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Abstract

We study secure and privacy-preserving data analysis based on queries executed
on samples from a dataset. Trusted execution environments (TEEs) can be used
to protect the content of the data during query computation, while supporting
differential-private (DP) queries in TEEs provides record privacy when query
output is revealed. Support for sample-based queries is attractive due to privacy
amplification since not all dataset is used to answer a query but only a small subset.
However, extracting data samples with TEEs while proving strong DP guarantees
is not trivial as secrecy of sample indices has to be preserved. To this end, we
design efficient secure variants of common sampling algorithms. Experimentally
we show that accuracy of models trained with shuffling and sampling is the same for
differentially private models for MNIST and CIFAR-10, while sampling provides
stronger privacy guarantees than shuffling.

1 Introduction

Sensitive and proprietary datasets (e.g., health, personal and financial records, laboratory experiments,
emails, and other personal digital communication) often come with strong privacy and access control
requirements and regulations that are hard to maintain and guarantee end-to-end. The fears of
data leakage may block datasets from being used by data scientists and prevent collaboration and
information sharing between multiple parties towards a common good (e.g., training a disease
detection model across data from multiple hospitals). For example, the authors of [11, 14, 37] show
that machine learning models can memorize individual data records, while information not required
for the agreed upon learning task may be leaked in collaborative learning [28]. To this end, we are
interested in designing the following secure data query framework:

• A single or multiple data owners contribute their datasets to the platform while expecting
strong security privacy guarantees on the usage of their data;

• The framework acts as a gatekeeper of the data and a computing resource of the data scientist:
it can compute queries on her behalf while ensuring that data is protected from third parties;

• Data scientist queries the data via the framework via a range of queries varying from
approximating sample statistics to training complex machine learning models.

The goal of the framework is to allow data scientist to query the data while providing strong privacy
guarantees to data owners on their data. The framework aims to protect against two classes of
attackers: the owner of the computing infrastructure of the framework and the data scientist.

The data scientist may try to infer more information about the dataset than what is available through
a (restricted) class of queries supported by the framework. We consider the following two collusion
scenarios. As the framework may be hosted in the cloud or on premise of the data scientist’s
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organization, the infrastructure is not trusted as one can access the data without using the query
interface. The second collusion may occur in a multi-data-owner scenario where the data scientist
could combine the answer of a query and data of one of the parties to infer information about other
parties’ data. Hence, the attacker may have auxiliary information about the data.

In the view of the above requirements and threat model we propose Private Sampling-based Query
Framework. It relies on secure hardware to protect data content and restrict data access. Additionally,
it supports sample-based differentially private queries for efficiency and privacy. However, naive
combination of these components does not lead to an end-to-end secure system for the following
reason. Differential privacy guarantees for sampling algorithms (including machine learning model
training that build on them [3, 26, 45]) are satisfied only if the sample is hidden. Unfortunately as we
will see this is not the case with secure hardware due to leakage of memory access patterns. To this
end, we design novel algorithms for producing data samples using two common sampling techniques,
Sampling without replacement and Poisson, with the guarantee that whoever observes data access
patterns cannot identify the indices of the dataset used in the samples. We also argue that if privacy of
data during model training is a requirement then sampling should be used instead of the default use of
shuffling since it incurs smaller privacy loss in return to similar accuracy as we show experimentally.
We now describe components of our Private Sampling-based Query Framework.

Framework security: In order to protect data content and computation from the framework host,
we rely on encryption and trusted execution environments (TEE). TEEs can be enabled using secure
hardware capabilities such as Intel SGX [20] which provides a set of CPU instructions that gives
access to special memory regions (enclaves) where encrypted data is loaded, decrypted and computed
on. Importantly access to this region is restricted and data is always encrypted in memory. One can
also verify the code and data that is loaded in TEEs via attestation. Hence, data owners can provide
data encrypted under the secret keys that are available only to TEEs running specific code (e.g.,
differentially private algorithms). Some of the limitations of TEEs include resource sharing with the
rest of the system (e.g., caches, memory, network), which may lead to side-channels [10, 19, 33].
Another limitation of existing TEEs is the amount of available enclave memory (e.g., Intel Skylake
CPUs restrict the enclave page cache to 128MB). Though one can use system memory, the resulting
memory paging does not only produce performance overhead but also introduces more memory
side-channels [44].

Sample-based data analysis: Data sampling has many applications in data analysis from returning
an approximate query result to training a model using mini-batch stochastic gradient descent (SGD).
Sampling can be used for approximating results when performing the computation on the whole
dataset is expensive (e.g., graph analysis or frequent itemsets [35, 36]) 2 or not needed (e.g., audit
of a financial institution by a regulator based on a sample of the records). We consider various uses
of sampling, including queries that require a single sample, multiple samples such as bootstrapping
statistics, or large number of samples such as training of a neural network.

Sampling-based queries provide: Efficiency: computing on a sample is faster than on the whole
dataset, which fits the TEE setting, and can be extended to process dataset samples in parallel with
multiple TEEs. Expressiveness: a large class of queries can be answered approximately using
samples, furthermore sampling (or mini-batching) is at the core of training modern machine learning
models. Privacy: a query result from a sample reveals information only about the sample and not
the whole dataset. Though intuitively privacy may come with sampling, it is not always true. If a
data scientist knows indices of the records in the sample used for a query, then given the query result
they learn more about records in that sample than about other records. However if sample indices are
hidden then there is plausible deniability. Luckily, differential privacy takes advantage of privacy
from sampling and formally captures it with privacy amplification [8, 21, 25].

