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1 Gaussian Process Factor Analysis (GPFA)

Description of the technique. We define y:,t ∈ Rq×1 to be the high-dimensional fMRI data
(observed data) with q voxels or regions of interest (ROIs). The fMRI time series is sampled at
time points t = 1, ..., T . GPFA extracts a set of low-dimensional latent states, x:,t ∈ Rp×1 (p < q),
by defining a linear-Gaussian relationship between the observations y:,t and latent states x:,t as:
y:,t|x:,t ∼ N (Cx:,t+d,R) whereC ∈ Rq×p, represents the mapping between the observed (fMRI)
data and the latent dimensions, d ∈ Rq×1 and R ∈ Rq×q represent the mean of the observed data,
and the independent variances (of putative noise) across the ROIs (or voxels), respectively, and N
denotes the normal distribution. Thus, the presence of independent noise across ROIs can be factored
intoR, whereas correlated noise across ROIs are factored by GPFA into a separate latent dimension.
A key difference between conventional dimensionality reduction techniques, like PCA, and GPFA
is that the latter specifies each latent dimension to be a Gaussian process, with a particular form of
the temporal (auto)covariance matrix. Thus, each latent dimension i is given by: xi,: ∼ N (0,Ki)
whereKi ∈ RT×T is the temporal covariance matrix for the ith latent dimension. Here, we choose a
form of the covariance that is conventionally employed to generate smooth latent trajectories: the
squared exponential function. Ki(t1, t2) ∝ exp(− (t1−t2)2

2τ2
i

) whereKi(t1, t2) denotes the covariance
between time points t1 and t2 of latent dimension i and t1, t2 = 1, ..., T . The parameters of the
GPFA model, viz., θ = {C,d,R, τ1, ..., τp} are learned using an expectation maximization (EM)
algorithm [1]. Because the variance of BOLD data in each region could change with the mean, each
of the BOLD time series were variance normalized by z-scoring (mean subtracted and divided by
standard deviation) before applying GPFA.

Estimating the number of latent GPFA dimensions. To identify the optimal number of GPFA
latent dimensions p for the fMRI data, we employed an approach similar to the leave-neuron-out
approach of Yu et al (2009) [1]. The “template” subjects’ data were divided into four folds, such that
each fold comprised 25 subjects’ data. GPFA was run on all-but-one folds of the data (training data;
[Ytr]q×75·T ), including data from all brain regions. Then the observed data from all-but-one regions
of the left-out fold (test data; [Yte](q−1)×25·T ) was projected using the mapping matrix estimated
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Algorithm 1 Task classification based on GPFA features
Input:
task labels task, size (1× 8)
test scan data test_scans, size (900× 8× q × T )
template trajectories x, size (8× p× T )
timepoints T = 1 : 100
parameters GPFA_par{C,d,R, τ}
Initialize ConfusionMatrix=zeros(8× 8)
for subject S, task scan s do
y = test_scans(S, s, 1 : q, T )
Reset ρmax, predicted_label
for task= 1 to 8 do
x̂task = estimateLatentState(y, GPFA_par)
ρ =

∑p
C=1 corr(x̂task,C ,: , xtask,C ,:)

if ρ > ρmax then
ρmax = ρ
predicted_label = task

end if
end for
ConfusionMatrix(s,predicted_label)++

end for

from the training data, including all-but-one rows, corresponding to the left-out region, ([Cte](q−1)×p)
to obtain a set of latent trajectories for the test data ([Xte]p×25·T ). Using these trajectories and the
left out row of the mapping matrix ([Cte]1×p), the data for the left-out region was reconstructed as
[Ŷte]1×25·T ). RMS error was computed between this prediction and the observed regional time-series
of the left-out region ([Yte]1×25·T ). This was repeated by leaving out each region in turn, and the
summed prediction error was computed across all left out regions and subjects in the test data. The
process was repeated, again, by assigning each fold of the data as the test set, in turn. The prediction
error was computed for a range of number of latent dimensions p = 5 to 100, in steps of 5. This was
done for each task separately, to obtain separate estimates of optimal dimensionality for each task
scan set (Fig.1B, main text).

Because these estimates were closely similar, for ease of further analysis,we computed a common
number of optimal latent dimensions (u) that minimized the prediction error across all the tasks:

u∈[5,100]
∑

t∈tasks
[Et(u)− Et(utmin)]

where Et(u) is the prediction error with u latent dimensions for task t and utmin is the number of
latent dimensions that minimized the prediction error for task t. With fMRI data parcellated with
the Power et al. (264 ROI) parcellation [2], this approach provided a common number of u=42
cross-validated data dimensions, indicating a 6-fold reduction in dimensionality of raw fMRI data,
across tasks.

