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In the supplement, we include proofs of theoretical results, and provide three additional applications351

of gradient information. One application is on Granger-type causality measures; The second appli-352

cation is about channel stability in information theory; The last application is in derivation of some353

general inequalities using gradient information (which are otherwise highly nontrivial to establish).354

Proof of Theorem 1355

It can be seen that D∇(p, q) = 0 if and only if ∇p(y) = ∇q(y) almost everywhere. Since p and q356

are densities and integrate to one, ∇p(y) = ∇q(y) is equivalent to p(y) = q(y) almost everywhere.357

Using direct calculation and integration by parts, we have358

D∇(p, q) =
1

2

∫

[a,b]
p(y)|(∇ log q(y)) ◦ (y − a)αj ◦ (y − b)βj |2dx

−
d∑

j=1

∫

[aj ,bj ]
p(y) (∂yj log p(y))(∂yj log q(y))(yj − aj)

2αj (yj − bj)
2βjdyj + C

and the j-th term in the above summation is359

−
∫

[aj ,bj ]
p(y) (∂yj log p(y))(∂yj log q(y))(yj − aj)

2αj (yj − bj)
2βjdyj

= −
∫

[aj ,bj ]
(∂yjp(y)) (∂yj log q(y))(yj − aj)

2αj (yj − bj)
2βjdyj

= −p(y)(∂yj log q(y))(yj − aj)
2αj (yj − bj)

2βj |bjaj
+

∫

[aj ,bj ]
p(y) ∂yj

{
(∂yj log q(y))(yj − aj)

2αj (yj − bj)
2βj

}
dyj

=

∫

[aj ,bj ]
p(y) ∂yj

{
(∂yj log q(y))(yj − aj)

2αj (yj − bd)
2βj

}
dyj

where the last identity holds under (3).360

Proof of Theorem 2361

We use ∇y,z and ∇y to highlight that the derivative is taken with regard to [y, z] and y, respectively.362

We only prove for unbounded Y, Z. The proof of the extended case is similar, as discussed in363

Subsection 2.2.364

We first prove Identity (6). Applying Proposition 1 and Identity (5), we obtain the following identi-365

ties (where expectations are with respect to pY Z):366

D∇(pY Z , pY pZ) = E{s∇([Y, Z], pY pZ)}+
1

2
E∥∇y,z log pY,Z(Y, Z)∥2

=
1

2
E
(
∥∇y log{pY (Y )pZ(Z)}∥2 + ∥∇z log{pY (Y )pZ(Z)}∥2

)

+∆y log{pY (Y )pZ(Z)}+∆z log{pY (Y )pZ(Z)}− E{s∇([Y, Z], pY Z)}
= E{s∇(Y, pY )}+ E{s∇(Z, pZ)}− E{s∇([Y, Z], pY Z)}.
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We then prove Identity (7). Direct calculations give367

E{s∇([Y, Z], pY,Z)} =
1

2
E∥∇y,z{log pY (Y ) + log pZ|Y (Z | Y )}∥2 + E

(
∆y,z{log pY (Y ) + log pZ|Y (Z | Y )}

)

=
1

2
E
(
∥∇y log pY (Y )∥2

+ ∥∇y,z log pZ|Y (Z | Y )∥2
)
+ E{∆y log pY (Y )}+ E{∆y,z log pZ|Y (Z | Y )}+ c

= H∇(Y ) +H∇(Z | Y ) + c

where c denotes368

c = E{∇y log pY (Y )T ·∇y log pZ|Y (Z | Y )}.

It remains to show that c = 0. We use dy , Dy , Dy(−j)
to denote the dimension of Y , domain of369

Y , domain of the subvector of Y excluding dimension j, respectively. Dz and Dy,z are similarly370

defined. We have371

c = E{∇y log pY (Y )T ·∇y log pZ|Y (Z | Y )}

=

dy∑

j=1

∫

Dy,z

pY,Z(y, z)
∂yjpY (y)

pY (y)
·
∂yjpZ|Y (z | y)

p(z | y) dydz

=

dy∑

j=1

∫

Dy,z

∂yjpY (y) · ∂yjp(z | y)dydz

=

dy∑

j=1

∫

Dy(−j),z

(
pY (y) · ∂yjp(z | y) |∞−∞ −

∫

Dj

pY (y)∂
2
yj
p(z | y)dyj

)∏

k ̸=j

dykdz

= −
∫

Dy

pY (y)

(∫

Dz

∆yp(z | y)dz
)
dy = −

∫

Dy

pY (y)

(
∆y

∫

Dz

p(z | y)dz
)
dy = 0.