Differential privacy: Differential privacy (DP) is a rigorous definition of individual privacy when
a result of a query on the dataset is revealed. Informally, it states that a single record does not
significantly change the result of the query. Strong privacy can be guaranteed in return for a drop in
accuracy for simple statistical queries [13] and complex machine learning models [3, 7, 26, 43, 45].
DP mechanisms come with a parameter ε, where higher ε signifies a higher privacy loss.

2We note that we use sampling differently from statistical approaches that treat the dataset D as a sample
from a population and use all records in D to estimate parameters of the underlying population.
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Amplification by sampling is a well known result in differential privacy. Informally, it says that
when an ε-DP mechanism is applied on a sample of size γn from a dataset D of size n, γ < 1, then
the overall mechanism is O(γε)-DP w.r.t. D. Small ε parameters reported from training of neural
networks using DP SGD [3, 26, 45] make extensive use of privacy amplification in their analysis.
Importantly, for this to hold they all require the sample identity to be hidden.

DP algorithms mentioned above are set in the trusted curator model where hiding the sample is not
a problem as algorithm execution is not visible to an attacker (i.e., the data scientist who obtains
the result in our setting). TEEs can be used only as an approximation of this model due to the
limitations listed above: revealing memory access patterns of a differentially-private algorithm can be
enough to violate or weaken its privacy guarantees. Sampling-based DP algorithms fall in the second
category as they make an explicit assumption that the identity of the sample is hidden [42, 24]. If not,
amplification based results cannot be applied. If one desires the same level of privacy, higher level of
noise will need to be added which would in turn reduce the utility of the results.

Differential privacy is attractive since it can keep track of the privacy loss over multiple queries.
Hence, reducing privacy loss of individual queries and supporting more queries as a result, is an
important requirement. Sacrificing on privacy amplification by revealing sample identity is wasteful.

Data-oblivious sampling algorithms Query computation can be supported in a TEE since samples
are small compared to the dataset and can fit into private memory of a TEE. However, naive
implementation of data sampling algorithms is inefficient (due to random access to memory outside
of TEE) and insecure in our threat model (since sample indices are trivially revealed). Naively hiding
sample identity would be to read a whole dataset and only keep elements whose indices happen to
be in the sample. This would require reading the entire dataset for each sample (training of models
usually requires small samples, e.g., 0.01% of the dataset). This will also not be competitive in
performance with shuffling-based approaches used today.

To this end, we propose novel algorithms for producing data samples for two popular sampling
approaches: sampling without replacement and Poisson. Samples produced by shuffling-based
sampling contain distinct elements, however elements may repeat between the samples. Our algo-
rithms are called data-oblivious [15] since the memory accesses they produce are independent of
the sampled indices. Our algorithms are efficient as they require only two data oblivious shuffles
and one scan to produce n/m samples of size m that is sufficient for one epoch of training. An
oblivious sampling algorithm would be used as follows: n/m samples are generated at once, stored
individually encrypted, and then loaded in a TEE on a per-query request.

Contributions: (i) We propose a Private Sampling-based Query Framework for querying sensitive
data; (ii) We use differential privacy to show that sampling algorithms are an important building block
in privacy-preserving frameworks; (iii) We develop efficient and secure (data-oblivious) algorithms
for two common sampling techniques; (iv) We empirically show that for MNIST and CIFAR-10
using sampling algorithms for generating mini-batches during differentially-private training achieves
the same accuracy as shuffling, even though sampling incurs smaller privacy loss than shuffling.

2 Notation and Background

A dataset D contains n elements; each element e has a key and a value; keys are distinct in [1, n]. If a
dataset does not have keys, we use its element index in the array representation of D as a key.

Trusted Execution Environment TEE provides strong protection guarantees to data in its private
memory: it is not visible to an adversary who can control everything outside of the CPU, e.g., even
if it controls the operating system (OS) or the VM. The private memory of TEEs (depending on
the side-channel threat model) is restricted to CPU registers (few kilobytes) or caches (32MB) or
enclave page cache (128MB). Since these sizes will be significantly smaller than usual datasets, an
algorithm is required to store the data in the external memory. Since external memory is controlled
by an adversary (e.g., an OS), it can observe its content and the memory addresses requested from
a TEE. Probabilistic encryption can be used to protect the content of data in external memory: an
adversary seeing two ciphertexts cannot tell if they are encryptions of the same element or a dummy
of the same size as a real element.

Though the size of primary memory is not sufficient to process a dataset, it can be leveraged for
sample-based data analysis queries as follows. When a query requires a sample, it loads an encrypted
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sample from the external memory into the TEE, decrypts it, performs a computation (for example,
SGD), discards the sample, and either updates a local state (for example, parameters of the ML model
maintained in a TEE) and proceeds to the next sample, or encrypts the result of the computation
under data scientist’s secret key and returns it.

Addresses (or memory access sequence) requested by a TEE can leak information about data. Leaked
information depends on adversary’s background knowledge (attacks based on memory accesses have
been shown for image and text processing [44]). In general, many (non-differentially-private and
differentially-private [4]) algorithms leak their access pattern including sampling (see §4.1).