2 Classifying task-specific cognitive states in healthy subjects

Permutation testing of classifier accuracies. The classification accuracies mentioned in the main
text were tested for significance, by shuffling the task labels of all scans of the 900 subjects in training
stage (before correlating with templates). The labels were predicted the same way as described
in Algorithm 1, and compared against the true labels. The labels were shuffled and classification
repeated 1000 times to get a null distribution of classification accuracies. Significance level for the
classification accuracies reflect the proportion of values in the null distribution that were greater than
the actual classification accuracies computed based on GPFA features.

Classification with alternative parcellations. To test whether the superlative classification ac-
curacies were specific to the Power et al [2] parcellation, we tested the GPFA time series based
classification accuracies with an alternative parcellation. We employed the Shirer et al (90-node)
parcellation – an alternative, widely used, function parcellation [3]. As before, we computed the
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number of latent dimensions using a prediction error minimization approach outlined in Section 1
(above), and discovered an optimal dimensionality of u=17; again GPFA indicated a 5-6 fold reduc-
tion in data dimensionality consistent with estimates from the previous parcellation (SI Fig. S3A). All
other procedures – including computing template trajectories, classification based on matching test
scan trajectories to template trajectories, computing accuracies, and the like, followed the procedures
outlined in the main text (Section 3). As before, we observed superlative accuracies for classifying
the seven task states (confusion matrix; SI Fig. S3B). Median accuracy was 96.6%, and accuracies
ranged from 89.2% - 99.3% across the seven tasks. All accuracies were significantly above chance
(permutation test, p<0.001). Again, the clearest exception was the resting state scan, which was often
confused with one of the other task scans. These results confirmed that the accuracies reported in the
main text were not a consequence of a specific parcellation scheme.

Classification among sub-tasks. In the HCP database, tasks performed by subjects during scanning
were not homogenous: rather, these occurred in interleaved blocks of distinct sub-tasks (Table S2,
Supporting Information). For example, the working memory task comprised of a 0-back sub-task,
and a more cognitively demanding 2-back sub-task; in the latter sub-tasks, items had to be held
longer in working memory. Similarly, the motor task comprised of separate blocks of trials that
involved movements of the hand, foot or tongue. We concatenated blocks of GPFA latent time-series
corresponding to each sub-task together and tested if these time-series would suffice to classify
between the sub-tasks within each task. Again, we obtained superlative classification accuracies
ranging from 81% - 99% (p<0.001, permutation test). This suggested that latent dynamics estimated
with GPFA were sufficient to discriminate finer grained differences in cognitive states among the
sub-tasks of each task (SI Fig. S3D).

Extracting oscillatory spectral features. We also employed a recent technique for isolating the
oscillatory component from the fractal component of the GPFA latent dimensions’ spectra: Irregular-
Resampling Auto-Spectral Analysis (or IRASA). Details regarding the technique can be found in
[4]. Briefly, IRASA iteratively upsamples and downsamples the time series at irregular (non-integral)
factors, and estimates the average spectrum across these different sampling factors. This provides
an estimate of the fractal component of the spectrum; the intuition behind the approach is that the
fractal component of the spectrum should be invariant to scaling up or scaling down the sampling
interval. Then the fractal spectral estimate is subtracted out from the power spectrum of the original
data to isolate the oscillatory (non-fractal) component of the spectrum. Because of this subtraction,
the oscillatory power spectrum may occasionally contain negative values, as shown in SI Fig. S4.

Combining GPFA with IRASA enabled estimating slow timescale oscillatory processes with high
specificity. Previous fMRI studies have typically examined slow and infra-slow fluctuations in fMRI
data by filtering low-frequency activity from fMRI time series data, and quantifying the power of
these low-frequency fluctuations with conventional spectral analysis approaches (e.g. FFTs, [5–
7]). Nevertheless, such low frequency fluctuations may be contaminated with various artifacts of
physiological, and non-physiological origin. Furthermore, because spectral power in most natural
processes decays as 1/f, low-frequency power directly estimated from fMRI responses is likely
dominated by non-oscillatory “fractal” content. IRASA overcame these shortcomings by enabling us
to selectively quantify oscillatory power in the latent dimensions. We discovered that with infra-slow
oscillatory power estimated with IRASA and GPFA, we could classify task specific cognitive states
in healthy subjects, as well as the potential for conversion of MCI patients to AD.