Proof of Proposition 2372

We first prove (9). By a derivation similar to the proof of Theorem 2, we obtain373

H∇(Z | Y ) = −1

2
E∥∇[z,y] log p(z | y)∥2 (13)

for any two random variables Z, Y whose joint distribution exists. Therefore,374

H∇(Z | Y ) = −1

2
E∥∇Y,Z log pZ|Y (Z | Y )∥2 ≤ −1

2
E∥∇Z log pZ|Y (Z | Y )∥2 = E{H∇(Z | Y = y)}.

We then prove (10). Suppose W = Y + Z. It follows from (13) that375

H∇(W | Z) = −2× 1

2
E∥∇w log p(w − z)∥2

= −E∥∇y log p(y)∥2 = 2H∇(Y ).

Proof of Proposition 3376

Lemma 1. Given a fixed covariance matrix V of a random variable Y supported on Rd, the377

distribution that maximizes H∇(Y ) is Gaussian (with an arbitrary mean), and the maximum is378

−Tr(V −1)/2.379

We now prove that the maximum entropy distribution on Rd is Gaussian given second moment380

constraints. The results are readily observable from the known results that the distribution with a381

fixed variance that minimizes the Fisher information is the Gaussian distribution, typically proved382

using calculus of variations and differential equations (see, e.g. [28]). Here we provide a much383

simpler proof.384

2



Proof. Suppose that Y1, Y2 are two i.i.d. random variables following the maximum entropy distri-385

bution. Then 2Y1 follows the maximum entropy distribution with variance 2V , and by definition,386

J(2Y1) ≤ J(Y1 + Y2). Direction calculations show that J(2Y1) = J(Y1)/2, therefore, it follows387

from the convolution inequality [29] that388

J(Y1)

2
= J(2Y1) ≤ J(Y1 + Y2) ≤

1

J(Y1)−1 + J(Y2)−1
=

J(Y1)

2

with equality only if the equality for convolution inequality for Fisher information holds, which389

implies that Y1, Y2 must be Gaussian.390

Proof of Proposition 3:391

By Lemma 1, we have392

E(Y − Ŷ (X))2 = EXEY |X(Y − Ŷ (x) | X = x)2 ≥ EXVar(Y | X = x) ≥ EX
1

−2H∇(Y | X = x)
.

Moreover, applying Cauchy’s inequality and Identity 9, we obtain393

EX
1

−2H∇(Y | X = x)
≥ 1

EX{−2H∇(Y | X = x)} ≥ 1

−2H∇(Y | X)
.

This concludes the proof.394

Proof of Theorem 3395

Let pa denote a distribution with first-order dependence tree structure. Using Proposition 1 and396

Identity 5, we have397

E{D∇(p, pa)} = E{s∇(Y, pa)}+ 1

2
E∥∇y log p(y)∥2 = E{s∇(Y, pa)}−H∇(Y ) (14)

In order to minimize E{D∇(p, pa)}, we only need to minimize E{s∇(Y, pa)}. Let j(i) index the398

parent node of i on the tree that represents pa. Without loss of generality, let Y1 denote the root of399

the tree, and Ea denote the set of edges. By Identity (7) in Theorem 2, the Markovity of pa, and400

the fact that pa(·) agrees with p(·) on all the first and second order marginal distributions, we can401

rewrite E{s∇(Y, pa)} as402

E{s∇(Y, pa)} = E{s∇(Y1, p
a
1)}+

∑

{i,j(i)}∈Ea

E{s∇(Yi, p
a
i|j(i))}

= H∇(Y1) +
∑

{i,j(i)}∈Ea

{H∇(Yi)− I∇(Yi;Yj(i))}

=
n∑

i=1

H∇(Yi)−
∑

{i,j(i)}∈Ea

I∇(Yi;Yj(i)).

This concludes the proof.403

Derivations for exponential family example404

The sample average of (1) is a quadratic function of θ = [θ1, . . . , θ5]. The closed form solution θ̂ is405

derived as406

θ̂ = −
{ n∑

j=1

(a1,ja
T
1,j + a2,ja

T
2,j)

}−1 n∑

j=1

(a3,j + a4,j) (15)

where407

a1,j = [2y1,iy
2
2,i, 2y1,i, 0, y2,i, 1, 0]

T, a2,j = [2y21,iy2,i, 0, 2y2,i, y1,i, 0, 1]
T,

a3,j = [2y22,i, 2, 0, 0, 0, 0]
T, a4,j = [2y21,i, 0, 2, 0, 0, 0]

T,
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The distribution density of Y2 is408

p(y2) ∝ (−θ1y
2
2 − θ2)

−1/2 exp

{
− (θ4y2 + θ5)2

4(θ1y22 + θ2)
+ θ3y

2
2 + θ6y2

}
(16)

So its entropy can be estimated by409

− 1

2n

n∑

j=1

∥∇ log pθ̂(y2)∥
2

= − 1

2n

n∑

j=1

{
−1

2

2θ̂1y2,j

θ̂1y22,j + θ̂2
+

1

4

2θ̂1y2,i(θ̂4y2,i + θ̂5)2

(θ1y22,i + θ2)2
− 1

4

2θ̂4(θ̂4y2,i + θ̂5)

θ1y22,i + θ2
+ 2θ̂3y2,i + θ̂6

}2

.

