
A Proofs of Main Theorems and Corollaries

A.1 Proof of Theorem 3.5

We first show that W (k) ∈ W(W (0), τ/2) for all k ≤ K satisfying Kη ≤ ν′′τ2γ4(log(n/δ))−1/2.
Suppose W (k′) ∈ W(W (0), τ/2) for all k′ = 1, . . . , k − 1. By Lemma 4.4, we have∥∥∥∇Wl

LS(W (k′))
∥∥∥
F
≤ C1θ

1(2≤l≤L)√m · ES(W (k′)).

Since η
√
m ≤ ν′τ and ES(·) ≤ 1, we can make ν′ small enough so that we have by the triangle

inequality ∥∥∥W (k)
l −W (0)

l

∥∥∥
F
≤ η

∥∥∥∇Wl
LS(W (k−1))

∥∥∥
F

+
τ

2
≤ τ. (4)

Therefore we are in the τ -neighborhood that allows us to apply the bounds described in the main
section. Define

hk := η

[∥∥∥∇W1LS(W (k))
∥∥∥
2

+ θ

L∑
l=2

∥∥∥∇Wl
LS(W (k))

∥∥∥
2

+
∥∥∥∇WL+1

LS(W (k))
∥∥∥
2

]
.

Then using the upper bounds for the gradient given in Lemma 4.4, we have

hk ≤ η

[
C
√
mES(W (k)) + θ

L∑
l=2

(
θ
√
mES(W (k))

)
+ C
√
mES(W (k))

]
≤ C ′η

√
mES(W (k)).

(5)
Notice that hk = h(W (k+1),W (k)) where h is from Lemma 4.2. Hence, we have

LS(W (k+1))− LS(W (k))

≤ Cτ 1
3

√
m logm · hk · ES(W (k)) + Cmh2k − η

L+1∑
l=1

∥∥∥∇Wl
LS(W (k))

∥∥∥2
F

≤ Cητ 1
3

√
m logm ·

√
m · ES(W (k))2 + Cm2η2 · ES(W (k))2 − Cη ·mL+1 · γ4 · ES(W (k))2

≤ ES(W (k))2 ·
(
C1ητ

1
3m
√

logm+ C2m
2 · η2 − C3η ·mL+1 · γ4

)
The first inequality follows by Lemma 4.2 and since tr(A>A) = ‖A‖2F . The second inequality uses
the lower bound for the gradient given in Lemma 4.3 and (5). Therefore, if we take τ

1
3

√
logm ≤

ν
1
3 γ4, i.e. τ ≤ ν · γ12 (logm)

− 3
2 for some small enough constant ν, and if we take η ≤ ν′ · γ4m−1,

then there is a constant C > 0 such that

LS(W (k+1))− LS(W (k)) ≤ −C · η ·mL+1 · γ4 · ES(W (k))2. (6)

Re-writing this we have

ES(W (k))2 ≤ Cγ−4 (ηmL+1)
−1
(
LS(W (k))− LS(W (k+1))

)
. (7)

Before completing this part of the proof, we will need the following bound on the loss at initialization:

LS(W (0)) ≤ C
√

log
n

δ
. (8)

To see this, we notice that fW (xi) is a sum of mL+1/2 independent random variables (conditional
on xL,i),

fW (xi) =

mL+1/2∑
j=1

[
σ(w>L+1,jxL,i)− σ(w>L+1,j+mL+1/2

xL,i)
]
.

Applying the upper bound for ‖xL+1‖2 given by Lemma 4.1 and Hoeffding inequality gives a
constant C1 > 0 such that with probability at least 1− δ, |fW (0)(xi)| ≤ C1

√
log(n/δ) for all i ∈ [n].

Since `(z) = log(1 + exp(−z)) ≤ |z|+ 1 for all z ∈ R, we have

LS(W (0)) =
1

n

n∑
i=1

`(yi · fW (0)(xi)) ≤ 1 + C1

√
log

n

δ
≤ C

√
log(n/δ).
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We can thus bound the distance from initialization by∥∥∥W (k)
l −W (0)

l

∥∥∥
F
≤ η

k−1∑
k′=0

∥∥∥∇Wl
LS(W (k′))

∥∥∥
F

≤ Cη
√
m

k−1∑
k′=0

ES(W (k′))

≤ Cη
√
m
√
k

√√√√γ−4 (ηmL+1)
−1

k−1∑
k′=0

(
LS(W (k))− LS(W (k+1))

)
≤ C

√
kη · γ−2

(
log

n

δ

) 1
4

≤ τ

2
.

The first line comes from the definition of gradient descent and the triangle inequality. For the second
line, (4) allows us to apply Lemma 4.4. The third line follows by Cauchy–Schwarz and (7). The next
line follows by (8), and the last since kη ≤ ν′′τ2γ4(log(n/δ))−

1
2 . This completes the induction and

shows that W (k) ∈ W(W (0), τ) for all k ≤ K.

For the second part of the proof, we want to derive an upper bound on the lowest empirical surrogate
error over the trajectory of gradient descent. Since we have shown that W (k) ∈ W(W (0), τ/2) for
k ≤ K, (6) and (8) both hold. Let k∗ = argmink∈{0,...,K−1}ES(W (k))2. Then telescoping (6) over
k yields

LS(W (K))− LS(W (0)) ≤ −C · η ·mL+1 · γ4 ·
K∑
k=1

ES(W (k))2

≤ −C ·Kη ·mL+1 · γ4 · ES(W (k∗))2.

Rearranging the above gives

ES(W (k∗)) ≤ C3 (Kη ·m)
− 1

2

(
LS(W (0))

) 1
2 · γ−2 ≤ C3 (Kη ·m)

− 1
2

(
log

n

δ

) 1
4 · γ−2,

where we have used that LS(·) is always nonnegative in the first inequality and (8) in the second.

A.2 Proof of Theorem 3.6

Denote F(W (0), τ) = {fW (x) : W ∈ W(W (0), τ)}, and recall the definition of the empirical
Rademacher complexity,

R̂S [F(W (0), τ)] = Eξ

[
sup

f∈F(W (0),τ)

1

n

n∑
i=1

ξif(xi)

]
= Eξ

[
sup

W∈W(W (0),τ)

1

n

n∑
i=1

ξif(xi)

]
, (9)

where ξ = (ξ1, . . . , ξn)> is an n-dimensional vector of i.i.d. ξi ∼ Unif({±1}). Since y ∈ {±1},
|`′(z)| ≤ 1 and `′(·) is 1-Lipschitz, standard uniform convergence arguments (see, e.g., Shalev-
Shwartz and Ben-David [21]) yield that with probability at least 1− δ,

sup
W∈W(W (0),τ)

|ES(W )− ED(W )| ≤ 2ESR̂S

[
F(W (0), τ)

]
+ C1

√
log(1/δ)

n
.

Since −`′(x) = (1 + exp(−x))−1 satisfies −`′(x) < 1
2 if and only if x < 0, Markov’s inequality

gives

P(x,y)∼D (y · fW (x) < 0) ≤ 2E(x,y)∼D (−`′(y · fW (x))) = 2ED(W ),

so that it suffices to get a bound for the empirical Rademacher complexity (9). If we define

FW (0),W (x) := fW (0)(x) +

L+1∑
l=1

tr

[(
Wl −W (0)

l

)>
∇Wl

fW (0)(x)

]
,
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then since supa+b∈A+B(a+ b) ≤ supa∈A a+ supb∈B b, we have

R̂S [F(W (0), τ)] ≤ Eξ

[
sup

W∈W(W (0),τ)

1

n

n∑
i=1

ξi[f(xi)− FW (0),W (xi)]

]
︸ ︷︷ ︸

I1

+ Eξ

[
sup

W∈W(W (0),τ)

1

n

n∑
i=1

ξi

L+1∑
l=1

tr

[(
Wl −W (0)

l

)>
∇Wl

fW (0)(x)

]]
︸ ︷︷ ︸

I2

For the I1 term, we take W̃ = W (0) in Lemma 4.2 to get

|fW (x)− FW (0),W (x)| ≤ C
[
τ

4
3

√
m logm(2 + Lθ)

]
+ Cτ2

√
m (2 + Lθ)

≤ Cτ 4
3

√
m logm.

For I2, since ‖AB‖F ≤ ‖A‖F ‖B‖2, Lemma 4.1 yields for all l and any matrix ξ,∥∥xlv> · ξ∥∥F ≤ ∥∥xlv>∥∥F ‖ξ‖2 ≤ C√m ‖ξ‖2 .
Applying this to the gradient of f at initialization given by (2) and using Lemma 4.1, there is a
constant C2 such that

‖∇Wl
fW (0)‖F ≤ C2θ

1(2≤l≤L)√m. (10)
We can therefore bound I2 as follows:

I2 ≤
τ

n

L+1∑
l=1

Eξ

∥∥∥∥∥
n∑
i=1

ξi∇Wl
fW (0)(xi)

∥∥∥∥∥
F

≤ τ

n

L+1∑
l=1

√√√√E

∥∥∥∥∥
n∑
i=1

ξi∇Wl
fW (0)(xi)

∥∥∥∥∥
2

F

=
τ

n

L+1∑
l=1

√√√√ n∑
i=1

‖∇Wl
fW (0)(xi)‖2F

≤ C τ
n

(
√
nm+

L∑
l=2

√
nmθ2 +

√
nm

)

≤ C
√
m

n
τ.