Comparison of GPFA classification accuracy with other dimensionality reduction approaches.
We performed two control analyses to test if these results were specific to GPFA, or could also be
achieved with other dimensionality reduction approaches. First, we reduced data dimensionality
by selecting a subset of the 264 parcellated ROIs, and performing task classification using their
time series directly. For each task, we selected the top 42 ROIs (same number of latents as GPFA)
based on the correlation of their time series with the underlying task structure (elaborated in the next
paragraph). In this case classification accuracies for the 7 tasks ranged from 84.4% to 96.3% (median
90.9%), and were significantly worse than accuracies based on GPFA (signrank test, p=0.0156, Fig.
2D left, main text). Next, we computed these accuracies based on the spectral features from the
same 42 ROIs. In this case, classification accuracies were not significantly different from those based
on GPFA spectral features (median=68.1%, range=31.0−83.1%, p=0.58, Fig. 2D right, main text).
Second, we compared classification accuracies based on dimensionality reduction with principal
component analysis (PCA, Supporting Information, Section 3). In this case, we discovered no
significant difference between task classification accuracies based on GPFA versus those based on
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PCA time series (p=0.66, signrank test; Fig. 2E left, main text). In fact, our analysis revealed an
empirical relationship between PCA and GPFA time series, once the dimensions of the latter were
orthogonalized (Supporting Information, Section 3). However, classification accuracies based on PCA
spectra were systematically worse than those based on GPFA spectra (p=0.0156; Fig. 2E right, main
text). In summary, both GPFA time series and spectral features outperformed other dimensionality
reduction approaches in terms of their accuracy with classifying task-specific cognitive states.

Classification with ROI time series. As one way to reduce dimensionality, we identified a subset
of ROIs from the 264 node Power et al. parcellation, which were most representative for each
task. For this, we concatenated the 100 template subjects’ ROI series (the first 100 timepoints), and
normalized their amplitudes by z-scoring. We then fit a separate multivariate linear regression model
for each ROI series, with each sub-task time-series modeled as a box-car function, with a value of
1 at scans (time points) during the occurrence of each sub-task and 0 otherwise. For each of the 7
tasks, we ranked the ROIs based on the magnitudes (absolute values) of their regression coefficient
(β), pooled across sub-tasks for that task. The top 42 ranked ROIs (identical with the number of
GPFA components) were identified for each task. Then a pattern-matching based classification
(same as Section 3 main text) was performed on the 900 test subjects using the 42-dimensional ROI
trajectories. We performed this analysis for the 7 tasks only, excluding resting state, because resting
state fluctuations are uncontrolled and not temporally coordinated across scans and subjects. We
obtained inferior accuracies for ROI time series based classification compared to that with GPFA
time series (Fig. 2D left, main text; see previous paragraph). We repeated this analysis with a 90
node Shirer et al. parcellation, using only the top 17 ROIs for classification. In this case also, the
accuracies for the 7 tasks ranged from 59.8% to 94.7% (median 83.8%) (refer to SI Fig. S3C); again
GFPA time series-based accuracies outperformed accuracies based on ROI time series.

Predicting behavioral scores with GPFA connectivity. We predicted individual subjects’ behavior
scores based on the functional connectivity, estimated with partial correlations [8] among the 42 GPFA
components for each subject (total of 861 connection features). This analysis was limited to 871/1000
subjects for whom all of the 27 behavioral scores were available. The prediction was performed with
the connectome-based predictive modeling approach [9]. Briefly, this approach involves a preliminary
feature selection step in which the strength of each connection is correlated with behavioral scores,
across subjects (861 univariate correlations for each behavioral score). Connections with significant
(at the p<0.05 level) positive and negative correlations were identified and summed separately, to
yield the overall strength of connections positively and negatively correlated respectively, with
each behavioral score. Then a general linear model was fit with the summed positive and negative
connection strengths as independent variables, and the behavioral score as the dependent variable.
Using the regression coefficients for the model fit, the behavioral score of the test subjects was
predicted based on their, respective, connectivity values. Predictions were assessed with 10-fold
cross-validation such that both feature selection and regression model fitting was performed on
nine-tenths of the data, and behavioral scores were predicted on the left out (one-tenth) of the data,
with each fold of left out data being used in turn for the predictions.

Potential artifacts captured by fast timescale latent dimensions. Across tasks, latent dimensions
whose timeseries were least correlated across subjects (with the lowest synchronization index)
typically exhibited fast characteristic timescales (SI Fig. S2). These dimensions likely reflect potential
artifacts such as high frequency scanner artifacts or physiological noise, rather than fast neural
processes. To explore these fast timescale dimensions further, we examined the spatial maps of
the five latent dimensions with the least synchronization index, for each task. SI Fig. S6 shows an
exemplar dimension that occurred with a uniformly low synchronization index across all tasks. The
spatial map for this dimension was nearly identical across tasks, and resembled high frequency spatial
noise, with phase inverted across the hemispheres. We speculate that this dimension represents a
scanner artifact arising from field inhomogeneities that occurred consistently across subjects and
tasks. Although we applied GPFA to gray matter ROIs, GPFA applied to whole brain voxel-level
fMRI data may be able to identify and denoise contributions from other noise sources, including CSF
or white matter signals.