Data-oblivious algorithms access memory in a manner that appears to be independent of the sensi-
tive data. For example, sorting networks are data-oblivious as compare-and-swap operators access
the same array indices independent of the array content, in contrast to quick sort. Data-oblivious algo-
rithms have been designed for array access [15, 16, 39], sorting [18], machine learning algorithms [32]
and several data structures [41]; while this work is the first to consider sampling algorithms. The
performance goal of oblivious algorithms is to reduce the number of additional accesses to external
memory needed to hide real accesses.

Our sampling algorithms in §4 rely on an oblivious shuffle oblshuffle(D) [31]. A shuffle rearranges
elements according to permutation π s.t. element at index i is placed at location π[i] after the shuffle.
An oblivious shuffle does the same except the adversary observing its memory accesses does not
learn π. The Melbourne shuffle [31] makes O(cn) accesses to external memory with private memory
of size O( c

√
n). This overhead is constant since non-oblivious shuffle need to make n accesses.

Oblivious shuffle can use smaller private memory at the expense of more accesses (see [34]). It is
important to note that while loading data into private memory, the algorithm re-encrypts the elements
to avoid trivial comparison of elements before and after the shuffle.

Differential privacy A randomized mechanismM : D → R is (ε, δ) differentially private [13]
if for any two neighbouring datasets D0,D1 ∈ D and for any subset of outputs R ∈ R it holds
that Pr[M(D0) ∈ R] ≤ eε Pr[M(D1) ∈ R] + δ. We use substitute-one neighbouring relationship
where |D0| = |D1| and D0,D1 are different in one element. This relationship is natural for sampling
without replacement and data-oblivious setting where an adversary knows |D|. As we see in §4.2
hiding the size of Poisson sampling in our setting is non-trivial and we choose to hide the number of
samples instead.

Gaussian mechanism [13] is a common way of obtaining differentially private variant of real val-
ued function f : D → R. Let ∆f be the L2-sensitivity of f , that is the maximum distance
‖f(D0)− f(D1)‖2 between any D0 and D1. Then, Gaussian noise mechanism is defined by
M(D) = f(D) +N (0, σ2) where N (0, σ2∆2

f ) is a Gaussian distribution with mean 0 and standard
deviation σ∆f . The resulting mechanism is (ε, δ)-DP if σ =

√
2 log(1.25/δ)/ε for ε, δ ∈ (0, 1).

Sampling methods Algorithms that operate on data samples often require more than one sample.
For example, machine learning model training proceeds in epochs where each epoch processes
multiple batches (or samples) of data. The number of samples k and sample size m are usually
chosen such that n ≈ km so that every data element has a non-zero probability of being processed
during an epoch. To this end, we define samplesA(D, q, k) that produces samples s1, s2, . . . , sk using
a sampling algorithm A and parameter q, where si is a set of keys from [1, n]. For simplicity we
assume that m divides n and k = n/m. We omit stating the randomness used in samplesA but
assume that every call uses a new seed. We will now describe three sampling methods that vary based
on element distribution within each sample and between the samples.

Sampling without replacement (SWO) produces a sample by drawingm distinct elements uniformly at
random from a set [1, n], hence probability of a sample s is 1

n
1

n−1 · · ·
1

n−m+1 . Let Fn,mSWO be the set of
all SWO samples of size m from domain [1, n]; samplesSWO(D,m, k) draws k samples from Fn,mSWO
with replacement: elements cannot repeat within the same sample but can repeat between the samples.
Poisson Sampling (Poisson) s is constructed by independently adding each element from [1, n] with
probability γ, that is Pr(j ∈ s) = γ. Hence, probability of a sample s is Prγ(s) = γ|s|(1− γ)n−|s|.
Let Fn,γPoisson be the set of all Poisson samples from domain [1, n]. Then, samplesPoisson(D, γ, k)
draws k elements with replacement from Fn,γPoisson. The size of a Poisson sample is a random variable
and γn on average. Sampling via Shuffle is common for obtaining mini-batches for SGD in practice.
It shuffles D and splits it in batches of size m. If more than k samples are required, the procedure is
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Table 1: Parameters (ε′, δ′) of mechanisms that use (ε, δ)-DP mechanismM with one of the three
sampling techniques with a sample of size m from a dataset of size n and γ = m/n for Poisson
sampling, where ε′ < 1, δ′′ > 0, T is the number of samples in an epoch, E is the number of epochs.

Sampling mechanism # analyzed samples of size m
T ≤ n/m T = En/m, E ≥ 1

Shuffling ε, δ O(ε
√
E log(1/δ′′)), Eδ + δ′′)

Poisson, SWO O(εγ
√
T log(1/δ′′)), Tγδ + δ′′)

Poisson & Gaussian distribution [3] O(γε
√
T ), δ

repeated. Similar to SWO or Poisson, each sample contains distinct elements, however in contrast to
them, a sequence of k samples contain distinct elements between the samples.

3 Privacy via Sampling and Differential privacy

Privacy amplification of differential privacy captures the relationship of performing analysis over
a sample vs. whole dataset. LetM be a randomized mechanism that is (ε, δ)-DP and let sample
be a random sample from dataset D of size γn, where γ < 1 is a sampling parameter. LetM′ =
M◦ sample be a mechanism that appliesM on a sample of D. Then, informally,M′ is (O(γε), γδ)-
DP [8, 25].

