
Chasing Ghosts:Chasing Ghosts

Chasing GhostsChasing Ghosts
Instruction Following

as Bayesian State Tracking

Supplementary Material

Implementation Details

Simulator. In experiments, we set the Matterport3D simulator [1] to generate 320×256 pixel images
with a 60 degree vertical field of view. To capture more of the floor and nearby obstacles (and less
of the roof) we set the camera elevation to 30 degrees down from horizontal. At each panoramic
viewpoint location in the simulator we capture a horizontal sweep containing 12 images at 30 degree
increments, which are projected into the map in a single time step as described in Section 4.1 of the
main paper.
Mapper. For our CNN implementation we use a ResNet-34 [2] architecture that is pretrained
on ImageNet [3]. We found that fine-tuning the CNN while training our model mainly improved
performance on the Val-Seen set, and so we left the CNN parameters fixed in the reported experiments.
To extract the visual feature representation v we concatenate the output from the CNN’s last 2 layers
to provide a 16× 20× 768 representation. The dimensionality of our map representationM is fixed
at 128× 96× 96 and each cell represents a square region with side length 0.5m (the entire map is
thus 48m× 48m). In the mapper’s convolutional [4] GRU [5] we use 3× 3 convolutional filters and
we train with spatial dropout [6] of 0.5 in both the input-to-state and state-to-state transitions with
fixed dropout masks for the duration of each episode.
Filter. In the instruction encoder we use a hidden state size of 256 for both the forward and backward
encoders, and a word embedding size of 300. We use a motion kernel size M of 7, but we upscale
the motion kernel g(at,M) by a scale factor of 2× before applying it such that the agent can move a
maximum of 3.5m in a single time step.
Training. In training, we use the Adam optimizer [7] with an initial learning rate of 1e-3, weight
decay of 1e-7, and a batch size of 5. In the goal prediction experiment, all models are trained for 8K
iterations, after which all models have converged. In the full VLN experiment, our models are trained
for 17.5K iterations, and we pick the iteration with the highest SPL performance on Val-Unseen to
report and submit to the test server. Training the model takes around 1 day for goal prediction, and
2.5 days for the full VLN task, using a single Titan X GPU.
Visualizations. In the main paper and the supplementary video, we depict top-down floorplan
visualizations of Matterport environments to provide greater insight into the model’s behavior. These
visualizations are rendered from textured meshes in the Matterport3D dataset [8], using the provided
GAPS software which was modified to render using an orthographic projection.

Visualizations

Observations and actions. In this section we provide further visualizations of the attention weights
in the sequence decoders that generate latent observations and actions (refer to Section 4.2 of the
main paper). Instructions are examples from the Val-Unseen set. In general, the attention models for
the motion model (generating latent action vectors a) and the observation model (generating latent
observation vectors o) specialize in different ways. The motion model focuses attention on action
words, while the observation model focuses on visual words, as illustrated in Figures 1 and 2. The
sequential ordering of the instructions (e.g., attention weights showing a diagonal structure from
top-left to bottom-right) is also evident.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



Figure 1: Example attention weight visualizations from the motion model and observation model
inputs. The motion model focuses on action descriptions, such as ‘go through’ (top left) and ‘turn
right’ (bottom left and right). In contrast, the observation model focuses more towards visual words
such as ‘kitchen’ (top left), ‘toilet’ (top right), and ‘hallway’ (bottom left and right).

2



Figure 2: More example attention weight visualizations from the motion and observation models.
Here, the motion model focuses on action descriptions, such as ‘left’, while the observation model
focuses attention on visual words such as ‘couch’ (bottom left), ‘table and chairs’ (bottom right), and
‘door’ (bottom right).

3



References
[1] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf, Ian Reid, Stephen

Gould, and Anton van den Hengel. Vision-and-Language Navigation: Interpreting visually-grounded
navigation instructions in real environments. In CVPR, 2018.

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In CVPR, 2016.

[3] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. Imagenet large scale visual
recognition challenge. IJCV, 2015.

[4] SHI Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun Woo. Convolu-
tional lstm network: A machine learning approach for precipitation nowcasting. In NIPS, 2015.

[5] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-decoder for statistical
machine translation. In EMNLP, 2014.

[6] Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann LeCun, and Christoph Bregler. Efficient object
localization using convolutional networks. In CVPR, 2015.

[7] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[8] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niessner, Manolis Savva, Shuran
Song, Andy Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d data in indoor environments.
International Conference on 3D Vision (3DV), 2017.

4