The value of H∇(Y1) can be similarly estimated. We therefore get an consistent (under some mo-410

ment conditions) estimate I∇(Y1, Y2) from Proposition 6.411

The conditional distribution density p(y1 | y2) can be calculated from (12) and (16):412

p(y1 | y2) ∝ (−θ1y
2
2 − θ2)

1/2 exp

{
θ1y

2
1y

2
2 + θ2y

2
1 + θ4y1y2 + θ5y1 +

(θ4y2 + θ5)2

4(θ1y22 + θ2)

}
(17)

Application: Implication on Causality413

The identification of causality usually serves as a key step towards simplified modeling and learning.414

Let X1, X2, . . . and Y1, Y2, . . . be two sequences of data. In general, we say a series Xt causes415

another series Yt if knowing the past {X1, . . . , Xt−1} can provide information on the future of Yt416

given the past of {Y1, . . . , Yt−1}. This school of thoughts is exemplified by the seminal work of417

Granger [30] in identifying causal relations between multivariate times series. The Granger causal-418

ity is typically tested in linear models between Yt and Xt (with lags) and the two processes are419

assumed to be stationary [31]. In general, this type of of causality can be unified by Kolmogorov420

complexity K(·) which, not only extends Granger causality to nonstationary and nonlinear processes,421

but also includes various other approximations of Kolmogorov information in the literature, such as422

Shannon’s mutual information, Renyi’s information, directed Shannon information, directed Renyi423

information, combinatorial measures of information (e.g. Lempel-Ziv information).424

Intuitively, the quantity measures how much complexity of the series {Yt} is re-425

duced by knowing {Xt}. The past {X1, . . . , Xt−1} provide information about Yt if426

K(Yt|Xt−1, . . . , X1, Yt−1, . . . , Y1) < K(Yt|Yt−1, . . . , Y1) for Kolmogorov complexity measure427

K(·). In this case, additional predictive information is provided by the series {Xt} if428

K(Yt|Yt−1, . . . , Y1)−K(Yt|Yt−1, . . . , Y1, Xt−1, . . . , X1)

is greater than zero. We define the left hand side of the above term to be the Kolmogorov causal429

information provided by series {Xt} for predicting {Yt}.430

However, Kolmogorov information is in general not computable and its surrogates may be used in-431

stead. For example, consider replacing the complexity measure K by Shannon entropy H(Y ) =432

−
∫
p(y) log p(y)dy for a continuous random variable Y . In this case, Kolmogorov causal informa-433

tion reduces to the directed Shannon information [32].434

Using gradient entropy as the surrogate for the Kolmogorov information, we can define gradient-
directed information (as a surrogate for Kolmogorov causal information) as:

H∇(Yt|Yt−1, . . . , Y1)−H∇(Yt|Yt−1, . . . , Y1, Xt−1, . . . , X1).

The above measure provides an alternative method of measuring the causality from the sensitiv-435

ity point of view. It also provides significant computational advantages particularly when density436

normalizing constants are unknown.437

Application: Stability of Channel Capacity438

Consider input X , output Y , and a time invariant channel described by conditional distribution439

pY |X . The channel capacity in many cases is achieved by maximizing I(X;Y ) over the marginal440
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distribution of X , pX (see for example the channel coding theorem [33]). In practical applications,441

we may also be interested in the stability of channel capacity, in the sense that the capacity is not442

very sensitive to perturbations at both ends of the channel. One possible way to define the channel443

stability is through the definition of I∇(X;Y ) which can be interpreted as the sensitivity of I(X;Y ):444

the smaller the better (see Subsection 2.4).445

It is thus reasonable to assume that solutions of the following types of optimization problem would446

lead to channel coding that is both efficient in transmitting signals and robust against noise.447

max
pX

I(X;Y )/I∇(X;Y ). (18)

It has been well known that Gaussian input maximizes the Gaussian channel capacity under power448

constraints. In the following theorem, we show that Gaussian input also minimizes I∇(X;Y ) for449

Gaussian channels under power constraints. The result further indicates that Gaussian input achieves450

the optimum of (18), i.e. it enjoys not only the largest information capacity but also the smallest451

instability.452

Theorem 4. For Gaussian channel Y = X +N where N ∼ N (0, vN ) and var(X) = vX , the pX453

that achieves the minimum of I∇(X;Y ) is Gaussian.454

min
pX

I∇(X;Y ). (19)