Sampling For Poisson and sampling without replacement ε′ ofM′ is log(1 + γ(eε − 1)) [25] and
log(1 +m/n(eε − 1)) [6], respectively. We refer the reader to Balle et al. [6] who provide a unified
framework for studying amplification of these sampling mechanisms. Crucially all amplification
results assume that the sample is hidden during the analysis as otherwise amplification results cannot
hold. That is, if the keys of the elements of a sample are revealed,M′ has the same (ε, δ) asM.

Privacy loss of executing a sequence of DP mechanisms can be analyzed using several ap-
proaches. Strong composition theorem [13] states that running T (ε, δ)-mechanisms would be
(ε
√

2T log(1/δ′′) + Tε(eε − 1), T δ + δ′′)-DP, δ′′ ≥ 0. Better bounds can be obtained if one takes
advantage of the underlying DP mechanism. Abadi et al. [3] introduce a moment account that
leverages the fact thatM′ uses Poisson sampling and applies Gaussian noise to the output. They
obtain ε′ = O(γε

√
T ), δ′ = δ.

Shuffling Analysis of differential private parameters ofM′ that operates on samples obtained from
shuffling is different. Parallel composition by McSherry [27] can be seen as the privacy “amplification”
result for shuffling. It states that running T algorithms in parallel on disjoint samples of the dataset
has ε′ = maxi∈[1,T ] εi where εi is the parameter of the ith mechanism. It is a significantly better
result than what one would expect from using DP composition theorem, since it relies on the fact that
samples are disjoint. If one requires multiple passes over a dataset (as is the case with multi-epoch
training), strong composition theorem can be used with parallel composition.

Sampling vs. Shuffling DP Guarantees We bring the above results together in Table 1 to compare
the parameters of several sampling approaches. As we can see sampling based approaches for general
DP mechanisms give an order of O(

√
m/n) smaller epsilon than shuffling based approaches. It is

important to note that sampling-based approaches assume that the indices (or keys) of the dataset
elements used by the mechanism remain secret. In §4 we develop algorithms with this property.

Differentially private SGD We now turn our attention to a differentially private mechanism for
mini-batch stochastic gradient descent computation. The mechanism is called NoisySGD [7, 38]
and when applied instead of non-private mini-batch SGD allows for a release of a machine learning
model with differential privacy guarantees on the training data. For example, it has been applied in
Bayesian learning [43] and to train deep learning [3, 26, 45] and logistic regression [38] models.

It proceeds as follows. Given a mini-batch (or sample) the gradient of every element in a batch is
computed and the L2 norm of the gradient is clipped according to a clipping parameter C. Then a
noise is added to the sum of the (clipped) gradients of all the elements and the result is averaged over
the sample size. The noise added to the result is from Gaussian distribution parametrized with C and
a noise scale parameter σ: N (0, σ2C2). The noise is proportional to the sensitivity of the sum of
gradients to the value of each element in the sample. The amount of privacy budget that a single
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batch processing, also called subsampled Gaussian mechanism, incurs depends on the parameters of
the noise distribution and how the batch is sampled. The model parameters are iteratively updated
after every NoisySGD processing. The number of iterations and the composition mechanism used to
keep track of the privacy loss determine the DP parameters of the overall training process.

Abadi et al. [3] report analytical results assuming Poisson sampling but use shuffling to obtain the
samples in the evaluation. Yu et al. [45] point out the discrepancy between analysis and experimental
results in [3], that is the reported privacy loss is underestimated due to the use of shuffling. Yu et al.
proceed to analyze shuffling and sampling but also use shuffling in their experiments. Hence, though
analytically Poisson and SWO sampling provide better privacy parameters than shuffling, there is no
evidence that the accuracy is the same between the approaches in practice. We fill in this gap in §5
and show that for the benchmarks we have tried it is indeed the case.

4 Oblivious Sampling Algorithms

In this section, we develop data-oblivious algorithms for generating a sequence of samples from a
dataset D such that the total number of samples is sufficient for a single epoch of a training algorithm.
Moreover, our algorithms will access the original dataset at indices that appear to be independent
of how elements are distributed across the samples. As a result, anyone observing their memory
accesses cannot identify, how many and which samples each element of D appears in.

4.1 Oblivious sampling without replacement (SWO)

We introduce a definition of an oblivious sampling algorithm: oblivious samplesSWO(D,m) is a
randomized algorithm that returns k SWO samples from D and produces memory accesses that are
indistinguishable between invocations for all datasets of size n = |D| and generated samples.

As a warm-up, consider the following naive way of generating a single SWO sample of size m from
dataset D stored in external memory of a TEE: generate m distinct random keys from [1, n] and load
from external memory elements of D that are stored at those indices. This trivially reveals the sample
to an observer of memory accesses. A secure but inefficient way would be to load D[l] for ∀l ∈ [1, n]
and, if l matches one of the m random keys, keep D[l] in private memory. This incurs n accesses to
generate a sample of size m. Though our algorithm will also make a linear number of accesses to D,
it will amortize this cost by producing n/m samples.