The first line above follows since tr(A>B) ≤ ‖A‖F ‖B‖F and W ∈ W(W (0), τ). The second
comes from Jensen inequality, with the third since ξ2i = 1. The fourth line comes from (10), with the
final inequality by the scale of θ. This completes the proof.

A.3 Proof of Corollary 3.7

We need only specify conditions on τ, η,Kη, and m such that the results of Theorems 3.5 and 3.6
will hold, and such that each of the four terms in (3) are of the same scale ε. To get the two theorems
to hold, we need τ ≤ νγ12 (logm)

− 3
2 , η ≤ ν′(γ4m−1∧ τm− 1

2 ), Kη ≤ ν′′τ2γ4 (log(n/δ))
− 1

2 , and

m ≥ C
(
γ−2d log

1

γ
∨ γ−2 log

L

δ
∨ d log

L

δ
∨ τ− 4

3 d log
L

τδ
∨ τ− 2

3 (logm)−1 log
L

δ
∨ log

n

δ

)
.

We now find the appropriate scaling by first setting the upper bound for the surrogate loss given in
Theorem 3.5 to ε and then ensuring τ is such that the inequality required for Kη is satisfied:

C3 (Kηm)
− 1

2 (log(n/δ))
1
4 · γ−2 = ε, Kη = ν′′γ4τ2 (log(n/δ))

− 1
2 .
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Substituting the values for Kη above, we get C4m
− 1

2 γ−2τ−1
√

log(n/δ) = ε, so that

τ = C6γ
−4ε−1m−

1
2

√
log(n/δ). (11)

Let m̂ be such that νγ12 (logm)
− 3

2 = τ , so that m(logm)−3 = Cν−2γ−32 (log(n/δ)) ε−2. It is
clear that such a m̂ can be written m̂ = Ω̃(poly(γ−1)) · ε−2. Finally we set

m∗ = max

(
m̂, d log

mL

δ
, τ−

4
3 log

m

τδ

)
.

By (11) we can write τ−
4
3 log(m/(τδ)) = γ

16
3 (log(n/δ))

− 2
3 ε

4
3m

2
3 log

(
m3/2γ4ε(log(n/δ))−

1
2 /δ
)

.
Thus we can take

m∗ = Ω̃(poly(γ−1)) ·max(d, ε−2) · log
1

δ
.

Using (11) we see that K = Cγ−4 (log(n/δ))
1
2 ε−2 and η ≤ ν′γ4m−1 gives the desired forms

of K and η as well as the first term of (3). For the second term of (3), we again use (11) to get
τ

4
3

√
m logm ≤ Cγ−

16
3 (log(n/δ))

2
3 ε−

4
3m−

1
6 = Rε−

4
3m−

1
6 where R = Õ(poly(γ−1)). Since

ε−
4
3m−

1
6 ≤ ε iff m ≥ ε−14, this takes care of the second term in (3). For the third term, we again

use (11) to write τ
√
m/n = Cγ−4

√
log(n/δ)n−

1
2 ε−1 ≤ ε, which happens if

√
n/ log(n/δ) ≥

Cε−2γ−4, i.e., n = Õ(poly(γ−1))ε−4. For the final term of (3), it’s clear that
√

log(1/δ)/n ≤ ε is
satisfied when n ≥ Cε−2 log(1/δ), which is less stringent than the Õ(poly(γ−1))ε−4 requirement.

B Proofs of Key Lemmas

In this section we provide proofs to the key lemmas discussed in Section 4. We shall first provide the
technical lemmas needed for their proof, and leave the proofs of the technical lemmas for Appendix
C. Throughout this section, we assume that θ = 1/Ω(L).

B.1 Proof of Lemma 4.1: hidden and interlayer activations are bounded

We first recall a standard result from random matrix theory; see, e.g. Vershynin [23], Corollary 5.35.
Lemma B.1. Suppose W1, . . . ,WL+1 are generated by Gaussian initialization. Then there exist
constants C,C ′ > 0 such that for any δ > 0, if m ≥ d ∨ C log(L/δ), then with probability at least
1− δ, ‖Wl‖2 ≤ C ′ for all l ∈ [L+ 1].

The next lemma bounds the spectral norm of the maps that the residual layers define. This is a key
result that allows for the simplification of many of the arguments that are needed in non-residual
architectures. Its proof is in Appendix C.1.
Lemma B.2. Suppose W1, . . . ,WL are generated by Gaussian initialization. Then for any δ > 0,
there exist constants C0, C

′
0, C such that if m ≥ C0 log (L/δ), then with probability at least 1− δ,

for any L ≥ b ≥ a ≥ 2, and for any tuple of diagonal matrices Σ̃a, . . . , Σ̃b satisfying
∥∥∥Σ̃i

∥∥∥
2
≤ 1 for

each i = a, . . . , b, we have∥∥∥(I + θΣ̃bW
>
b )(I + θΣ̃b−1W

>
b−1) · . . . · (I + θΣ̃aW

>
a )
∥∥∥
2
≤ exp (C ′0θL) ≤ 1.01. (12)

In particular, if we consider Σ̃i = Σi(x) for any x ∈ Sd−1, we have with probability at least 1− δ,
for all 2 ≤ a ≤ b ≤ L and for all x ∈ Sd−1,∥∥(I + θΣb(x)W>b )(I + θΣb−1(x)W>b−1) · . . . · (I + θΣa(x)W>a )

∥∥
2
≤ exp (C ′0θL) ≤ 1.01.

The next lemma we show concerns a Lipschitz property of the map x 7→ xl. Compared with the fully
connected case, our Lipschitz constant does not involve any terms growing with L, which allows for
the width dependence of our result to be only logarithmic in L. Its proof is in Appendix C.2.
Lemma B.3. Suppose W1, . . . ,WL are generated by Gaussian initialization. There are constants
C,C ′ > 0 such that for any δ > 0, if m ≥ Cd log(mL/δ), then with probability at least 1 − δ,
‖xl − x′l‖2 ≤ C

′ ‖x− x′‖2 for all x, x′ ∈ Sd−1 and l ∈ [L+ 1].
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With the above technical lemmas in place, we can proceed with the proof of Lemma 4.1.

Proof of Lemma 4.1. We first show that a bound of the form C ≤ ‖x̂l‖2 ≤ C holds for all x̂ in an
ε-net of Sd−1 and then use the Lipschitz property from Lemma B.3 to lift this result to all of Sd−1.

Let N ∗ be a τ0-net of Sd−1. By applying Lemma A.6 of Cao and Gu [5] to the first layer of
our network, there exists a constant C1 such that with probability at least 1 − δ/3, we can take
m = Ω (d log (m/(τ0δ))) large enough so that

‖x̂1‖2 ≤ 1 + C1

√
d log (m/(τ0δ))

m
≤ 1.004.

If 2 ≤ l ≤ L, by an application of Lemma B.2, by taking m larger we have with probability at least
1− δ/3, for all 2 ≤ l ≤ L, x̂ ∈ N ∗,

‖x̂l‖2 =
∥∥(I + θΣl(x̂)W>l ) · · · (I + θΣ2(x̂)W>2 )Σ1(x̂)W>1 x̂

∥∥
2

≤
∥∥(I + θΣl(x̂)W>l ) · · · (I + θΣ2(x̂)W>2 )

∥∥
2
‖x̂1‖2

≤ 1.01 ·

(
1 + C1

√
d log (m/(τ0δ))

m

)
≤ 1.015.

For the last fully connected layer, we can use a proof similar to that of Lemma A.6 in Cao and Gu [5]
using the above upper bound on ‖x̂L‖2 to get that with probability at least 1− δ, for any l ∈ [L+ 1]
and x̂ ∈ N ∗,

‖x̂l‖2 ≤ 1.02. (13)
For any x ∈ Sd−1, there exists x̂ ∈ N ∗ such that ‖x− x̂‖2 ≤ τ0. By Lemma B.3, this means
that with probability at least 1− δ/2, ‖xl − x̂l‖2 ≤ C1τ0 for some C1 > 0, and this holds over all
x̂ ∈ N ∗. Let τ0 = 1/m, so that d log (mL/(τ0δ)) ≤ 2d log(mL/δ). Then (13) yields that with
probability at least 1− δ, for all x ∈ Sd−1 and all l ∈ [L+ 1],

‖xl‖2 ≤ ‖x̂l‖2 + ‖xl − x̂l‖2 ≤ 1.02 + C1/m ≤ 1.024.

As for the lower bound, we again let N ∗ be an arbitrary τ0-net of Sd−1. For l = 1, we use Lemma
A.6 in Cao and Gu [5] to get constants C,C ′ such that provided m ≥ Cd log (m/(τ0δ)), then we
have with probability at least 1− δ/3, for all x̂ ∈ N ∗,

‖x̂l‖2 ≥ 1− C ′
√
dm−1 log (3m/(τ0δ)) (l = 1, 2, . . . , L). (14)

To see that the above holds for layers 2 ≤ l ≤ L, we note that it deterministically holds that
x̂l,j ≥ x̂1,j for such l and all j. For the final layer, we follow a proof similar to Lemma A.6 of Cao
and Gu [5] with an application of (13) to get that with probability at least 1− δ/3,

‖x̂L+1‖22 ≥ ‖x̂L‖
2
2 − C3

√
dm−1 log (3/(τ0δ)).