3 Comparison of GPFA with Principal Components Analysis (PCA)

We compared the classification accuracies obtained with GPFA dimensions against another con-
ventional dimensionality reduction technique: PCA. To compare these accuracies, we adopted the
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following procedure: First, we parcellated the data, as before with the Power et al (264 node) par-
cellation. Next, we ran PCA for each of the task scan and resting scan datasets from the “template”
subjects (n=100) to identify a set of principal components unique to each scan. We then selected the
top 42 components ranked based on their explained variance. This number was chosen to be identical
with the number of GPFA components selected; the results remained similar, even if we chose the
number of components based on 95% of cumulative explained variance (n=205-216 components,
across tasks). As before, test subjects’ data (n=900) were projected onto these principal components –
every scan of the test subjects’ data was projected into the PCA space corresponding to each template
scan data. We then performed classification of task specific cognitive states, using temporal and
spectral features of these PCA projected latent time series.

First, with a procedure identical to that outlined in Algorithm 1, we labeled the template scans
based on the closest match (highest correlation) to the template scan time series. We observed
that classification accuracies based on PCA time series ranged from 94.7%-99.9% (median 97.7%)
across the seven tasks; as before, resting state classification accuracies were the least (47%). PCA
and GPFA classification accuracies were not significantly different (p>0.05, signrank test; Fig. 2E
left, main text). Second, we performed the same classification analysis using oscillatory spectral
features of the PCA latent dimensions of the 7 tasks, again, using the same procedure as described
in the main text for the GPFA latent dimensions. In this case, we observed that classification
accuracies based on PCA spectra ranged from 18.7% − 74.0% (median 38.9%) across the seven
tasks. Moreover, classification accuracies based on PCA spectra were significantly poorer than
GPFA-spectra classification accuracies (p<0.05, Fig. 2E right, main text).

We sought to reconcile these differences in classification accuracies between PCA and GPFA. A
key difference between PCA and GPFA is the following: PCA latent dimensions are orthogonal, by
definition. On the other hand, GPFA dimensions are not constrained to be orthogonal: the columns of
the mapping matrixC are not constrained to be orthogonal. Nevertheless, a “PCA-like” mapping can
be obtained for GPFA components using an orthonormalization procedure; this process does not alter
the GPFA model-fitting procedure but involves rotating the matrix C.

To implement this orthonormalization, we apply singular value decomposition [10] to the learned C
[1]. This yields C = UDV ′, where U ∈ Rq×p and V ∈ Rp×p each have orthonormal columns and
D ∈ Rp×p is diagonal. We can then write:

y:,t = Cx:,t = U(DV x:,t) = U x̃:,t

where x̃:,t = DV x:,t ∈ Rp×1 is the orthonormalized latent dimension at time point t, and is a linear
transformation of x:,t. Since U has orthonormal columns, we can now visualize the trajectories
associated with x̃:,t in an orthonormalized space. Specifically, because the elements of x̃:,t (and
the corresponding columns of U ) are ordered by the amount of data covariance explained, these are
directly analogous to PCA [1]. This provides a way to directly compare GPFA orthonormalized
dimension trajectories with latent trajectories generated by PCA.

As with GPFA, we visualised the top two most representative latent dimensions of PCA and orthonor-
malized GPFA (SI Fig. S3E shows for Motor and Social cognition tasks). GPFA trajectories in this
orthonormalized space, were remarkably similar to PCA trajectories; the mirror symmetry that oc-
curred in some trajectories is a consequence of the fact that both PCA and GPFA dimensions are sign
agnostic. This revealed a close empirical relationship between GPFA (orthonormalized) dimensions
and PCA dimensions, indicating that both carry nearly identical temporal information. Because
the orthonormalized dimension (x̃:,t) is a linearly transformed version of its non-orthonormalized
counterpart x̃:,t, it is not surprising that classification accuracies based on the latent dimension
time series were not significantly different between PCA and GPFA. On the other hand, unlike
the non-orthonormalized GPFA dimensions, the orthonormalized dimensions reflected a mixture
of autocovariance timescales and, therefore, no longer exhibited the smooth trajectories apparent
in the GPFA dimensions (compare with SI Fig. S1C,E last row). Therefore, spectral content (that
strongly depends on temporal autocovariance) was likely to be significantly different in the GPFA
(non-orthogonalized) and PCA dimensions, which could explain the difference in classification
accuracies between GPFA and PCA, based on spectral features.
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4 Predicting cognitive decline in MCI patients

Feature extraction. In order to classify patients with mild cognitive impairment (MCI) who pro-
gressed to develop Alzheimer’s dementia (MCIc), from those who did not (MCIs), we employed
the following features. First, we computed zero-lag partial correlations among the GPFA latent
dimensions, separately for each MCIc and MCIs patient; PC was computed using the partialcorr
function in Matlab. With 77 latent dimensions, and because the PC matrix is symmetric, this feature
space contained 2926 features comprising the lower triangular entries of the PC matrix; diagonal
values (all 1-s) were excluded. Next we computed lagged (lag-1) covariance (LC) among the differ-
ent GPFA dimensions. These were computed with the mrdivide function in Matlab, as X1(X0)

+,
where X0 denotes the latent timeseries, X1 denotes the lag-1 latent time series, and + denotes a
pseudoinverse operation. With 77 latent dimensions, and because the LC matrix is not (generally)
symmetric, this feature space contained 5929 features comprising all entries of the LC matrix. Thus,
the SVM classification and recursive feature elimination were performed in a feature space with 8855
dimensions.