The high level description of our secure and efficient algorithm for producing k is as follows. Choose k
samples from Fn,mSWO, numbering each sample with an identifier 1 to k; the keys within the samples
(up to a mapping) will represent the keys of elements used in the samples of the output. Then, while
scanning D, replicate elements depending on how many samples they should appear in and associate
each replica with its sample id. Finally, group elements according to sample ids.

Preliminaries Our algorithm relies on a primitive that can efficiently draw k samples from Fn,mSWO
(denoted via SWO.initialize(n,m)). It also provides a function SWO.samplemember(i, j) that
returns True if key j is in the ith sample and False otherwise. This primitive can be instantiated
using k pseudo-random permutations ρi over [1, n]. Then sample i is defined by the first m indices of
the permutation, i.e., element with key j is in the sample i if ρi(j) ≤ m. This procedure is described
in more detail in Appendix §A.

We will use rj to denote the number of samples where key j appears in, that is rj =
|{i | samplemember(i, j),∀i ∈ [1, k],∀j ∈ [1, n]}|. It is important to note that samples drawn
above are used as a template for a valid SWO sampling (i.e., to preserve replication of elements across
the samples). However, the final samples s1, s2, . . . , sk returned by the algorithm will be instantiated
with keys that are determined using function π′ (which will be defined later). In particular, for all
samples, if samplemember(i, j) is true then π′(j) ∈ si.
Description The pseudo-code in Algorithm 1 provides the details of the method. It starts with
dataset D obliviously shuffled according to a random secret permutation π (Line 1). Hence, el-
ement e is stored (re-encrypted) in D at index π(e.key). The next phase replicates elements
such that for every index j ∈ [1, n] there is an element (not necessarily with key j) that is
replicated rj times (Lines 4-14). The algorithm maintains a counter l which keeps the cur-
rent index of the scan in the array and enext which stores the element read from lth index.
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Algorithm 1 Oblivious samplesSWO(D,m):
takes an encrypted dataset D and returns k =
n/m SWO samples of size m, n = |D|.

1: D ← oblshuffle(D)
2: SWO.initialize(n,m)
3: S ← [], j ← 1, l ← 1, e ← D[1],
enext ← D[1]

4: while l ≤ n do
5: for i ∈ [1, k] do
6: if SWO.samplemember(i, j) then
7: S.append(re-enc(e), enc(i))
8: l← l + 1
9: enext ← D[l]

10: end if
11: end for
12: e← enext
13: j ← j + 1
14: end while
15: S ← oblshuffle(S)
16: ∀i ∈ [1, k] : si ← []
17: for p ∈ S do
18: (ce, ci)← p, i← dec(ci)
19: si ← si.append(ce)
20: end for
21: Return s1, s2, . . . , sk

Additionally the algorithm maintains element e
which is an element that currently is being replicated.
It is updated to enext as soon as sufficient number of
replicas is reached. The number of times e is repli-
cated depends on the number of samples element
with key j appears in. Counter j starts at 1 and is
incremented after element e is replicated rj times.
At any given time, counter j is an indicator of the
number of distinct elements written out so far. Hence,
j can reach n only if every element appears in exactly
one sample. On the other hand, the smallest j can be
is m, this happens when all k samples are identical.

Given the above state, the algorithm reads an element
into enext, loops internally through i ∈ [1..k]: if cur-
rent key j is in ith sample it writes out an encrypted
tuple (e, i) and reads the next element from D into
enext. Note that e is re-encrypted every time it is writ-
ten out in order to hide which one of the elements
read so far is being written out. After the scan, the
tuples are obliviously shuffled. At this point, the
sample id i of each tuple is decrypted and used to
(non-obliviously) group elements that belong to the
same sample together, creating the sample output
s1..sk (Lines 16-20).

We are left to derive the mapping m between keys
used in samples drawn in Line 2 and elements re-
turned in samples s1..sk. We note that m is not ex-
plicitly used during the algorithm and is used only in the analysis. From the algorithm we see that
m(l) = π−1(1 +

∑l−1
j=1 rj), that is m is derived from π with shifts due to replications of preceding

keys. (Observe that if every element appears only in one sample m(l) = π−1(l).) We show that m is
injective and random (Lemma 1) and, hence, s1..sk are valid SWO samples.

Example Let D = {(1, A), (2, B), (3, C), (4, D), (5, E), (6, F )}, where (4, D) denotes element
D at index 4 (used also as a key), m = 2, and randomly drawn samples in SWO.initialize are {1, 4},
{1, 2}, {1, 5}. Suppose D after the shuffle is {(4, D), (1, A), (5, E), (3, C), (6, F ), (2, B)}. Then,
after the replication S = {((4, D), 1), ((4, D), 2), ((4, D), 3), ((3, C), 2), ((6, F ), 1), ((2, B), 3)}
where the first tuple ((4, D), 1) indicates that (4, D) appears in the first sample.

Correctness We show that samples returned by the algorithm correspond to samples drawn randomly
from Fm,nSWO. We argue that samples returned by the oblivious samplesSWO are identical to those
drawn truly at random from Fm,nSWO up to key mapping m and then show that m is injective and random
in Appendix A. For every key j present in the drawn samples there is an element with key m(j)
that is replicated rj times and is associated with the sample ids of j. Hence, returned samples, after
being grouped, are exactly the drawn samples where every key j is substituted with an element with
key m(j).