Thus m = Ω(d log(m/(τ0δ)) implies there is a constant C4 such that with probability at least 1− δ,
for all l ∈ [L+ 1] and x̂ ∈ N ∗,

‖x̂l‖2 ≥ C4 > 0. (15)
By Lemma B.3, we have with probability at least 1− δ, for all x ∈ Sd−1,

‖xl‖2 ≥ ‖x̂l‖2 − ‖xl − x̂l‖2 ≥ C4 − C1τ0.

Thus by taking τ0 to be a sufficiently small universal constant, we get the desired lower bound.

We now demonstrate the upper bound for
∥∥∥H l′

l

∥∥∥
2
. Since H l′

l = xl′ when l = 1, we need only

consider the case l > 1. If l′ ≤ L, then H l′

l appears in the bound for Lemma B.2 and so we are done.
For l′ = L+ 1, by Lemmas B.1 and B.2 we have∥∥HL+1

l

∥∥
2

=

∥∥∥∥∥ΣL+1(x)W>L+1

L∏
r=l

(
I + θΣr(x)W>r

)∥∥∥∥∥
2

≤ ‖ΣL+1(x)‖2 ‖WL+1‖2

∥∥∥∥∥
L∏
r=l

(
I + θΣr(x)W>r

)∥∥∥∥∥
2

≤ C.
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B.2 Proof of Lemma 4.2: semismoothness

To prove the semismoothness result, we need two technical lemmas. The first lemma concerns a
Lipschitz-type property with respect to the weights, along with a characterization of the changing
sparsity patterns of the rectifier activations at each layer. The second lemma characterizes how the
neural network output behaves if we know that one of the initial layers has a given sparsity pattern.
This allows us to develop the desired semi-smoothness even though ReLU is non-differentiable. The
proof for Lemmas B.4 and B.5 can be found in Appendix C.3 and C.4, respectively.

Lemma B.4. Let W = (W1, . . . ,WL+1) be generated by Gaussian initialization, and let Ŵ =

(Ŵ1, . . . , ŴL+1), W̃ = (W̃1, . . . , W̃L+1) be weight matrices such that Ŵ , W̃ ∈ W(W, τ). For
x ∈ Sd−1, let Σl(x), Σ̂l(x), Σ̃l(x) and xl, x̂l, x̃l be the binary matrices and hidden layer outputs of
the l-th layers with parameters W, Ŵ , W̃ respectively. There exist absolute constants C1, C2, C3

such that for any δ > 0, if m ≥ C1τ
− 4

3 · d log(m/(τδ)) ∨ C1d log(mL/δ), then with probability at
least 1− δ, for any x ∈ Sd−1 and any l ∈ [L+ 1], we have

‖x̂l − x̃l‖2 ≤


C2

∥∥∥Ŵ1 − W̃1

∥∥∥
2
, l = 1,

C2

∥∥∥Ŵ1 − W̃1

∥∥∥
2

+ θC2

∑l
r=2

∥∥∥Ŵr − W̃r

∥∥∥
2
, 2 ≤ l ≤ L,

C2

∥∥∥Ŵ1 − W̃1

∥∥∥
2

+ θC2

∑L
r=2

∥∥∥Ŵr − W̃r

∥∥∥
2

+ C2

∥∥∥ŴL+1 − W̃L+1

∥∥∥
2
, l = L+ 1.

and ∥∥∥Σ̂l(x)− Σ̃l(x)
∥∥∥
0
≤ C3mτ

2
3 .

Lemma B.5. Let W1, . . . ,WL+1 be generated by Gaussian initialization. Let W̃l be such that∥∥∥Wl − W̃l

∥∥∥
2
≤ τ for all l, and let Σ̃l(x) be the diagonal activation matrices corresponding to W̃l, and

H̃ l′

l (x) the corresponding interlayer activations defined in (1). Suppose that
∥∥∥Σ̃l(x)− Σl(x)

∥∥∥
0
≤ s

for all x ∈ Sd−1 and all l. Define, for l ≥ 2 and a ∈ Rml−1 ,

gl(a, x) := v>H̃L+1
l (x)a.

Then there exists a constantC > 0 such that for any δ > 0, providedm ≥ Cτ− 2
3 (logm)−1 log(L/δ),

we have with probability at least 1− δ and all 2 ≤ l ≤ L+ 1,

sup
‖x‖2=‖a‖2=1, ‖a‖0≤s

|gl(a, x)| ≤ C1

[
τ
√
m+

√
s logm

]
.

In comparison with the fully connected case of Cao and Gu [5], our bounds in Lemmas B.4 and B.5
do not involve polynomial terms in L, and the residual scaling θ further scales the dependence of the
hidden layer activations on the intermediate layers.

With the above two technical lemmas, we can proceed with the proof of Lemma 4.2.

Proof of semismoothness, Lemma 4.2. Recalling the notation of interlayer activations H l′

l from (1),
we have for any l ∈ [L + 1] f

Ŵ
(x) = v>ĤL+1

l+1 x̂l, where we have denoted H l′

l (x) = H l′

l for
notational simplicity. Similarly, in what follows we denote Σ(x) by Σ with the understanding that
each diagonal matrix Σ still depends on x. We have the decomposition

ĤL+1
2 Σ̂1Ŵ1x =

(
ĤL+1

2 − H̃L+1
2

)
Σ̂1Ŵ

>
1 x+ H̃L+1

2 Σ̂1Ŵ
>
1 x,

and for 2 ≤ l ≤ L,

ĤL+1
l − H̃L+1

l =
(
ĤL+1
l+1 − H̃

L+1
l+1

)(
I + θΣ̂lŴ

>
l

)
+ θH̃L+1

l+1

(
Σ̂lŴ

>
l − Σ̃lW̃

>
l

)
.
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Thus we can write

ĤL+1
1 (x)− H̃L+1

1 (x) =
(
ĤL+1

2 − H̃L+1
2

)
Σ̂1Ŵ

>
1 x+ H̃L+1

2

(
Σ̂1Ŵ

>
1 − Σ̃1W̃

>
1

)
x

=
(

Σ̂L+1Ŵ
>
L+1 − Σ̃L+1W̃

>
L+1

)
x̂L

+ θ

L∑
l=2

H̃L+1
l+1

(
Σ̂lŴ

>
l − Σ̃lW̃

>
l

)
x̂l−1 + H̃L+1

2

(
Σ̂1Ŵ1 − Σ̃1W̃1

)
x.

We thus want to bound the quantity

f
Ŵ

(x)− fW̃ (x) = v>
(

Σ̂L+1Ŵ
>
L+1 − Σ̃L+1W̃

>
L+1

)
x̂L (T1)

+ θv>

[
L∑
l=2

H̃L+1
l+1

(
Σ̂lŴ

>
l − Σ̃lW̃

>
l

)
x̂l−1

]
(T2)

+ v>
[
H̃L+1

2

(
Σ̂1Ŵ1 − Σ̃1W̃1

)
x
]
. (T3) (16)

We deal with the three terms separately. The idea in each is the same.

First term, T1. We write this as the sum of three terms v>(I1 + I2 + I3), where(
Σ̂L+1Ŵ

>
L+1 − Σ̃L+1W̃

>
L+1

)
x̂L

=
(

Σ̂L+1 − Σ̃L+1

)
Ŵ>L+1x̂L︸ ︷︷ ︸

I1

+ Σ̃L+1

(
Ŵ>L+1 − W̃>L+1

)
(x̂L − x̃L)︸ ︷︷ ︸

I2

+ Σ̃L+1

(
Ŵ>L+1 − W̃>L+1

)
x̃L︸ ︷︷ ︸

I3

.

(17)
By directly checking the signs of the diagonal matrices, we can see that for any l = 1, . . . , L+ 1,∥∥∥(Σ̂l − Σ̃l

)
Ŵ>l x̂l−1

∥∥∥
2
≤ C1

∥∥∥Ŵl − W̃l

∥∥∥
2

+ C1 ‖x̂l−1 − x̃l−1‖2 . (18)

We will use Lemma B.4 to get specific bounds for each l. Denote |Σ| as the entrywise absolute values
of a diagonal matrix Σ, so that |Σ|Σ = Σ provided the diagonal entries are all in {0,±1}. Then we
can write

|v>I1| =
∥∥∥v> ∣∣∣Σ̂L+1 − Σ̃L+1

∣∣∣ (Σ̂L+1 − Σ̃L+1

)
Ŵ>L+1x̂L

∥∥∥
2

≤ C3τ
1
3
√
m
∥∥∥(Σ̂L+1 − Σ̃L+1

)
Ŵ>L+1x̂L

∥∥∥
2

≤ C3τ
1
3
√
m ·

(
C1

∥∥∥ŴL+1 − W̃L+1

∥∥∥
2

+ C1 ‖x̂L − x̃L‖2
)

(19)

The first inequality follows by first noting that for any vector a with |ai| ≤ 1 it holds that
∥∥v>a∥∥

2
≤

‖a‖
1
2
0 , and then applying Lemma B.4 to get

∥∥∥Σ̂L+1 − Σ̃L+1

∥∥∥
0
≤ s = O

(
mτ

2
3

)
. The last line is by

(18).