Distinguishing MCI-converters from MCI-stable patients. We used a support vector machine
(SVM) classifier, using the fitclinear function in Matlab, to distinguish MCIc from MCIs patients.
From the sample of data analyzed (23 MCIc and 72 MCIs patients), one MCIc subject was excluded
because of corrupted imaging data. Due to the imbalance of class labels in the data (now, 22 MCIc
and 72 MCIs patients) a balanced classes approach, with an equal number of MCIc (n=22) and MCIs
(n=22) subjects, was used prior to classification, to avoid classifier bias. Across 100 runs of SVM
training and testing, 22 MCIs subjects pseudo randomly sampled from the pool of 72, as well as all
22 MCIc subjects were used. Each MCIs subject was sampled at least once every 4 runs. Therefore,
across runs, the minority class (MCIc) was over sampled and the MCIs data were sampled so that
each subjects’ scan was sampled at least 25 times, with some subjects’ scans randomly sampled with
higher frequency. For leave-one-out cross-validation within each of 100 runs of the SVM, one pair of
subjects (1 MCIc and 1 MCIs) was iteratively left out for testing, with the remaining subjects being
used to train the model. Leave-one-out cross-validation accuracies were averaged across the 100 runs.
The SVM’s objective function was minimized with stochastic gradient descent. The regularization
term strength of the linear classifier, lambda, was set at its default value of 1/n, where n is the training
sample size. To test whether classification accuracies were significantly above chance, we performed
a permutation test by shuffling the labels of the MCIc and MCIs subjects 100 times before running
the classification analyses. In this case, we obtained a null distribution whose median accuracy was
0.50 and not significantly different from chance. p-values reported correspond to the proportion of
values of the null distribution that exceeded the classifier’s accuracy.

Next, we employed SVM-based recursive feature elimination (RFE) on balanced classes to find a
minimal set of features that provided the highest generalization accuracy; details regarding the RFE
technique can be found in [11]. Briefly, RFE is an iterative technique that repeatedly retrains the
SVM, eliminating a subset of features with the lowest SVM weights on each iteration. The process is
repeated until all but one of the features remains, following which the minimal set of features that
provide the maximum generalization accuracy are identified. This procedure was repeated 75 times
for random groupings of training and testing data, and generalization accuracy was averaged across
these runs.

Predicting Clinical Dementia Rating (CDR) scores based on GPFA features. To predict the
CDR-SOB scores of the subjects based on their fMRI GPFA dimensions, we performed lasso
regression wherein each feature set – either power spectral density features (2464x1) or lagged and
partial correlation features, concatenated (8855x1=(5929+2926)x1) – was the predictor variable and
the CDR-SOB score was the response variables. A lasso regression model (L1 norm penalty) enabled
penalizing over-fitting, as the number of features far exceeded the number of scans. We confirmed
that the linear model was an appropriate fit by testing for normality of residuals. For fitting the lasso
model, we pooled the data (fMRI and behavioral data) across all MCI patients (23 MCIc and 72
MCIs). One MCI subject with corrupted imaging data and two subjects for whom the CDR-SOB
scores were not available were excluded from this analysis. Thus, we analyzed a total of 92 MCI
patients’ data. Prediction accuracy (correlations) was assessed with a k-fold cross validation approach,
with values of k = 2,4,23,46 and 92. For the training data, regression coefficients were computed
for 50 λ values chosen in a geometric progression (lasso function in Matlab). Of these, we selected
the regression coefficients corresponding to the λ which generated the least mean square error for
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predictions on the training data. Using these coefficients, the CDR-SOB score for the left out test fold
was predicted. The correlation between the actual and predicted CDR-SOB scores was computed
with Pearson correlation (corr function of Matlab).

5 Reproducing the results

Our study used two publicly available functional MRI datasets.

i) fMRI data from 1000 healthy participants from the Human Connectome Project (HCP) database is
publicly available at:
https://www.humanconnectome.org/study/hcp-young-adult/document/
1200-subjects-data-release

Subjects’ de-identified data were analyzed in this paper, and their HCP database id numbers are
reported in SI Table S1.

ii) fMRI data from 95 MCI patients from the Alzheimers Disease Neuroimaging Initiative (ADNI)
database is publicly available at: http://adni.loni.usc.edu/data-samples/access-data/

Subject labels (as cognitively normal, MCI or AD) are also available with documentation that
accompanies the data.