Security and performance The adversary observes an oblivious shuffle, a scan where an element
is read and an encrypted pair is written, another oblivious shuffle and then a scan that reveals the
sample identifiers. All patterns except for revealing of the sample identifiers are independent of the
data and sampled keys. We argue security further in §A. Performance of oblivious SWO sampling is
dominated by two oblivious shuffles and the non-oblivious grouping, replication scan has linear cost.
Hence, our algorithm produces k samples in time O(cn) with private memory of size O( c

√
n). Since

a non-oblivious version would require n accesses, our algorithm has a constant overhead for small c.

Observations We note that if more than k samples of size m = n/k need to be produced, one
can invoke the algorithm multiple times using different randomness. Furthermore, Algorithm 1 can
produce samples of varying sizes m1,m2, ..,mk (n =

∑
mi) given as an input. The algorithm itself

will remain the same. However, in order to determine if j is in sample i or not, samplemember(i, j)
will check if ρi(j) ≤ mi instead of ρi(j) ≤ m.
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4.2 Oblivious Poisson sampling

Performing Poisson sampling obliviously requires not only hiding access pattern but also the size of
the samples. Since in the worst case the sample can be of size n, each sample will need to be padded
to n with dummy elements. Unfortunately generating k samples each padded to size n is impractical.
Though samples of size n are unlikely, revealing some upper bound on sample size would affect the
security of the algorithms relying on Poisson sampling.

Instead of padding to the worst case, we choose to hide the number of samples that are contained
within an n-sized block of data (e.g., an epoch). In particular, our oblivious Poisson sampling returns
S that consists of samples s1, s2, . . . , sk′ where k′ ≤ k such that

∑
i∈[1,k′] |si| ≤ n. The security of

sampling relies on hiding k′ and the boundary between the samples, as otherwise an adversary can
estimate sample sizes.

The algorithm (presented in Appendix§B) proceeds similar to SWO except every element, in addition
to being associated with a sample id, also stores its position in final S. The element and the sample
id are kept private while the position is used to order the elements. It is then up to the queries that
operate on the samples inside of a TEE (e.g., SGD computation) to use sample id while scanning S
to determine the sample boundaries. The use of samplesPoisson by the queries has to be done carefully
without revealing when the sample is actually used as this would reveal the boundary (e.g., while
reading the elements during an epoch, one needs to hide after which element the model is updated).

We assume that that samples from Fn,γPoisson can be drawn efficiently and describe how in Ap-
pendix§B. The algorithm relies on two functions that have access to the samples: getsamplesize(i)
and getsamplepos(i, l) which return the size of the ith sample and the position of element l in ith sam-
ple. The algorithm uses the former to compute k′ and creates replicas for samples with identifiers from
1 to k′. The other changes to the Algorithm 1 are that S.append(enc(e), enc(i)) is substituted with
S.append(enc(e), enc(i), enc(pos)) where pos =

∑
i′<i getsamplesize(i′) + getsamplepos(i, l). If

the total number of elements in the first k′ samples is less than n, the algorithm appends dummy ele-
ments to S . S is then shuffled. After that positions pos can be decrypted and sorted (non-obliviously)
to bring elements from the same samples together. In a decrypted form this corresponds to samples
ordered one after another sequentially, following with dummy elements if applicable.

5 Experimental results
The goal of our evaluation is to understand the impact of sampling on the accuracy of training of
neural network models and their differentially private variants, We show that accuracy of all sampling
mechanisms is the same while shuffling has the highest privacy loss.

We use TensorFlow v1.13 and TensorFlow Privacy library [5] for DP training. We implement
non-oblivious SWO and Poisson sampling mechanisms since accuracy of the training procedure is
independent of sampling implementation. We report an average of 5 runs for each experiment.

Our implementation relies on DP optimizer from [5] which builds on ideas from [3] to implement
noisySGD as described in §3. Note that this procedure is independent of the sampling mechanism
behind how the batch is obtained. The only exception is Poisson where the average is computed using
a fixed sample size (γ × n) vs. its real size as for the other two sampling mechanisms. We set the
clipping parameter to 4, σ = 6, δ = 10−5. For each sampling mechanism we use a different privacy
accountant to compute exact total ε as opposed to asymptotical guarantees in Table 1. For shuffling
we use [45, 27]; for Poisson sampling [5]; and for SWO we implement the approach from [42].

MNIST dataset contains 60,000 train and 20,000 test images of ten digits with the classification
tasks of determining which digit an image corresponds to. We use the same model architecture as [3]
and [45]. It is a feed-forward neural network comprising of a single hidden layer with 1000 ReLU
units and the output layer is softmax of 10 classes corresponding to the 10 digits. The loss function
computes cross-entropy loss. During training we sample data using shuffling, sampling without
replacement and Poisson. For the first two we use batch size m = 600, γ = 0.01 and m = 200,
γ = 0.003 in Figure 1. Each network is trained for 100 epochs. We report the results in Table 2 (left).
We observe that sampling mechanism does not change accuracy for this benchmark.