The I2 term in (17) follows from a simple application of Cauchy–Schwarz:

|v>I2| ≤
√
m · C ·

∥∥∥ŴL+1 − W̃L+1

∥∥∥
2
‖x̂L − x̃L‖2 . (20)

Putting together (19) and (20) shows that we can bound T1 in (16) by

T1 ≤ C3τ
1
3
√
m ·

(
C1

∥∥∥ŴL+1 − W̃L+1

∥∥∥
2

+ C1 ‖x̂L − x̃L‖2
)

+
√
m · C ·

∥∥∥ŴL+1 − W̃L+1

∥∥∥
2
‖x̂L − x̃L‖2

+ v>Σ̃L+1

(
ŴL+1 − W̃L+1

)>
x̃L

≤ C3τ
1
3
√
m

(
C1

∥∥∥ŴL+1 − W̃L+1

∥∥∥
2

+ C ′1

[∥∥∥Ŵ1 − W̃1

∥∥∥
2

+ θ

L∑
r=2

∥∥∥Ŵr − W̃r

∥∥∥
2

])

+ C
√
m
∥∥∥ŴL+1 − W̃L+1

∥∥∥
2

(∥∥∥Ŵ1 − W̃1

∥∥∥
2

+ θ

L∑
r=2

∥∥∥W̃r − Ŵr

∥∥∥
2

)

+ v>Σ̃L+1

(
ŴL+1 − W̃L+1

)>
x̃L. (21)
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Second term, T2. We again use a decomposition like (17):

H̃L+1
l+1

(
Σ̂lŴ

>
l − Σ̃lW̃

>
l

)
x̂l−1

= H̃L+1
l+1

(
Σ̂l − Σ̃l

)
Ŵ>l x̂l−1︸ ︷︷ ︸

I1

+ H̃L+1
l+1 Σ̃l

(
Ŵ>l − W̃>l

)
(x̂l−1 − x̃l−1)︸ ︷︷ ︸

I2

+ H̃L+1
l+1 Σ̃l

(
Ŵ>l − W̃>l

)
x̃l−1︸ ︷︷ ︸

I3

.

(22)

For I1, we note that Lemma B.4 gives sparsity level s = O(mτ
2
3 ) for Σ̂l − Σ̃l. We thus proceed

similarly as for the term T1 to get

|v>I1| ≤
∥∥∥v>Σ̃L+1W̃

>
L+1H̃

L
l+1

∣∣∣Σ̂l − Σ̃l

∣∣∣ (Σ̂l − Σ̃l

)
Ŵ>l x̂l−1

∥∥∥
2

≤ Cτ 1
3

√
m logm ·

(
C1

∥∥∥Ŵl − W̃l

∥∥∥
2

+ C2 ‖x̂l−1 − x̃l−1‖2
)
.

The above follows since s logm ≥ C log(L/δ) holds for s = mτ
2
3 , and we can hence apply Lemma

B.5 and (18). The bound for the I2 term again follows by Cauchy–Schwarz,

|v>I2| ≤
√
m · C ·

∥∥∥Ŵl − W̃l

∥∥∥
2
‖x̂l−1 − x̃l−1‖2 .

Thus, for the term T2 in (16) we have

T2 ≤ θ
L∑
l=2

(
C6τ

1
3

√
m logm

∥∥∥Ŵl − W̃l

∥∥∥
2

+ Cτ
1
3

√
m logm

∥∥∥Ŵ1 − W̃1

∥∥∥
2

)
+ θ2

L∑
l=2

(
τ

1
3

√
m logm

l∑
r=2

∥∥∥W̃r − Ŵr

∥∥∥
2

)

+ θ

L∑
r=2

√
mC

∥∥∥Ŵl − W̃l

∥∥∥
2

(∥∥∥Ŵ1 − W̃1

∥∥∥
2

+ θ

2∑
r=l

∥∥∥Ŵr − W̃r

∥∥∥
2

)

+ θ

L∑
l=2

v>H̃L+1
l+1 Σ̃l

(
Ŵ>l − W̃>l

)
x̃l−1. (23)

Third term, T3. For T3, we work on the quantity

H̃L+1
2

(
Σ̂1Ŵ

>
1 − Σ̃1W̃

>
1

)
x = H̃L+1

2

(
Σ̂1 − Σ̃1

)
Ŵ>1 x+ H̃L+1

2 Σ̃1

(
Ŵ1 − W̃1

)
x.

Thus, we again have by Lemma B.5,

T3 ≤
∥∥∥v>H̃L+1

2

∣∣∣Σ̂1 − Σ̃1

∣∣∣∥∥∥
2

∥∥∥(Σ̂1 − Σ̃1

)
Ŵ1x

∥∥∥
2

+ v>H̃L+1
2 Σ̃1

(
Ŵ1 − W̃1

)
x

≤ τ 1
3

√
m logm

∥∥∥Ŵ1 − W̃1

∥∥∥
2

+ v>H̃L+1
2 Σ̃1

(
Ŵ1 − W̃1

)
x. (24)

Using the linearity of the trace operator and that tr(ABC) = tr(CAB) = tr(BCA) for any matrices
A,B,C for which those products are defined, we can use the gradient formula (2) to calculate for
any l ∈ [L+ 1],

θ1(2≤l≤L)v>H̃L+1
l Σ̃l

(
Ŵl − W̃l

)>
x̃l−1 = tr

[(
Ŵl − W̃l

)>
∇Wl

fW̃ (x)

]
. (25)

Let now

h(Ŵ , W̃ ) :=
∥∥∥Ŵ1 − W̃1

∥∥∥
2

+ θ

L∑
l=2

∥∥∥Ŵl − W̃l

∥∥∥
2

+
∥∥∥ŴL+1 − W̃L+1

∥∥∥
2
.
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Substituting the bounds from (21), (23), (24) and (25) thus yield for some constant C,

f
Ŵ

(x)− fW̃ (x) ≤ Cτ 1
3

√
m logm

[∥∥∥Ŵ1 − W̃1

∥∥∥
2

+ θC

L∑
l=2

∥∥∥Ŵl − W̃l

∥∥∥
2

+ C
∥∥∥ŴL+1 − W̃L+1

∥∥∥
2

]

+ Cτ
1
3

√
m logm

[∥∥∥Ŵ1 − W̃1

∥∥∥
2

+ C
∥∥∥Ŵ1 − W̃1

∥∥∥
2

+ θC

l∑
l=2

∥∥∥Ŵl − W̃l

∥∥∥
2

]

+ C
√
m

[∥∥∥ŴL+1 − W̃L+1

∥∥∥
2
·
∥∥∥Ŵ1 − W̃L+1

∥∥∥
2

+ θ
∥∥∥ŴL+1 − W̃L+1

∥∥∥
2

L∑
r=2

∥∥∥Ŵr − W̃r

∥∥∥
2

+ θ

L∑
l=2

∥∥∥Ŵl − W̃l

∥∥∥
2

∥∥∥Ŵ1 − W̃1

∥∥∥
2

+ θ

L∑
l=2

∥∥∥Ŵl − W̃l

∥∥∥
2
·

(
θ

l∑
r=2

∥∥∥Ŵr − W̃r

∥∥∥
2

)]

+

L+1∑
l=1

tr
[(
Ŵl − W̃l

)
∇Wl

fW̃ (x)
]

≤ Cτ 1
3

√
m logm · h(Ŵ , W̃ ) + C

√
m · h(Ŵ , W̃ )2 +

L+1∑
l=1

tr
[(
Ŵl − W̃l

)
∇Wl

fW̃ (x)
]

(26)

This completes the proof of semi-smoothness of fW . For LS , denote ŷi, ỹi as the outputs of the
network for input xi under weights Ŵ , W̃ respectively. Since `′′(z) ≤ 0.5 for all z ∈ R, if we denote
∆i = ŷi − ỹi = f

Ŵ
(xi)− fW̃ (xi), we have

LS(Ŵ )− LS(W̃ ) ≤ 1

n

n∑
i=1

[
`′(yiỹi) · yi ·∆i +

1

4
∆2
i

]
.

Applying (26) and using that −n−1
∑n
i=1 `

′(zi) ≤ 1 for any zi ∈ R,

1

n

n∑
i=1

`′(yiỹi)yi ·∆i ≤ Cτ
1
3

√
m logm · h(Ŵ , W̃ ) · ES(W̃ ) + C

√
m · h(Ŵ , W̃ )2 · ES(W̃ )

+

L+1∑
l=1

1

n

n∑
i=1

`′(yiỹi) · yi · tr
[(
Ŵl − W̃l

)
∇Wl

fW̃ (xi)
]
.

Linearity of the trace operator allows the last term in the above display to be written as
L+1∑
l=1

tr
[(
Ŵl − W̃l

)
∇Wl

LS(W̃ )
]
.

Moreover, using Lemma B.4,

∆2
i =

[
v>(x̂L+1,i − x̃L+1,i)

]2 ≤ ‖v‖22 ‖x̂L+1,i − x̃L+1,i‖22 ≤ C2 ·m · h(Ŵ , W̃ )2.

This term dominates the corresponding h2 term coming from ∆i and so completes the proof.