Code for reproducing the results reported here is available at:
https://figshare.com/s/22d2462b33494d79f689
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Figure S1: Spatial maps and trajectories for the most representative latent components A
Spatial maps of the most representative latent dimension for the working memory task. (Top)
Lateral views of the left and right hemispheres. For clarity, spatial maps have been shown separately
for positive (top) and negative(bottom) values. (Middle) Time series for the corresponding latent
dimensions for each task. Gray: time series for individual subjects; yellow: average time series of
template subjects. (Bottom) Trajectories showing the joint activity for the most representative (x-axis)
and second most representative (y-axis) latent dimensions for each task. Yellow and gray traces show
average trajectories of template and test data, respectively. Red shading: normalized distribution
of occupancy of the joint activity in the GPFA space spanned by these latent dimensions (n=900
subjects). Timescales corresponding to each dimension are marked along the respective axes. B, C,
D, E, F. Same as in panel A but for the language (L), motor (M), gambling (G), social cognition (S),
relational processing (R) and emotion processing (E) tasks, respectively.

9



Figure S2: Distribution of characteristic timescales and synchronization indices across all seven
tasks and resting state. For each panel except the last (resting state), the top sub-panel depicts the
distribution (histogram) of characteristic timescales. The lower sub-panel depicts the synchronization
index – the average correlation among time series across subjects for each GPFA latent dimension
– as a function of the characteristic timescale for that dimension. Computing the synchronization
index across subjects is not meaningful for resting state scans, because resting brain fluctuations are
sporadic and not synchronized across subjects. Other conventions are the same as in Fig. 2C (main
text).

10



Figure S3: Control analyses. A-C Classification accuracies with an alternative parcellation. A Same
as in Fig. 1B (main text), but determining optimal dimensions based on the Shirer et al [3] 90-node
parcellation. B Same as in Fig. 2B (main text), but confusion matrix with GPFA trajectories extracted
from the Shirer et al 90-node parcellation. C Comparison of task classification accuracies using
GPFA trajectories and ROI time series, for Shirer et al parcellation. Color code is the same as in
panel A. D Average accuracy of classification between sub-tasks for each task using GPFA latent time
series (see SI section 2 for details). E Comparing latent trajectories between orthonormalized-GPFA
dimensions (left column) and PCA (right column), for two representative tasks: motor (top), and
social processing (bottom). Other conventions are the same as in Fig. 3A (main text).
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Figure S4: Slow oscillations in GPFA latents Oscillatory component of GPFA spectra obtained
following removal of the fractal component with IRASA [4], across all 7 tasks and resting state.
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Figure S5: Classification of MCI patient scans GPFA-based partial correlation connectivity features
that maximally distinguish (features with ranks 2 and 3) MCIc from MCIs patients. Dashed oval:
fronto-insular cortex; Solid circles: anterior cingulate cortex .
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Figure S6: Spatial maps of a potential artifact dimension Spatial maps of a latent dimension
whose timeseries exhibited among the lowest values of the synchronization index across all tasks.
The map is nearly identical across tasks, and resembles high frequency spatial noise, possibly due to
scanner field inhomogeneities. Top and bottom rows: Lateral views of the left and right hemispheres,
respectively. For clarity, spatial maps have been limited to positive and negative values in the top and
bottom rows, respectively.
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Table S1: Unique identifiers of 1000 subjects whose scans were analyzed from the HCP database.
Red ids denote subjects in the template dataset.

 

492754 120212 100206 111514 130417 140925 152225 162733 175136 188145 200109 211619 285345 353740 429040 586460 671855 753251 837964 910241 

495255 120515 100307 111716 130518 141119 152427 162935 175237 188347 200210 211720 285446 355239 432332 587664 672756 756055 841349 910443 

497865 120717 100408 112112 130619 141422 152831 163129 175338 188448 200311 211821 286347 356948 433839 588565 673455 757764 843151 911849 

499566 101915 100610 112314 130720 141826 153025 163331 175439 188549 200513 211922 286650 358144 436239 589567 675661 759869 844961 912447 

500222 121416 101006 112516 130821 142828 153126 163432 175742 188751 200614 212015 287248 360030 436845 590047 677766 761957 845458 917255 

114621 121618 101107 112920 130922 143224 153227 163836 176037 189349 200917 212116 290136 361234 441939 592455 677968 763557 849264 917558 

506234 121921 102008 113215 131217 143325 153429 164030 176239 189450 201111 212217 293748 361941 445543 594156 679568 765056 849971 919966 

510326 122317 102109 113316 131419 143830 153631 164131 176441 189652 201414 212318 295146 365343 448347 597869 679770 765864 852455 922854 

512835 122620 102311 113619 131722 144125 153833 164636 176542 190031 201515 212419 297655 366042 449753 598568 680250 767464 856463 923755 

513736 122822 102513 113922 131823 144428 153934 164939 176845 191033 201818 212823 298051 366446 453441 599065 680452 769064 856766 926862 