CIFAR-10 dataset consists of 50,000 training and 10,000 test color images classified into 10
classes [1]. Each example is a 32 × 32 image with three channels (RGB). We use the training
setup from the TensorFlow tutorial [2] for CIFAR-10 including the data augmentation step. The
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Table 2: Test (Train) accuracy of MNIST & CIFAR10 models trained with samples generated with
Shuffle, Poisson and sampling w/o replacement (SWO) and their differentially private (DP) variants
with incurred total ε.

Shuffle Poisson SWO
MNIST 97.5 (98.33) 97.47 (98.31) 97.43 (98.31)

DP MNIST 94.06 (94.1) 94.1 (94.01) 94.03 (94.05)
ε 9.39 0.82 2.13

Shuffle SWO
CIFAR-10 79.6 (83.2) 79 (82.9)

DP CIFAR-10 73.4 (72.3) 72.5 (71)
ε 9.39 4.89

same setup was also used in [3]. The network consists of two convolutional layers followed by two
fully connected layers. Similar to [3, 45] we use a public dataset (CIFAR-100) to train a network
with the same architecture. We then use the pre-trained network to train the fully connected layers
using the CIFAR-10 dataset. Each network is trained for 100 epochs with sample size of m = 2000.

Figure 1: Accuracy and ε for
MNIST over epochs for sam-
ple sizes 200 and 600.

We use the same network setup as related work [3]; but better accu-
racy can be achieved with deeper networks. The results for shuffling
and sampling w/o replacement are in Table 2 (right). Similar to
MNIST there is no significant difference between the two.

Sampling in differentially private training In Table 2 (middle
row) we compare the effect of sampling approaches on DP train-
ing. Similar to results reported in previous work DP training de-
grades model performance. However, accuracy between sampling
approaches is similar. The difference between the sampling mech-
anism is evident however in the total privacy loss they occur. The
results in last row of Table 2 show that shuffling incurs the highest
privacy loss for the same number of epochs, in line with asymptotical
guarantees in Table 1. In Figure 1 we show that as expected smaller
sample (batch) size has a positive effect on ε for sampling.

These results indicate that if maintaining low privacy loss is im-
portant then SWO and Poisson should be the preferred option for
obtaining batches: sampling gives smaller privacy loss and same
accuracy.

6 Related work
The use of TEEs for privacy-preserving data analysis has been considered in several prior works.
Multi-party machine learning using Intel SGX and data-oblivious machine learning algorithms has
been described in [32]. PROCHLO [9] shuffles user records using TEEs for anonymization. Secret
shuffle allows PROCHLO to obtain strong guarantees from local DP algorithms [24] that are applied
to records before the shuffle. Systems in [46, 30] consider map-reduce-like computation for data
analysis while hiding access pattern between computations. Slalom [40] proposes a way to partially
outsource inference to GPUs from TEEs while maintaining integrity and privacy.

Oblivious algorithms as software protection were first proposed in [15, 16]. Recently, relaxation of
security guarantees for hiding memory accesses have been considered in the context of differential
privacy. Allen et al. [4] propose an oblivious differentially-private framework for designing DP
algorithms that operate over data that does not fit into private memory of a TEE (as opposed to sample-
based analysis). Chan et al. [12] have considered implications of relaxing the security guarantees of
hiding memory accesses from data-oblivious definition to the differentially-private variant. Neither
of these works looked at the problem of sampling.

We refer the reader to [13] for more information on differential privacy. Besides work mentioned
in §3, we highlight several other works on the use of sampling for differential privacy. Sample-
Aggregate [29] is a framework based on sampling where k random samples are taken such that in
total all samples have ≈ n elements, a function is evaluated on each sample, and k outputs are then
aggregated and reported with noise. Kasiviswanathan et al. [22] study concept classes that can be
learnt in differentially private manner based on a sample size and number of interactions. DP natural
language models in [26] are trained using a method of [3] while using data of a single user as a
mini-batch. Amplification by sampling has been studied for Rényi differential private mechanisms
in [42]. Finally, PINQ [27], assuming a trusted curator setting, describes a system for answering
database queries with DP guarantees.
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A Details of Oblivious SWO Sampling (§4.1)

Sampling primitive A single sample of SWO from domain [1, n] can be instantiated using a permu-
tation ρ over [1, n]. The sample is defined by elements that are mapped to the first m elements, i.e.,
element j is in the sample if ρ(j) ≤ m. This procedure is described in Algorithm 2 for k samples.
During the initialize call, random permutations are chosen (e.g., in the real implementation this
would correspond to choosing a random seed and then deriving k seeds for each permutation). Then,
samplemember(i, j) returns True or False depending on whether j is in the ith sample or not.

Observe that each sample defined by the above primitive represents a valid SWO sample. Let si be
the sample that consists of the first m elements of the permutation ρi. The probability of choosing a
particular sample is the probability of choosing one of the permutations where the first m elements
are fixed. Since there are (n−m)! permutations with first m elements fixed: the probability of si is
(n−m)!/n! and is 1

n
1

n−1 · · ·
1

n−m+1 which is the probability of an SWO sample.