B.3 Proof of Lemma 4.3: gradient lower bound

This is the part of the proof that makes use of the assumption on the data distribution given in
Assumption 3.2, and is key to the mild overparameterization required for our generalization result.
The key technical lemma needed for the proof of the gradient lower bound is given below. The proof
of Lemma B.6 can be found in Appendix C.5.
Lemma B.6. Let a(x, y) : Sd−1 × {±1} → [0, 1]. For any δ > 0, there is a constant C > 0 such
that if m ≥ Cγ−2 (d log(1/γ) + log(L/δ)) and m ≥ C log(n/δ) then for any such function a, we
have with probability at least 1− δ,

mL+1∑
j=1

∥∥∥∥∥ 1

n

n∑
i=1

[
a(xi, yi) · yi · σ′

(
w>L+1,jxL,i

)
· xL,i

]∥∥∥∥∥
2

2

≥ 1

67
mL+1γ

2

(
1

n

n∑
i=1

a(xi, yi)

)2

.
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Proof of Lemma 4.3. Let ỹi := fW̃ (xi), and define gj :=
1
n

∑n
i=1

[
`′(yiỹi) · vj · yi · σ′(w>L+1,jxL,i) · xL,i

]
so that

mL+1∑
j=1

‖gj‖22 =

mL+1∑
j=1

∥∥∥∥∥ 1

n

n∑
i=1

[
`′(yiỹi) · yi · σ′(w>L+1,jxL,i) · xL,i

]∥∥∥∥∥
2

2

.

Recall that ES(W̃ ) = −n−1
∑n
i=1 `

′(yiỹi). Applying Lemma B.6 gives

mL+1∑
j=1

‖gj‖22 ≥
1

67
mL+1γ

2[ES(W̃ )]2. (27)

By Lemma 4.1, for any j ∈ [mL+1], we have

‖gj‖2 ≤
1

n

n∑
i=1

∥∥`′(yiỹi) · vj · yi · σ′(w>L+1,jxL,i) · xL,i
∥∥
2
≤ 1.02ES(W̃ ). (28)

Define

A :=
{
j ∈ [mL+1] : ‖gj‖22 ≥

1

2 · 67
γ2
(
ES(W̃ ))

)2 }
.

We can get the following lower bound on |A|:

|A|ES(W̃ )2 ≥ 1

1.022

∑
j∈A
‖gj‖22

≥ 1

1.05

(
1

67
mL+1γ

2[ES(W̃ )]2 − 1

2 · 67
|Ac|γ2[ES(W̃ )]2

)
≥ 1

1.05 · 2 · 67
mL+1γ

2[ES(W̃ )]2.

The first line follows by (28), and the second by writing the sum over [mL+1] as a sum over A and
Ac and then (27) and the definition of A. The last line holds since |Ac| ≤ mL+1, and all of the above
allows for the bound

|A| ≥ 1

141
mL+1γ

2. (29)

Let now A′ = {j ∈ [mL+1] : σ′(w̃>L+1,j x̃L,i) 6= σ′(w>L+1,jxL,i)}. By Lemma B.4, we have

|A′| =
∥∥∥Σ̃L+1(x)− ΣL+1(x)

∥∥∥
0
≤ C1τ

2
3mL+1. (30)

Since τ ≤ νγ3, we can make ν small enough so that C1τ
2
3 < γ2 · (1/141− 1/150). Thus (29) and

(30) imply

|A \A′| ≥ |A| − |A′| ≥ 1

141
mL+1γ

2 − C1τ
2
3mL+1 ≥

1

150
mL+1γ

2. (31)

By definition, ∇WL+1,j
LS(W̃ ) = 1

n

∑n
i=1 `

′(yiỹi) · vj · yi · σ′(w̃>L+1,j x̃L,i) · x̃L,i. For indices
j ∈ A \A′, we can therefore write

‖gj‖2 −
∥∥∥∇WL+1,j

LS(W̃ )
∥∥∥
2
≤

∥∥∥∥∥ 1

n

n∑
i=1

`′(yiỹi) · vj · yi · σ′(w>L+1,jxL,i) · (xL,i − x̃L,i)

∥∥∥∥∥
2

≤ 1

n

n∑
i=1

∥∥`′(yiỹi) · vj · yi · σ′(w>L+1,jxL,i) · (xL,i − x̃L,i)
∥∥
2

≤ C3τES(W̃ ). (32)

The first inequality follows by the triangle inequality and since indices j ∈ A \ A′ satisfy
σ′(w̃>L+1,j x̃L,i) = σ(w>L+1,jxL,i). The second inequality is an application of Jensen inequality.
The last inequality follows by Lemma B.4 and since vj , yi ∈ {±1}. Now take ν small enough so that
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C3τ <
(
(2 · 67)−1/2 − 1/16

)
. Then we can use (32) together with the definition of A to get for any

index j ∈ A \A′,∥∥∥∇WL+1,j
LS(W̃ )

∥∥∥
2
≥ 1√

2 · 67
γES(W̃ )− C3τES(W̃ ) ≥ 1

16
γES(W̃ ). (33)

Thus we can derive the lower bound for the gradient of the loss at the last layer:∥∥∥∇WL+1
LS(W̃ )

∥∥∥2
F

=

mL+1∑
j=1

∥∥∥∇WL+1,j
LS(W̃ )

∥∥∥2
F

≥
∑

j∈A\A′

∥∥∥∇WL+1,j
LS(W̃ )

∥∥∥2
2

≥ 1

162
|A \A′|γ2[ES(W̃ )]2

≥ 1

150 · 162
γ4mL+1[ES(W̃ )]2.

The first line is by definition, and the second is since the spectral norm is at most the Frobenius norm.
The third line uses (33), and the final inequality comes from (31).

B.4 Proof of Lemma 4.4: gradient upper bound

Proof. Using the gradient formula (2) and the H l′

l notation from (1), we can write

∇Wl
LS(W̃ ) = θ1(2≤l≤L)

1

n

n∑
i=1

`′(yiỹi) · yi · x̃l−1,iv>H̃L+1
l+1 Σ̃l(xi), (1 ≤ l ≤ L+ 1). (34)

Since τ ≤ 1, there is a constant C such that w.h.p.
∥∥∥W̃l

∥∥∥
2
≤ C for all l. Thus, it is easy to see that

an analogous version of Lemma B.2 can be applied with Lemma B.4 to get that with probability at
least 1− δ, for all i ∈ [n] and for all l,

‖x̃l−1,i‖2 ≤ C1 and
∥∥∥H̃L+1

l+1

∥∥∥
2
≤ C2. (35)

Therefore, we can bound∥∥∥∇Wl
LS(W̃ )

∥∥∥
F
≤ 1

n

n∑
i=1

∥∥∥`′(yiỹi) · yi · x̃l−1,iv>H̃L+1
l+1 Σ̃l+1(xi)

∥∥∥
F

=
1

n

n∑
i=1

‖`′(yiỹi) · yi · x̃l−1,i‖2
∥∥∥v>H̃L+1

l+1 Σ̃l+1(xi)
∥∥∥
2

≤ C3

√
mES(W̃ ).

The first line follows by the triangle inequality, and the second since for vectors a, b, we have∥∥ab>∥∥
F

= ‖a‖2 ‖b‖2. The last line is by Cauchy–Schwarz, (35), and the definition of ES , finishing
the case l = 1. By substituting the definition of the gradient of the loss using the formula (34)
we may similarly demonstrate the corresponding bounds for l ≥ 2 with an application of Cauchy–
Schwartz.

C Proofs of Technical Lemmas

In this section we go over the proofs of the technical lemmas that were introduced in Appendix B.
In the course of proving these technical lemmas, we will need to introduce a handful of auxiliary
lemmas, whose proofs we leave for Appendix D. Throughout this section, we continue to assume that
θ = 1/Ω(L).
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C.1 Proof of Lemma B.2: intermediate layers are bounded

By Lemma B.1, there is a constant C1 such that with probability at least 1− δ, ‖Wl‖2 ≤ C1 for all
l = a, . . . , b. Therefore for each r ≥ 2, we have∥∥∥I + θΣ̃rWr

∥∥∥
2
≤ ‖I‖2 + θ

∥∥∥Σ̃r

∥∥∥
2
‖Wr‖2 ≤ 1 + θC1.

The submultiplicative property of the spectral norm gives∥∥∥(I + θΣ̃bW
>
b )(I + θΣ̃b−1W

>
b−1) · . . . · (I + θΣ̃aW

>
a )
∥∥∥
2

≤
b∏

r=a

∥∥∥I + θΣ̃rW
>
r

∥∥∥
2

≤ (1 + θC1)
L

≤ exp (C1θL) .

The result follows by the choice of scale θ = 1/Ω(L) and taking θ small.

C.2 Proof of Lemma B.3: Lipschitz property with respect to input space at each layer

Before beginning with the proof, we introduce the following claim that will allow us to develop a
Lipschitz property with respect to the weights. This was used in Cao and Gu [5] and Allen-Zhu et al.
[1].
Claim C.1. For arbitrary u, y ∈ Rml , let D(u) be the diagonal matrix with diagonal en-
tries [D(u)]j,j = 1(uj ≥ 0). Then there exists another diagonal matrix Ď(u) such that∥∥D(u) + Ď(u)

∥∥
2
∨
∥∥Ď(u)

∥∥
2
≤ 1 and σ(u)− σ(y) =

(
D(u) + Ď(u)

)
(u− y).