517239 123117 102614 114116 131924 144731 154229 165436 177140 191235 202113 213017 298455 368753 453542 599469 680957 770352 856968 927359 

519950 123420 102715 114217 132017 144832 154330 165638 177241 191336 202719 213421 299154 371843 454140 599671 683256 771354 857263 930449 

520228 123521 102816 114318 133019 144933 154431 165941 177645 191841 202820 213522 299760 376247 456346 601127 686969 773257 859671 932554 

522434 165032 103111 114419 133625 145127 154532 166438 178142 191942 203418 214019 300618 377451 459453 604537 687163 774663 861456 933253 

523032 165840 103212 115724 133827 145632 154734 166640 178243 192035 203923 214221 300719 378756 461743 609143 688569 779370 865363 942658 

114823 185846 103414 117021 133928 145834 154835 167036 178647 192136 204016 214423 303119 378857 463040 611938 690152 782561 867468 943862 

524135 223929 103515 118831 134021 146129 154936 167238 178748 192237 204218 214524 303624 379657 465852 613538 692964 783462 869472 947668 

525541 224022 103818 119025 134223 146331 155231 167440 178849 192439 204319 214726 304020 380036 467351 614439 693764 784565 870861 951457 

529549 227432 104012 120414 134324 146432 155635 167743 178950 192540 204420 217126 304727 381038 468050 615744 694362 786569 871762 952863 

529953 228434 104416 122418 134425 146533 155938 168139 179245 192641 204521 217429 305830 381543 469961 616645 695768 788674 871964 955465 

530635 231928 104820 123723 134728 146735 156031 168240 179346 192843 204622 219231 307127 382242 473952 617748 698168 788876 872562 957974 

531536 233326 105014 123824 134829 146836 156233 168341 180129 193239 205119 220721 308129 385046 475855 618952 700634 789373 872764 958976 

536647 236130 105115 123925 135124 146937 156334 168745 180230 193845 205220 221319 308331 385450 479762 620434 701535 792564 873968 959574 

540436 237334 105216 124220 135225 147030 156435 168947 180432 194140 205725 227533 309636 386250 480141 622236 702133 792766 877269 962058 

541943 289555 105620 124422 135528 147636 156536 169040 180533 194443 205826 238033 310621 387959 481042 623844 704238 792867 878776 965367 

545345 329440 105923 124624 135629 147737 156637 169444 180735 194645 206222 239136 311320 389357 481951 626648 705341 793465 878877 965771 

114924 552544 106016 124826 135730 148032 157336 169545 180836 194746 206323 239944 314225 390645 485757 627549 707749 800941 880157 966975 

548250 553344 106319 125222 135932 148133 157437 169747 180937 194847 206525 245333 316633 391748 486759 627852 709551 802844 882161 969476 

115017 555348 106521 125424 136227 148335 157942 169949 181131 195041 206727 246133 316835 392447 510225 628248 715041 803240 884064 970764 

115219 555651 106824 125525 136631 148436 158035 170631 181232 195445 206828 248339 317332 392750 513130 633847 715950 809252 885975 971160 

115320 557857 107018 126325 136732 148840 158136 170934 181636 195849 206929 249947 318637 393247 516742 634748 720337 810843 886674 972566 

115825 559053 107321 126426 136833 148941 158338 171330 182436 195950 207123 250427 320826 393550 518746 635245 723141 812746 887373 973770 

101309 561242 107422 126628 137027 149236 158540 171532 182739 196144 207426 250932 321323 394956 519647 638049 724446 814548 888678 978578 

116221 561444 107725 127226 137128 149337 158843 171633 183034 196346 208024 251833 322224 395251 541640 644044 725751 814649 889579 979984 

116524 562345 108020 127327 137229 149539 159138 172029 183337 196750 208125 255639 325129 395756 550439 644246 727553 815247 891667 983773 

116726 562446 108121 127630 137532 149741 159239 172130 183741 196851 208226 255740 329844 395958 552241 645450 728454 816653 894067 984472 

117122 565452 108222 127832 137633 149842 159340 172332 185038 197348 208327 256540 330324 397154 555954 645551 729557 818455 894673 987074 

117324 566454 108323 127933 137936 150524 159441 172433 185139 197550 209127 257542 333330 397760 558657 647858 731140 818859 894774 987983 

117930 567052 108525 128026 138130 150625 159744 172534 185341 198047 209228 257845 334635 397861 558960 654350 732243 820745 896778 989987 

118023 567961 108828 128127 138231 150726 159946 172938 185442 198249 209329 257946 336841 401422 559457 654552 734045 825048 896879 990366 

118124 568963 109123 128632 138332 150928 160123 173334 185947 198350 209834 263436 339847 406432 561949 654754 735148 825553 898176 991267 

118225 570243 109325 128935 138534 151021 160729 173435 186040 198451 209935 268749 341834 406836 567759 656253 737960 825654 899885 992673 

