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Appendices
A Algorithm of PONO-MS

The implementation of PONO-MS in TensorFlow [1] an PyTorch[7] are shown in Listing 1 and 2
respectively.

# x is the features of shape [B, H, W, C]

# In the Encoder
def PONO(x, epsilon=1e-5):

mean, var = tf.nn.moments(x, [3], keep_dims=True)
std = tf.sqrt(var + epsilon)
output = (x - mean) / std
return output, mean, std

# In the Decoder
# one can call MS(x, mean, std)
# with the mean and std are from a PONO in the encoder
def MS(x, beta, gamma):

return x * gamma + beta

Listing 1: PONO and MS in TensorFlow

# x is the features of shape [B, C, H, W]

# In the Encoder
def PONO(x, epsilon=1e-5):

mean = x.mean(dim=1, keepdim=True)
std = x.var(dim=1, keepdim=True).add(epsilon).sqrt()
output = (x - mean) / std
return output, mean, std

# In the Decoder
# one can call MS(x, mean, std)
# with the mean and std are from a PONO in the encoder
def MS(x, beta, gamma):

return x * gamma + beta

Listing 2: PONO and MS in PyTorch

∗: Equal contribution.
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B Equations of Existing Normalization

Batch Normalization (BN) computes the mean and std across B, H, and H dimensions, i.e.

µc = Eb,h,w[Xb,c,h,w], σc =
√
Eb,h,w[X2

b,c,h,w − µc] + ε,

where ε is a small constant applied to handle numerical issues.

Synchronized Batch Normalization views features of mini-batches across multiple GPUs as a single
mini-batch.

Instance Normalization (IN) treats each instance in a mini-batch independently and computes the
statistics across only spatial dimensions, i.e.

µb,c = Eh,w[Xb,c,h,w], σb,c =
√
Eh,w[X2

b,c,h,w − µb,c] + ε.

Layer Normalization (LN) normalizes all features of an instance within a layer jointly, i.e.

µb = Ec,h,w[Xb,c,h,w], σb =
√
Ec,h,w[X2

b,c,h,w − µb] + ε.

Finally, Group Normalization (GN) lies between IN and LN, it devides the channels into G groups
and apply layer normalization within a group. When G = 1, GN becomes LN. Conversely, when the
G = C, it is identical to IN. To define it formally, it computes

µb,g = Ec∈Sg,h,w[Xb,c,h,w], σb,g =
√
Ec∈Sg,h,w[X

2
b,c,h,w − µb,g] + ε,

where Sg = {d (g−1)CG + 1e, . . . , d gCG e}.

C PONO Statistics of Models Pretrained on ImageNet

Figure 1 shows the means and the standard deviations extracted by PONO based on the features
generated by VGG-19 [8], ResNet-152 [3], and DenseNet-161 [4] pretrained on ImageNet [2].

D Implementation details

We add PONO to the encoder right after a convolution operation and before other normalization or
nonlinear activation function. Figure 2 shows the model architecture of CycleGAN [9] with Positional
Normalization. Pix2pix [5] uses the same architecture.

E Qualitative Results Based on CycleGAN and Pix2pix

We show some outputs of CycleGAN in Figure 3. The Pix2pix outputs are shown in Figure 4.

F Qualitative Results Based on DRIT and MUNIT.

We randomly sample 10 cat and dog image pairs and show the outputs of DRIT, DRIT + PONO-MS,
MUNIT, and MUNIT’ PONO-MS in Figure 5.

G PONO in Image Classification

To evaluate PONO on image classification task, we add PONO to the begining of each ResBlock
of ResNet-18 [3] (also affects the shortcut). We followed the common training procedure base on
Wei Yang’s open sourced code 2 on ImageNet [6]. Figure 6 shows that with PONO, the training loss
and error are reduced significantly and the validation error also drops slightly from 30.09 to 30.01.
Admittedly, this is not a significant improvement. We believe that this result may inspire some future
architecture design.

2https://github.com/bearpaw/pytorch-classification
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Figure 1: We extract the PONO statistics from VGG-19, ResNet-152, and Dense-161 at layers right
before downsampling (max-pooling or strided convolution).
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Conv7x7, BN, ReLU

Conv3x3 stride=2, PONO, BN, ReLU
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ResBlock x 9
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Figure 2: The generator of CycleGAN + PONO-MS. Pix2pix uses the same architecture. The
operations in a block is applied from left to right sequentially. The blue lines show how the first two
moments are passed. ConvTrans stands for transposed convolution. Each ResBlock has Conv3x3,
BN, ReLU, Conv3x3, and BN.
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Figure 3: Qualitative results of CycleGAN (with/without PONO-MS) with randomly sampled inputs.

4



Real A AtoB AtoB with 
PONO-MS Real B AtoB AtoB with 

PONO-MS Real BReal A

Figure 4: Qualitative results of Pix2pix (with/without PONO-MS) with randomly sampled inputs.
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Figure 6: Training and validation curves of ResNet-18 and ResNet-18 + PONO on ImageNet.
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