Proof of Claim C.1. Simply define

[Ď(u)]j,j =

{
[D(u)−D(y)]

yj
uj−yj uj 6= yj ,

0 uj = yj .

Proof of Lemma B.3. We note that for any x, y, the matrix |Σl(x)−Σl(y)| is zero everywhere except
possibly the diagonal where it is either zero or one. Therefore its spectral norm is uniformly bounded
by 1 for all x, y. Using this, Lemma B.1 gives with probability at least 1− δ/3, for all x, x′ ∈ Sd−1,

‖x1 − x′1‖2 =
∥∥(Σ1(x1)− Σ1(x′1))W>1 (x− x′)

∥∥
2

≤ ‖Σ1(x1)− Σ1(x′1)‖2 ‖W1‖2 ‖x− x
′‖2

≤ 1 · C · ‖x− x′‖2 .

For the case L ≥ l ≥ 2, we have residual links to analyze. Using Claim C.1 we can write

σ(W>l xl−1)− σ(W>l x̂l−1) = (Σl(x) + Σ̌l(x))W>l (xl−1 − x̂l−1)

for diagonal matrix Σ̌l satisfying
∥∥Σ̌l(x)

∥∥
2
≤ 1 and

∥∥Σl(x) + Σ̌l(x)
∥∥
2
≤ 1. By Lemma B.2, we

have with probability at least 1− δ/3, for all 2 ≤ l ≤ L and all x, x′ ∈ Sd−1,

‖xl − x′l‖2 ≤
∥∥I + θ(Σl(x) + Σ̌l(x))W>l

∥∥
2

∥∥xl−1 − x′l−1∥∥2
≤ (1 + θC0)

∥∥xl−1 − x′l−1∥∥2
≤
(

1 +
C0θL

L

)L
· ‖x− x′‖2

≤ C1 ‖x− x′‖2 ,

since θL is uniformly bounded from above.
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The case l = L + 1 follows as in the case l = 1 by an application of Lemma B.1, so that with
probability at least 1 − δ/3,

∥∥x′L+1 − xL+1

∥∥
2
≤ C2 ‖x− x′‖2. Putting the above three claims

together, we get a constant C3 such that with probability at least 1− δ, ‖xl − x′l‖2 ≤ C3 ‖x− x′‖2
for all x, x′ ∈ Sd−1 and for all l ∈ [L+ 1].

C.3 Proof of Lemma B.4: local Lipschitz property with respect to weights and sparsity
bound

For this lemma, we need to introduce an auxiliary lemma that allows us to get control over the sparsity
levels of the ReLU activation patterns. Its proof can be found in Appendix D.1.
Lemma C.2. There are absolute constants C,C ′ such that for any δ > 0, if

m ≥ C
(
β−1

√
d log

1

βδ
∨ d log

mL

δ

)
,

then with probability at least 1− δ, the sets

Sl(x, β) = {j ∈ [ml] : |w>l,jxl−1| ≤ β}, x ∈ Sd−1, l ∈ [L+ 1],

satisfy |Sl(β)| ≤ C ′m
3
2

l β for all x ∈ Sd−1 and l ∈ [L+ 1].

Proof of Lemma B.4. We begin with the Lipschitz property, and afterwards will show the sparsity
bound. Consider l = 1. Since x̂1 = σ

(
Ŵ>1 x

)
and x̃1 = σ

(
W̃>1 x

)
, by Claim C.1, for every l there

is a diagonal matrix Σ̌l(x) with
∥∥Σ̌l(x)

∥∥
2
≤ 1 and

∥∥∥Σ̂l(x) + Σ̌l(x)
∥∥∥
2
≤ 1 such that

‖x̂1 − x̃1‖2 =
∥∥∥(Σ̂1(x) + Σ̌1(x)

)(
Ŵ>1 x− W̃>1 x

)∥∥∥
2

≤
∥∥∥Σ̂1(x) + Σ̌1(x)

∥∥∥
2

∥∥∥Ŵ1 − W̃1

∥∥∥
2
‖x‖2

≤
∥∥∥Ŵ1 − W̃1

∥∥∥
2
. (36)

For l = 2, . . . , L, we can write

x̂l − x̃l = x̂l−1 + θσ
(
Ŵ>l x̂l−1

)
− x̃l−1 − θσ

(
W̃>l x̃l−1

)
=
[
I + θ

(
Σ̂l(x) + Σ̌l(x)

)
W̃>l

]
(x̂l−1 − x̃l−1) + θ

[
Σ̂l(x) + Σ̌l(x)

] (
Ŵl − W̃l

)>
x̂l−1.

Therefore, we have

‖x̂l − x̃l‖2 ≤
∥∥∥I + θ(Σ̂l(x) + Σ̌l(x))W̃>l

∥∥∥
2
‖x̂l−1 − x̃l−1‖2 + θ

∥∥∥Σ̂l(x) + Σ̌l(x)
∥∥∥
2

∥∥∥Ŵl − W̃l

∥∥∥
2
‖x̂l−1‖2

≤ (1 + Cθ) ‖x̂l−1 − x̃l−1‖2 + θ
∥∥∥Ŵl − W̃l

∥∥∥
2
‖x̂l−1‖2 . (37)

We notice an easy induction will complete the proof. For the base case l = 2, notice that ‖x̂1‖2 ≤
‖x1‖2 + ‖x̂1 − x1‖2 ≤ C + τ ≤ C ′, so that (36) and (37) give

‖x̂2 − x2‖2 ≤ (1 + Cθ)
∥∥∥Ŵ1 − W̃1

∥∥∥
2
+C ′θ

∥∥∥Ŵ2 − W̃2

∥∥∥
2
≤ C4

∥∥∥Ŵ1 − W̃1

∥∥∥
2
+C4θ

∥∥∥Ŵ2 − W̃2

∥∥∥
2
.

Suppose by induction that there exists a constant C such that ‖x̂l−1 − xl−1‖2 ≤ C5

∥∥∥Ŵ1 − W̃1

∥∥∥
2

+

C5θ
∑l−1
r=1

∥∥∥Ŵr − W̃r

∥∥∥
2
. Then as in the base case, ‖x̂l−1‖2 ≤ C ′, so that (37) gives for all

l = 2, . . . , L,

‖x̂l − x̃l‖2 ≤ (1 + Cθ)C

[
C5

∥∥∥Ŵ1 − W̃1

∥∥∥
2

+ C5θ

l−1∑
r=1

∥∥∥Ŵr − W̃r

∥∥∥
2

]
+ C ′θ

∥∥∥Ŵl − W̃l

∥∥∥
2

≤ C6

∥∥∥Ŵ1 − W̃1

∥∥∥
2

+ C6θ

l∑
r=1

∥∥∥Ŵr − W̃r

∥∥∥
2
.
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Finally, the case l = L+ 1 follows similarly to the case l ≤ L, as

‖x̂L+1 − x̃L+1‖2 =
∥∥∥(Σ̂L+1(x) + Σ̌L+1(x)

)(
Ŵ>L+1x̂L − W̃>L+1x̃L

)∥∥∥
2

≤ C
∥∥∥ŴL+1 − W̃L+1

∥∥∥
2

+ C ′ ‖x̂L − x̃L‖2 .

The bound for the sparsity levels of Σ̃l(x) − Σ̂l(x) follows the same proof as Lemma B.5 in Cao
and Gu [5] with an application of our Lemma C.2. Sketching this proof, we note that it suffices
to prove a bound for

∥∥∥Σ̂l(x)− Σl(x)
∥∥∥
0
, use the same proof for

∥∥∥Σ̃l(x)− Σl(x)
∥∥∥
0

and then use
triangle inequality to get the final result. We write∥∥∥Σ̂l(x)− Σl(x)

∥∥∥
0

= s
(1)
l (β) + s

(2)
l (β),

where

s
(1)
l (β) = |{j ∈ Sl(x, β) : (ŵ>l,j x̂l−1) · (w>l,jxl−1) < 0}|,

s
(2)
l (β) = |{j ∈ Scl (x, β) : (ŵ>l,j x̂l−1) · (w>l,jxl−1) < 0}|,

which leads to ∥∥∥Σ̂l(x)− Σl(x)
∥∥∥
0
≤ Cm 3

2 β + C5τ
2β−2.

The choice of β = m
− 1

2

l τ
2
3 completes the proof.

C.4 Proof of Lemma B.5: behavior of network output inW(W (0), τ) when acting on sparse
vectors

This technical lemma will require two auxiliary lemmas before we may begin the proof. Their proofs
are left for Appendix D.2 and D.3.
Lemma C.3. Consider the function gl : Rml × RmL+1 → R defined by

gl(a, b) := b>W>L+1ξla, .

where ξl ∈ RmL×ml , and l ≥ 2. Suppose that with probability at least 1 − δ/2, ‖ξl‖2 ≤ C holds
for all ξl, l = 2, . . . , L. If s logm = Ω (C log(L/δ)), then there is a constant C0 > 0 such that
probability at least 1− δ, for all l,

sup
‖a‖2=‖b‖2=1, ‖a‖0,‖b‖0≤s

|gl(a, b)| ≤ C0

√
1

m
s logm.