Moreover, the smallest mutual information is

I∇(X;Y ) = H∇(Y )−H∇(Y | X) = − 1

2(vX + vN )
+

1

vN
=

2vX + vN
2(vX + vN )vX

,

which is increasing in vX with range [v−1
N , 2v−1

N ).455

Proof. By Identity (7) in Theorem 2, we have I∇(X;Y ) = H∇(Y ) − H∇(Y | X). Using Iden-
tity 10, we have

H∇(Y | X) = H∇(X +N | X) = 2H∇(N) = − 1

vN
which is a constant that does not depend on X . Thus, minimizing (19) is equivalent to minimizing456

H∇(Y ) under the constraint that Var(Y ) ≤ vN + vX . Using Lemma 1 concludes the proof.457

Application: Some Elementary Inequalities458

Proposition 5. Under the same assumptions of Theorem 2, we have459

H∇(Y1, . . . , Yn) =
n∑

i=1

H∇(Yi | Y1, . . . , Yi−1) ≤
n∑

i=1

H∇(Yi). (20)

Proof. The result can be obtained by recursively applying Identity (7) in Theorem 2 for n random460

variables Y1, . . . , Yn.461

We can generalize Proposition 5 to show how the monotonicity of the average entropy rates of462

subsets as the size of the subsets increases.463

Proposition 6. Suppose that Y1, . . . , Yn have a joint distribution. For every S ⊆ {1, . . . , n}, let464

YS = {Yi : i ∈ S}, and YSc = {Yi : i /∈ S}. Let465

h(n)
k =

1(n
k

)
∑

S:card(S)=k

H∇(YS)

k
, (21)

t(n)k =
1(n
k

)
∑

S:card(S)=k

1

−H∇(YS)/k
, (22)

Then466

h(n)
1 ≥ · · · ≥ h(n)

n

t(n)1 ≥ · · · ≥ t(n)n

5



Proof. Inequalities (21) can be proved using the same arguments as in the proof of Theorem 16.8.1467

in [33] (which only uses Proposition 5). We only prove the Inequality (22) here. The proof of468

Theorem 16.8.1 in [33] implies that469

1

n

n∑

i=1

H∇(Y−i)

n− 1
≥ 1

n
H∇(Y1, . . . , Yn) (23)

where Y−i denotes [Y1, . . . , Yi−1, Yi+1, Yn]. Thus, we have470

1

n

n∑

i=1

1
−H∇(Y−i)

n−1

≥ 1
1
n

∑n
i=1

−H∇(Y−i)
n−1

≥ 1

− 1
nH∇(Y1, . . . , Yn)

(24)

where the first inequality of (24) follows from the fact that H∇(·) is a negative function and the471

harmonic mean is no larger than the arithmetic mean, and the second inequality follows from (23).472

Inequality (24) is equivalent to t(n)n−1 ≥ t(n)n . To prove (22), we first condition on a k-element subset,473

and apply the existing result to obtain t(k)k−1 ≥ t(k)n . We then take a uniform choice over the k-element474

subset and its k − 1-element subsets.475

Consider the specific case where Yi’s are jointly distributed according to Gaussian distribution with
covariance V . We can have inequalities for traces, as Gaussian gradient entropy is

−1

2
Tr(V −1).

Throughout the remainder of this chapter, we will assume that V is a positive definite symmetric476

n× n matrix.477

Proposition 7. For any positive definite matrix V , we have478

Tr(V −1) ≥
n∑

i=1

Tr(V −1
i ). (25)

for any set of block matrices {V1, . . . , Vn} of V whose rows (resp. columns) form a partition of the479

rows (resp. columns) of V . Moreover, the equality holds if and only if V are block-diagonal with480

blocks {V1, . . . , Vn}.481

Inequality (25) immediately follows from (20). We note that the inequality in (25) can also be482

proved by using block matrix inversion and Woodbury matrix identity, but it is much more involved483

compared with the simple proof here using entropy inequality.484

Proposition 8. If hk denotes the product of the determinants of all the principal k-rowed minors of485

a positive definite n× n matrix V , i.e.,486

hk =
∑

1≤i1<···<ik≤n

Tr(V (i1, . . . , ik)
−1)

then487

h1 ≤ · · · ≤ hk(n−1
k−1

) ≤ · · · ≤ hn

with equality if and only if V is a diagonal matrix.488

Proof. Let X ∼ N (0, V ). Then the inequality follows directly from Proposition 6 and k
(n
k

)
=489

n
(n−1
k−1

)
. The proof of Inequality (21) implies that if X is Gaussian, the equality holds if and only if490

the entries of X are independent, i.e., V is diagonal.491
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