118528 571144 109830 129028 138837 151223 160830 173536 186141 198653 210011 268850 342129 412528 578057 656657 742549 826353 901038 992774 

101410 572045 110007 129129 139233 151324 161327 173637 186444 198855 210112 270332 346137 413934 580650 657659 744553 826454 901139 993675 

118730 573249 110411 129331 139435 151425 161630 173738 186545 199150 210415 274542 346945 414229 580751 660951 748258 828862 901442 994273 

118932 573451 110613 129634 139637 151526 161731 173839 186848 199352 210617 275645 348545 415837 581349 662551 749058 832651 902242 996782 

119126 576255 111009 129937 139839 151627 161832 173940 187143 199453 211114 280739 349244 419239 581450 663755 749361 833148 904044 668361 

119732 579665 111211 130013 140117 151728 162026 174437 187345 199655 211215 281135 350330 421226 583858 664757 751348 833249 905147 685058 

119833 579867 111312 130114 140319 151829 162228 174841 187547 199958 211316 283543 352132 422632 585256 665254 751550 835657 907656 872158 

120111 580044 111413 130316 140824 151930 162329 175035 187850 200008 211417 284646 352738 424939 585862 667056 753150 837560 908860 937160 
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Table S2: Description of tasks performed inside the fMRI scanner.

Task Name/Key Description Subtasks

Resting state (rs) Resting state with eyes _
open, relaxed fixation.

Working Memory (W) N-back working memory, 0bk: 0-back working memory blocks
body parts, tools, places 2bk: 2-back working memory blocks

Language (L) Sentences, stories, Math: blocks for solving math problems
mental arithmetic(auditory) Story: blocks with story-based questions

Motor (M) Hand, foot, Hand: left, right finger movement blocks
tongue movements Foot: left, right toe movement blocks

Social Cognition (S) Interpret social vs. Mental: blocks with interacting shapes
random interaction Random: blocks with random movement

Gambling (G) Reward, punishment, Win: blocks with mostly reward
decision making Loss: blocks with mostly loss

Relational Processing (R) Higher-order cognition Relation: relational processing blocks
Match: shape, texture matching blocks

Emotion Processing (E) Valence judgements (faces) Fear: emotional face matching blocks
and shape recognition Neutral: shape matching blocks
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Table S3: Behavioral scores and descriptions.

Index Abbreviation Age: adj/unadj Description

1 MMSE_Score - Mini Mental Status Exam Total Score
2 PSQI_Score - Pittsburgh Sleep Questionnaire Total Score
3 ReadEng Adjusted NIH Toolbox Oral Reading Recognition Test Score
4 PicVocab Adjusted NIH Toolbox Picture Vocabulary Test Score
5 Endurance Adjusted NIH Toolbox 2-minute Walk Endurance Test Score
6 Strength Adjusted NIH Toolbox Grip Strength Test Score
7 GaitSpeed_Comp - NIH Toolbox 4-Meter Walk Gait Speed Test:

Computed Score
8 Dexterity Adjusted NIH Toolbox 9-hole Pegboard Dexterity Test Score
9 PicSeq Adjusted NIH Toolbox Picture Sequence Memory Test Score
10 CardSort Adjusted NIH Toolbox Dimensional Change Card Sort

Test Score
11 Flanker Adjusted NIH Toolbox Flanker Inhibitory Control and Attention

Test Score
12 ProcSpeed Adjusted NIH Toolbox Pattern Comparison Processing Speed

Test Score
13 DDisc_200 - Delay Discounting: Area Under the Curve for

Discounting of $200
14 DDisc_40K - Delay Discounting: Area Under the Curve for

Discounting of $40,000
15 FluInt_CR - Penn Progressive Matrices: Number of Correct

Responses
16 FluInt_SI - Penn Progressive Matrices: Total Skipped Items
17 FluInt _RTCR - Penn Progressive Matrices: Median Reaction Time for

Correct Responses
18 VSPLOT_TC - Variable Short Penn Line Orientation: Total Number

Correct
19 VSPLOT_OFF - Variable Short Penn Line Orientation: Total Positions

Off for All Trials
20 VSPLOT_CRTE - Variable Short Penn Line Orientation: Median Reaction

Time divided by Expected Number of Clicks for
Correct Trials

21 SCPT_SEN - Short Penn Continuous Performance Test: Sensitivity
22 SCPT_SPEC - Short Penn Continuous Performance Test: Specificity
23 SCPT_TPRT - Short Penn CPT Median Response Time for True

Positive Responses
24 SCPT_LRNR - Short Penn Continuous Performance Test: Longest

Run of Non-Responses
25 ListSort Adjusted NIH Toolbox List Sorting Working Memory Test Score
26 IWRD_TOT - Penn Word Memory Test: Total Number of Correct

Responses
27 IWRD_RTC - Penn Word Memory Test: Median Reaction Time for

Correct Responses
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