Lemma C.4. Consider the function gl : Rml → R defined by

gl(a) := v>ΣL+1(x)>W>L+1ξla,

where ξl ∈ RmL×ml and l ≥ 2. Assume that with probability at least 1 − δ, ‖ξl‖2 ≤ C0 for all l.
Then provided s logm = Ω (log(L/δ)), we have with probability at least 1− δ, for all l,

sup
‖a‖2=1, ‖a‖0≤s

|gl(a)| ≤ C1

√
s logm.

With these lemmas in place, we can prove Lemma B.5.

Proof of Lemma B.5. By definition, gl(a, x) = v>H̃L+1
l a. First: since

∥∥∥W̃l −Wl

∥∥∥
2
≤ τ , there is

an absolute constant C2 > 0 such that with high probability,
∥∥∥W̃l

∥∥∥
2
≤ C2 for all l. Therefore, we

have with high probability for all x ∈ Sd−1, all l, and all a considered,∥∥∥H̃L
l

∥∥∥
2
≤

[
L∏
r=l

∥∥∥I + θΣ̃r(x)W̃>r

∥∥∥
2

]
‖a‖2 ≤ (1 + θ · 1 · C2)

L · 1 ≤ C3, (38)

25



by our choice of θ. We proceed by bounding gl by a sum of four terms:

|gl(a, x)| ≤ a ≤
∣∣∣v> (Σ̃L+1(x)− ΣL+1(x)

)
W̃>L+1H̃

L
l a
∣∣∣+
∣∣∣v>ΣL+1(x)W̃>L+1H̃

L
l a
∣∣∣

≤
∣∣∣v> (Σ̃L+1(x)− ΣL+1(x)

)(
W̃>L+1 −W>L+1

)
H̃L
l a
∣∣∣+
∣∣∣v> (Σ̃L+1(x)− ΣL+1(x)

)
W>L+1H̃

L
l a
∣∣∣

+
∣∣∣v>ΣL+1(x)

(
W̃>L+1 −W>L+1

)
H̃L
l a
∣∣∣+
∣∣∣v>ΣL+1(x)W>L+1H̃

L
l a
∣∣∣ .

For the first term, we can write∣∣∣v> (Σ̃L+1(x)− ΣL+1(x)
)(

W̃>L+1 −W>L+1

)
H̃L
l

∣∣∣
≤ ‖v‖2

∥∥∥(Σ̃L+1(x)− ΣL+1(x)
)(

W̃>L+1 −W>L+1

)
HL
l a
∥∥∥
2

≤ C
√
m
∥∥∥Σ̃L+1(x)− ΣL+1(x)

∥∥∥
2

∥∥∥W̃L+1 −WL+1

∥∥∥
2

∥∥∥H̃L
l a
∥∥∥
2

≤ C ′τ
√
m,

where we have used Cauchy–Schwarz in the first line, properties of the spectral norm in the second,
and (38) in the third. A similar calculation shows∣∣∣v>ΣL+1

(
W̃>l+1 −W>L+1

)
H̃L
l

∣∣∣ ≤ ‖v‖2 ∥∥∥ΣL+1

(
W̃>L+1 −W>L+1

)
H̃L
l

∥∥∥
2

≤ Cτ
√
m.

For the second and fourth terms, we use Lemmas C.3 and C.4. Let b̌> = v>
(

Σ̃L+1(x)− ΣL+1(x)
)

.

Then it is clear that
∥∥b̌∥∥

0
≤ s and

∥∥b̌∥∥
2
≤
√
m (in fact,

∥∥b̌∥∥
2
≤
√
s, but this doesn’t matter since the

fourth term dominates the second term). Thus applying Lemma C.3 to b = b̌/
∥∥b̌∥∥

2
,

|v>
(

Σ̃L+1(x)− ΣL+1(x)
)
W>L+1H̃

L
l a| ≤ C

√
m ·

√
s

m
logm

≤ C
√
s logm.

For the fourth term, we can directly apply Lemma C.4 to get another term ∝
√
s logm.

C.5 Proof of Lemma B.6

This lemma is the key to the sublinear dependence on L for the required width for the generalization
result. Essential to its proof is the following proposition which states that there is a linear separability
condition at each layer due to Assumption 3.2 with only a logarithmic dependence on the depth L. In
fact, we only need linear separability at the second-to-last layer for the proof of Lemma B.6.

Proposition C.5. Suppose m ≥ Cγ−2
(
d log 1

γ + log L
δ

)
for some large constant C. Then there

exists α ∈ SmL−1 such that with probability at least 1− δ, for all l = 1, . . . , L, we have
y 〈α, xl〉 ≥ γ/2.

Proof of Proposition C.5. We recall that Assumption 3.2 implies that there exists c(u) with
‖c(u)‖∞ ≤ 1 such that f(x) =

∫
Rd c(u)σ(u>x)p(u)du satisfies y · f(x) ≥ γ for all (x, y) ∈

supp(D). Following Lemma C.1 in Cao and Gu [5], if we define

α :=

√
1

m1
·
(
c

(√
m1

2
w1,1

)
, . . . , c

(√
m1

2
w1,m1

))
,

then α = α′/ ‖α′‖2 ∈ Sm1−1 satisfies y · α>x1 ≥ γ
2 for all (x, y) ∈ suppD.

We now show that the l-th layer activations xl are linearly separable using α. We can write, for
l = 2, . . . , L,

〈α, xl〉 =
〈
α, (I + θΣl(x)W>l )xl−1

〉
= 〈α, x1〉+ θ

l∑
l′=2

〈
α,Σl′(x)W>l′ xl′−1

〉
. (39)
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Since
〈
α,Σl(x)W>l xl−1

〉
=
∑ml

k=1

√
1
m1
c
(√

m1

2 w1,k

)
· σ(w>l,kxl−1) and ‖c(·)‖∞ ≤ 1, we have

for every l ≥ 2,

−
ml∑
k=1

√
1

m1

∣∣w>l,kxl−1∣∣ ≤ 〈α,Σl(x)W>l xl−1
〉
≤

ml∑
k=1

√
1

m1

∣∣w>l,kxl−1∣∣ . (40)

Thus it suffices to find an upper bound for the term on the r.h.s. of (40). Since we have

E
∣∣w>l,kxl−1∣∣ =

√
2

π

√
2

m1
‖xl−1‖2 ≤ C2m

− 1
2 ,

we can apply Hoeffding inequality to get absolute constants C4, C5 > 0 such that for fixed x and l,
we have with probability at least 1− δ,

ml∑
k=1

√
1

m1

∣∣w>l,kxl−1∣∣ ≤ ml∑
k=1

√
1

m
C2m

− 1
2 + C4

√
1

m
log

1

δ

≤ C5 + C4

√
1

m
log

1

δ
.

Take a 1
2 -netN of Sd−1 so that |N | ≤ 5d and every x ∈ Sd−1 has x̂ ∈ N with ‖x− x̂‖2 ≤

1
2 . Then,

provided m ≥ Cd log L
δ , there is a constant C6 > 0 such that we have with probability at least 1− δ,

for all x̂ ∈ N and all l ≤ L,
ml∑
k=1

√
1

m1

∣∣w>l,kx̂l−1∣∣ ≤ C6.

By (40), this means for all x̂ ∈ N and l, −C6 ≤
〈
α,Σl(x̂)W>l x̂l−1

〉
≤ C6. We can lift this to hold

over Sd−1 by using Lemma B.3: for arbitrary x ∈ Sd−1 we have∣∣〈α,Σl(x)W>l xl
〉∣∣ ≤ ∣∣〈α,Σl(x)W>l (xl − x̂l)

〉∣∣+
∣∣〈α,Σl(x)W>l x̂l

〉∣∣
≤ ‖α̃l‖2 ‖Σl(x)‖2 ‖Wl‖2 ‖xl − x̂l‖2 + C6

≤ C7,

so that with probability at least 1− δ, for all l ≤ L and all x ∈ Sd−1, we have

−C7 ≤
〈
α,Σl(x)W>l x̂l−1

〉
≤ C7.

Substituting the above into (39), we get{
〈α, xl〉 ≥ 〈α, x1〉 − θLC7,

−〈α, xl〉 ≥ − 〈α, x1〉 − θLC7.

Considering the cases y = ±1 we thus get with probability at least 1−δ for all l and (x, y) ∈ suppD,{
y 〈α, xl〉 ≥ y 〈α, x1〉 − θLC7 ≥ γ

2 − θLC7, y = 1,

y 〈α, xl〉 ≥ y 〈α, x1〉 − θLC7 ≥ γ
2 − θLC7, y = −1.

Thus taking θ small enough so that θL ≤ γC−17 /4 completes the proof.

With Proposition C.5 in hand, we can prove Lemma B.6.

