem for Markov kernels [? , Thm. 14.29].
Because PMC

!,x ⇠ Q! it also follows that dQ!

dPMC
!,x

=
dQ!,z

dPMC
!,z,x

=
1
R . Since the normalized distributions

PMC
!|x and PMC

!,z|x differ from the unnormalized counterparts by the constant factor p(x), it is straight-

forward to see that dQ!

dPMC
!|x

=
dQ!,z

dPMC
!,z|x

=
p(x)
R .5 This implies that

dPMC
z|!,x

dQz|!
= 1 a.e., which in turn

implies that the conditional divergence KL

h
Qz|!

���PMC
z|!,x

i
is equal to zero.

We next apply the chain rule the other way and use the fact that PMC
z|x = Pz|x (Lem. 9) to see that:

KL

h
Q!,z

���PMC
!,z|x

i
= KL

h
Qz

���PMC
z|x

i
+KL

h
Q!|z

���PMC
!|z,x

i
= KL

⇥
Qz

��Pz|x
⇤
+KL

h
Q!|z

���PMC
!|z,x

i
.

(14)
Combining Eq. (13) and Eq. (14) we get Eq. (12), as desired.

5R
A

p(x)
R dPMC

!|x =
R
A

1
RdPMC

!,x = Q!(! 2 A), and similarly for Q!,z and PMC
!,z,x.
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9 Specific Variance Reduction Techniques

9.1 IID Mean

As a simple example, consider the IID mean. Suppose R0(!) and a0(z|!) are valid under Q0. If we
define

Q(!1, · · · ,!M ,m) =
1

M

MY

m=1

Q0(!m)

(with !1, · · · ,!M ⇠ Q0 i.i.d. and m uniform on {1, · · · ,M}) then this satisfies the condition of
Thm. 3 that !m ⇠ Q0. Thus we can define R and a as in Eq. (8) and Eq. (9), to get that

R(!1, · · · ,!M ,m) = R0(!m)

a(z|!1, · · · ,!M ,m) = a0(z|!m)

are a valid estimator-coupling pair under Q. Note that Q(m|!1, · · · ,!M ) =
1
M , so if we apply

Thm. 4 to marginalize out m, we get that

R(!1, · · · ,!M ) = E
Q(m|!1,··· ,!M )

R (!1, · · · ,!M ,m)

=
1

M

MX

m=1

R (!1, · · · ,!M ,m)

=
1

M

MX

m=1

R0(!m)

a(z|!1, · · · ,!M ) =
1

R(!1, · · · ,!M )
E

Q(m|!1,··· ,!M )
[R (!1, · · · ,!M ,m) a(z|!1, · · · ,!M ,m)]

=
1

R(!1, · · · ,!M )

1

M

MX

m=1

[R (!1, · · · ,!M ,m) a(z|!1, · · · ,!M ,m)]

=
1

1
M

PM
m=1 R0(!m)

1

M

MX

m=1

[R0(!m)a0(z|!m)]

=

PM
m=1 [R0(!m)a0(z|!m)]

PM
m=1 R0(!m)

.

These are exactly the forms for R(·) and a(z|·) shown in the table.

9.2 Stratified Sampling

As another example, take stratified sampling. The estimator-coupling pair can be derived similiarly
to with the i.i.d. mean. For simplicity, we assume here one sample in each strata (Nm = 1). Suppose
⌦1 · · ·⌦M partition the state-space and define

Q(!1, · · · ,!M ,m) =
1

M

MY

k=1

Q0(!k)I(!k 2 ⌦m)

µ(k)
⇥ µ(m), µ(m) = E

Q0(!)
I(! 2 ⌦m).

This again satisfies the condition of Thm. 3, so Eq. (8) and Eq. (9) give that

R(!1, · · · ,!M ,m) = R0(!m)

a(z|!1, · · · ,!M ,m) = a0(z|!m)
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is a valid estimator-coupling pair with respect to Q. Note that Q(m|!1, · · · ,!M ) = µ(m), so if we
apply Thm. 4 to marginalize out m, we get that

R(!1, · · · ,!M ) = E
Q(m|!1,··· ,!M )

R (!1, · · · ,!M ,m)

=

MX

m=1

µ(m) R (!1, · · · ,!M ,m)

=

MX

m=1

µ(m)R0(!m)

a(z|!1, · · · ,!M ) =
1

R(!1, · · · ,!M )
E

Q(m|!1,··· ,!M )
[R (!1, · · · ,!M ,m) a(z|!1, · · · ,!M ,m)]

=
1

R(!1, · · · ,!M )

MX

m=1

µ(m)R (!1, · · · ,!M ,m) a(z|!1, · · · ,!M ,m)

=

PM
m=1 µ(m)R0(!m)a0(z|!m)
PM

m=1 µ(m)R0(!m)
.