Algorithm 2 Instantiation of SWO sampling for k = n/m samples drawn from Fn,mSWO

initialize(n,m): choose random permutations with domain [1, n]: ρ1, ρ2, . . . , ρk
samplemember(i, j): If ρi(j) ≤ m return True, else False

Security of Algorithm 1 The adversary observes an oblivious shuffle, a scan where an element is
read and an encrypted pair is written, another oblivious shuffle and then a scan that reveals the sample
identifiers. Since oblivious shuffle is independent of the content of D and the shuffle permutation, all
patterns except for revealing of the sample identifiers are independent of the data. We are left to argue
that revealing sample ids and their locations (i.e., indices in the output S) does not reveal information
about the data nor the samples. First note that there are m copies of sample ids 1, 2, . . . , k associated
with a ciphertext, hence data-independent. Second, note that locations of the revealed identifiers are
random according to the permutation chosen in the second shuffle step. Since the permutation of the
shuffles are hidden, the adversary does not learn the location of the tuple before and after the shuffle.
Lemma 1. Let π be a permutation over n elements, ∀j ∈ [1, n], rj ∈ [0, k] such that

∑n
rj = n

and K = {j | rj ≥ 1}. For l ∈ [1, n], let m(l) = π−1(1 +
∑l−1
j=1 rj). Then m evaluated on keys in

K is an injective random function over [1, n].

Proof. The statement follows from two observations: π−1 is a permutation and π−1 is evaluated only
on distinct elements from a set [1, n].

The second observation is true since the mapping from l to 1+
∑l−1
j=1 rj , when evaluated on l ∈ [1, n],

is injective as it is strictly monotonic. Moreover, (1 +
∑l−1
j=1 rj) ≤ n since

∑n
rj = n.

Co-domain of m appears independent of its input since it is a subset of the output of a random
permutation function π that has these properties by definition.

B Details of Oblivious Poisson Sampling (§4.2)

Sampling primitive Instantiation of Poisson samples (Algorithm 3) is an extension of SWO sampling
that in addition also randomly chooses the size for each sample, Mi. Recall that for SWO the sample
size is fixed (m) while Poisson sampling takes γ as a parameter and adds an element to the sample
with probability γ. Since the size of a Poisson sample is a random variable Binom(n, γ), for each
sample we draw a random variable from this Binomial distribution and use it to determine the sample
size.

Observe that each sample defined by the above primitive represents a valid Poisson sample. Let si be
the sample that consists of the first Mi elements of the permutation ρi. The probability of choosing
si is the probability of the Binomial random variable being Mi and then choosing a permutation
where the first Mi elements are fixed. The probability of the former is

(
n
Mi

)
γMi(1− γ)

Mi . Then the
probability of si is

(
n
Mi

)
γMi(1− γ)Mi(n−Mi)!/n! = γMi(1− γ)Mi/Mi! and is γMi(1− γ)Mi if

the element order within the sample is not relevant. Hence, samples produced by Algorithm 3 are
distributed as Poisson samples of the corresponding sizes.
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Algorithm 3 Instantiation of Poisson sampling for k = nγ samples drawn from Fn,γPoisson

initialize(n, γ):
choose random permutations with domain [1, n]: ρ1, ρ2, . . . , ρk
∀i ∈ [1, k], Mi ← Binom(n, γ)

samplemember(i, j): If ρi(j) ≤Mi return True, else False
getsamplesize(i): return Mi

getsamplepos(i, l): return ρi(l)

Algorithm 4 Oblivious samplesPoisson(D, γ): takes an encrypted dataset D and returns Poisson
sample(s) with parameter γ, n = |D|

1: D ← oblshuffle(D)
2: Poisson.initialize(n, γ)
3: S ← []
4: j ← 1, l← 1, e← D[1], enext ← D[1]
5: k′ ← 1, cursize← Poisson.getsamplesize(1)
6: while cursize + Poisson.getsamplesize(k′ + 1) ≤ n and k′ + 1 ≤ k do
7: k′ ← k′ + 1
8: cursize← cursize + Poisson.getsamplesize(k′)
9: end while

10: while j ≤ cursize do
11: for i ∈ [1, k′] do
12: if Poisson.samplemember(i, l) then
13: pos←

∑
i′<i Poisson.getsamplesize(i′) + Poisson.getsamplepos(i, l)

14: S.append(re-enc(e), enc(i), enc(pos))
15: j ← j + 1
16: enext ← D[j]
17: end if
18: end for
19: e← enext
20: l← l + 1
21: end while
22: for j ∈ [cursize + 1, n] do
23: S.append(enc(dummy), enc(0), enc(j))
24: end for
25: S ← oblshuffle(S)
26: Decrypt pos (last part) of every tuple in S and use it to sort the encrypted elements
27: Return S

Analysis Performance of oblivious Poisson sampling is dominated by two oblivious shuffles and the
non-oblivious sorting in Line 26 since the replication scan is linear.

Security of Algorithm 4 follows that of SWO except it requires k′ to be hidden from an adversary. In
particular, the adversary observes two shuffles and a scan where one element is read and one written
out (hence, data-independent). The content of the elements written out is encrypted or re-encrypted
to hide which elements read from external memory are written out. The total size of all the samples
(cursize) is protected by padding the output to n. Hence, the adversary observes only positions of
every tuple (Line 26). However, by construction position values are 1 to n and are randomly shuffled,
hence, they are independent of the actual samples. The sample boundary, which can be determined
from the middle part of the tuples, enc(i), in S , is encrypted and not revealed to the adversary. Note
that tuples with enc(0) denote padded dummy elements and do not belong to any sample.
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