Proof of Lemma B.6. By Proposition C.5, there exists αL ∈ SmL−1 such that with probability at
least 1− δ, y 〈αL, xL〉 ≥ γ/4 for all (x, y) ∈ supp(D). In particular, since a is non-negative, this
implies for all i,

〈a(xi, yi) · yi · xL,i, αL〉 = a(xi, yi) · yi 〈xL,i, αL〉 ≥ a(xi, yi)yiγ/4. (41)

Since E[σ′(w>L+1,jxL,i)|xL,i] = 1
2 , by Hoeffding inequality, with probability at least 1− δ/2, for all

i = 1, . . . , n, we have

1

mL+1

mL+1∑
j=1

σ′(w>L+1,jxL,i) ≥
1

2
− C1

√
1

mL+1
log(n/δ) ≥ 49

100
. (42)
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Therefore, we can bound
mL+1∑
j=1

∥∥∥∥∥ 1

n

n∑
i=1

[
a(xi, yi) · yi · σ′(w>L+1,jxL,i) · xL,i

]∥∥∥∥∥
2

2

≥ mL+1

∥∥∥∥∥∥ 1

mL+1

mL+1∑
j=1

1

n

n∑
i=1

[
a(xi, yi) · yi · σ′(w>L+1,jxL,i) · xL,i

]∥∥∥∥∥∥
2

2

= mL+1

∥∥∥∥∥∥ 1

n

n∑
i=1

a(xi, yi) · yi · xL,i
1

mL+1

mL+1∑
j=1

σ′(w>L+1,jxL,i)

∥∥∥∥∥∥
2

2

≥ mL+1

〈
1

n

n∑
i=1

a(xi, yi) · yi · xL,i ·
1

mL+1

mL+1∑
j=1

σ′(w>L+1,jxL,i), αL

〉2

= mL+1

 1

n

n∑
i=1

a(xi, yi) · yi ·
1

mL+1

mL+1∑
j=1

σ′(w>L+1,jxL,i) · 〈xL,i, αL〉

2

≥
(

49

100

)2

mL+1

(
1

n

n∑
i=1

a(xi, yi)

)2

· γ
2

42

≥ 1

67
mL+1 · γ2

(
1

n

n∑
i=1

a(xi, yi)

)2

.

The first inequality above follows by Jensen inequality. The second inequality follows by Cauchy–
Schwarz and since ‖αL‖2 = 1. The third inequality follows with an application of (41) and (42), and
the final inequality by arithmetic.

D Proofs of Auxiliary Lemmas

D.1 Proof of Lemma C.2

Proof. By following a proof similar to that of Lemma A.8 in Cao and Gu [5], one can easily prove
the following claim:

Claim D.1. For v ∈ Rml−1 , β > 0, and l ∈ [L+ 1] define

Sl(v, β) := {j ∈ [ml] : |w>l,jv| ≤ β}. (43)

Suppose that there is an absolute constant ξ ∈ (0, 1) such that for any δ > 0 we have with probability
at least 1 − δ/2, ‖v‖2 ≥ ξ for all v ∈ V for some finite set V ⊂ Rml−1 . Then there exist absolute
constants C,C ′ > 0 such that if m ≥ Cβ−1

√
log(4|V|/δ), then with probability at least 1− δ, we

have |Sl(v, β)| ≤ C ′m3/2
l β for all v ∈ V .

By Lemmas 4.1 and B.1, with probability at least 1− δ/3, we have ‖xl−1‖2 ≥ C and ‖wl,j‖2 ≤ C1

for all x ∈ Sd−1, l ∈ [L + 1], and j ∈ [ml]. By Lemma B.3, with probability at least 1 − δ/3,
we have ‖xl − x′l‖2 ≤ C2 ‖x− x′‖2 for all x, x′ ∈ Sd−1. By taking V to be the β/(C1C2)-net
N (Sd−1, β/(C1C2)), since |N | ≤ (4C1C2/β)d, the assumption that m ≥ Cβ−1

√
d log(1/(βδ))

allows us to apply Lemma D.1 to get that with probability at least 1− δ/3, we have |Sl(x̂, 2β)| ≤
2C ′m

3
2

l β for all l and x̂ ∈ N . For arbitrary x ∈ Sd−1, there exists x̂ ∈ N with ‖x− x̂‖2 ≤
β/(C1C2). Thus, we have

|w>l,jxl−1| ≤ |w>l,j x̂l−1|+ |w>l,j(xl−1 − x̂l−1)|
≤ β + ‖wl,j‖2 ‖xl−1 − x̂l−1‖2
≤ β + C1 · C2 ‖x− x̂‖2
≤ 2β,
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i.e. Sl(x, β) ⊂ Sl(x̂, 2β). Therefore |Sl(x, β)| ≤ |Sl(x̂, 2β)| ≤ 2C ′m
3
2

l β, as desired.

D.2 Proof of Lemma C.3

Proof. The j-th row of W>L+1ξla has distribution w>L+1,jξla ∼ N
(

0, 2
mL+1

‖ξla‖22
)

, and hence

gl(a, b) ∼ N
(

0, 2
ml
‖ξla‖22

)
. Since ‖ξl‖2 ≤ C0 for all l with high probability, it is clear that

‖ξla‖22 ≤ C2
0 . Thus applying Hoeffding inequality gives a constant C3 > 0 such that we have for

fixed a and b, with probability at least 1− δ,

|b>W>L+1ξla| ≤ C3

√
1

mL+1
log

1

δ
. (44)

LetMa be a fixed subspace of Rml with sparsity s, and let Na(M, 1/4) be a 1/4-net coveringMa.
There are

(
ml

s

)
choices of suchMa. Let Na = ∪MaNa(Ma, 1/4) be the union of such spaces. By

Lemma 5.2 in Vershynin [23], for s larger than e.g. 15, we have

|Na| ≤
(
ml

s

)
9s ≤ ms

l .

Similarly consider subspaceMb ⊂ RmL+1 with sparsity level s and let Nb(Mb, 1/4) be a 1/4-net
of RmL+1 with sparsity level s and defineNb = ∪Mb

Nb(Mb, 1/4), so that |Nb| ≤ ms
L+1. We apply

(44) to every â ∈ Na and b̂ ∈ Nb and use a union bound to get a constant C4 > 0 such that with
probability at least 1− δ, for all â ∈ Na, b̂ ∈ Nb, and all l,

|̂b>W>L+1ξlâ| ≤ C3

√
1

mL+1
log
|Na| · |Nb| · L

δ

≤ C3

√
1

mL+1
log

ms
L+1 ·ms

l · L
δ

= C3

√
1

mL+1

(
s log(mL+1ml) + log

L

δ

)
≤ C4

√
s

mL+1
logm.

(
s logm = Ω

(
log

L

δ

))

For arbitrary a ∈ Sml−1 and b ∈ SmL+1−1 with ‖a‖0 , ‖b‖0 ≤ s, there are â ∈ Na and b̂ ∈ Nb with

‖a− â‖2 ,
∥∥∥b− b̂∥∥∥

2
≤ 1/4. Note that g is linear in a and b. Triangle inequality gives

|gl(a, b)| ≤ |gl(â, b̂)|+ |gl(a, b)− gl(â, b̂)|

≤ C3

√
s

mL+1
logmL+1 + |gl(a, b)− gl(â, b)|+ |gl(â, b̂)− gl(â, b)| (45)

We have for any â,

|gl(â, b̂)− gl(â, b)| =
∥∥∥b− b̂∥∥∥

2

∣∣∣∣∣∣gl
â, b− b̂∥∥∥b− b̂∥∥∥

2

∣∣∣∣∣∣
≤ 1

4
sup

‖b′‖2=‖a‖2=1, ‖a‖0,‖b′‖0≤s
|gl (a, b′)| . (46)

Similarly,

|gl(a, b)− gl(â, b)| ≤
1

4
sup

‖b‖2=‖a‖2=1, ‖a‖0,‖b‖0≤s
|gl (a, b)| . (47)

Taking supremum over the left hand side of (45) and using the bounds in (46) and (47) completes the
proof.
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D.3 Proof of Lemma C.4

Proof. We notice that since v = (1, . . . , 1,−1, . . . ,−1)>, we can write gl(a) as a sum of independent
random variables in the following form:

gl(a) =
√
mL+1

mL+1/2∑
j=1

1
√
mL+1

[
σ(w>L+1,jξl+1a)− σ(w>L+1,j+mL+1/2

ξl+1a)
]
.

Since ‖ξl+1a‖2 is uniformly bounded by a constant, Hoeffding inequality yields a constant C3 > 0
such that for fixed a, with probability at least 1− δ, we have

gl(a) ≤ C3

√
m

√
1

m
log

1

δ
.

LetM be a fixed subspace of Rml with sparsity s, and let N = ∪MN (M, 1/2) be the union of all
1/2-nets covering eachM so that |N | ≤ ms

l . Using a union bound over all â ∈ N and l, we get that
with probability at least 1− δ, for all â ∈ N and all l ≤ L,

gl(â) ≤ C3

√
m ·

√
1

m
log
|N | · L
δ

≤ C5

√
s logm.

For arbitrary a ∈ Sml−1 satisfying ‖a‖0 ≤ s, there is â ∈ N with ‖a− â‖2 ≤ 1/2. Since g is linear,

|gl(a)| ≤ |gl(â)|+ |gl(a− â)| ≤ C5

√
s logm+ |gl(a− â)|. (48)

For the second term, we have

|gl(a− â)| = ‖a− â‖2

∣∣∣∣gl( a− â
‖a− â‖2

)∣∣∣∣ ≤ 1

2
sup

‖a‖2=1, ‖a‖0≤s
|gl(a)|.

Substituting this into (48) and taking supremums completes the proof.
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