Again, this is the form shown in the table.
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10 Proofs for Deriving Couplings (Sec. 4)

Theorem 3. Suppose that R0(!) and a0(z|!) are a valid estimator-coupling pair under Q0(!). Let
Q(!1, · · · , wM ,m) be any distribution such that if (!1, · · · ,!M ,m) ⇠ Q, then !m ⇠ Q0. Then,

R(!1, · · · ,!M ,m) = R0(!m) (8)
a(z|!1, · · · ,!M ,m) = a0(z|!m) (9)

are a valid estimator-coupling pair under Q(!1, · · · , wM ,m).

Proof. Substitute the definitions of R and a to get that

E
Q(!1,··· ,!M ,m)

R(!1, · · · ,!M ,m)a(z|!1, · · · ,!M ,m) = E
Q(!1,··· ,!M ,m)

R0(!m)a0(z|!m)

= E
Q0(!)

R0(!)a0(z|!)

= p(z, x),

which is equivalent to the definition of R and a being a valid estimator-coupling pair. The second
line follows from the assumption on Q(!1, · · · ,!M ,m).

Theorem 4. Suppose that R0(!, ⌫) and a0(z|!, ⌫) are a valid estimator-coupling pair under
Q0(!, ⌫). Then

R(!) = E
Q0(⌫|!)

R0 (!,⌫) ,

a(z|!) = 1

R(!)
E

Q0(⌫|!)
[R0 (!,⌫) a0(z|!,⌫)] ,

are a valid estimator-coupling pair under Q(!) =
R
Q0(!, ⌫)d⌫.

Proof. Substitute the definition of a to get that

E
Q(!)

R(!)a(z|!) = E
Q(!)

R(!)
1

R(!)
E

Q0(⌫|!)
[R0(!,⌫)a0(z|!,⌫)]

= E
Q0(!,⌫)

[R0(!,⌫)a0(z|!,⌫)]

= p(z, x),

which is equivalent to R and a being a valid estimator-coupling pair under R(!). The last line follows
from the fact that R0 and a0 are a valid estimator-coupling pair under Q0.

20



Figure 8: The target density p(z|x) and the approximation Q(z|x) produced by various sampling
methods (row) with various M (columns). The dark curves show isocontours of kernel density
estimate for samples generated using Stan and projected to the first two principal components. The
darker curves show isocontours for the process applied to samples from Q(z|x). Antithetic sampling
is visibly (but subtly) better than iid for M = 2 while the combination of quasi-Monte Carlo and
antithetic sampling is (still more subtly) best for M = 8.

11 Additional Experimental Results

Fig. 9 shows additional aggregate statistics of ELBO and posterior variance error for different methods
across model from the Stan library.
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Figure 9: How much do methods improve over naive VI in likelihood bound (x-axis) and
in estimating posterior variance (y-axis)? Each point corresponds to a model from the Stan
library, with a random shape. Each plot compares iid sampling against some other strategy.
From top, these are antithetic sampling (anti), Quasi-Monte Carlo, either using an elliptical map-
ping (qmc) or a Cartesian mapping (qmc-cart), and antithetic sampling after an elliptical map-
ping (anti-qmc). The columns correspond to using M = 2, 4 and 8 samples for each estimate.
Conclusions: Improvements in ELBO and error are correlated. Improvements converge to those of
iid for larger M , as all errors decay towards zero. Different sampling methods are best on different
datasets. A few cases are not plotted where the measured “improvement” was negative (if naive VI
has near-zero error, or due to local optima).
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12 Full Results For All Models
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Figure 10: Across all models, improvements in likelihood bounds correlate strongly with im-
provements in posterior accuracy. Better sampling methods can improve both.
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Figure 11: Across all models, improvements in likelihood bounds correlate strongly with im-
provements in posterior accuracy. Better sampling methods can improve both.
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Figure 12: Across all models, improvements in likelihood bounds correlate strongly with im-
provements in posterior accuracy. Better sampling methods can improve both.
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Figure 13: Across all models, improvements in likelihood bounds correlate strongly with im-
provements in posterior accuracy. Better sampling methods can improve both.
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Figure 14: Across all models, improvements in likelihood bounds correlate strongly with im-
provements in posterior accuracy. Better sampling methods can improve both.
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Figure 15: Across all models, improvements in likelihood bounds correlate strongly with im-
provements in posterior accuracy. Better sampling methods can improve both.
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Figure 16: Across all models, improvements in likelihood bounds correlate strongly with im-
provements in posterior accuracy. Better sampling methods can improve both.
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Figure 17: Across all models, improvements in likelihood bounds correlate strongly with im-
provements in posterior accuracy. Better sampling methods can improve both.
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Figure 18: Across all models, improvements in likelihood bounds correlate strongly with im-
provements in posterior accuracy. Better sampling methods can improve both.
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Figure 19: Across all models, improvements in likelihood bounds correlate strongly with im-
provements in posterior accuracy. Better sampling methods can improve both.
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Figure 20: Across all models, improvements in likelihood bounds correlate strongly with im-
provements in posterior accuracy. Better sampling methods can improve both.
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Figure 21: Across all models, improvements in likelihood bounds correlate strongly with im-
provements in posterior accuracy. Better sampling methods can improve both.

35



Figure 22: Across all models, improvements in likelihood bounds correlate strongly with im-
provements in posterior accuracy. Better sampling methods can improve both.

36


