
Scalable Global Optimization via
Local Bayesian Optimization

David Eriksson
Uber AI

eriksson@uber.com

Michael Pearce
University of Warwick

m.a.l.pearce@warwick.ac.uk

Jacob R Gardner
Uber AI

jake.gardner@uber.com

Ryan Turner
Uber AI

ryan.turner@uber.com

Matthias Poloczek
Uber AI

poloczek@uber.com

Abstract

Bayesian optimization has recently emerged as a popular method for the sample-
efficient optimization of expensive black-box functions. However, the application
to high-dimensional problems with several thousand observations remains chal-
lenging, and on difficult problems Bayesian optimization is often not competitive
with other paradigms. In this paper we take the view that this is due to the implicit
homogeneity of the global probabilistic models and an overemphasized exploration
that results from global acquisition. This motivates the design of a local probabilis-
tic approach for global optimization of large-scale high-dimensional problems. We
propose the TuRBO algorithm that fits a collection of local models and performs a
principled global allocation of samples across these models via an implicit bandit
approach. A comprehensive evaluation demonstrates that TuRBO outperforms state-
of-the-art methods from machine learning and operations research on problems
spanning reinforcement learning, robotics, and the natural sciences.

1 Introduction

The global optimization of high-dimensional black-box functions—where closed form expressions
and derivatives are unavailable—is a ubiquitous task arising in hyperparameter tuning [36]; in
reinforcement learning, when searching for an optimal parametrized policy [7]; in simulation, when
calibrating a simulator to real world data; and in chemical engineering and materials discovery, when
selecting candidates for high-throughput screening [18]. While Bayesian optimization (BO) has
emerged as a highly competitive tool for problems with a small number of tunable parameters (e.g.,
see [13, 35]), it often scales poorly to high dimensions and large sample budgets. Several methods
have been proposed for high-dimensional problems with small budgets of a few hundred samples (see
the literature review below). However, these methods make strong assumptions about the objective
function such as low-dimensional subspace structure. The recent algorithms of Wang et al. [45]
and Hernández-Lobato et al. [18] are explicitly designed for a large sample budget and do not make
these assumptions. However, they do not compare favorably with state-of-the-art methods from
stochastic optimization like CMA-ES [17] in practice.

The optimization of high-dimensional problems is hard for several reasons. First, the search space
grows exponentially with the dimension, and while local optima may become more plentiful, global
optima become more difficult to find. Second, the function is often heterogeneous, making the task of
fitting a global surrogate model challenging. For example, in reinforcement learning problems with
sparse rewards, we expect the objective function to be nearly constant in large parts of the search
space. For the latter, note that the commonly used global Gaussian process (GP) models [13, 46]

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



implicitly suppose that characteristic lengthscales and signal variances of the function are constant in
the search space. Previous work on non-stationary kernels does not make this assumption, but these
approaches are too computationally expensive to be applicable in our large-scale setting [37, 40, 3].
Finally, the fact that search spaces grow considerably faster than sampling budgets due to the curse of
dimensionality implies the inherent presence of regions with large posterior uncertainty. For common
myopic acquisition functions, this results in an overemphasized exploration and a failure to exploit
promising areas.

To overcome these challenges, we adopt a local strategy for BO. We introduce trust region BO
(TuRBO), a technique for global optimization, that uses a collection of simultaneous local optimization
runs using independent probabilistic models. Each local surrogate model enjoys the typical benefits of
Bayesian modeling —robustness to noisy observations and rigorous uncertainty estimates— however,
these local surrogates allow for heterogeneous modeling of the objective function and do not suffer
from over-exploration. To optimize globally, we leverage an implicit multi-armed bandit strategy at
each iteration to allocate samples between these local areas and thus decide which local optimization
runs to continue.

We provide a comprehensive experimental evaluation demonstrating that TuRBO outperforms the
state-of-the-art from BO, evolutionary methods, simulation optimization, and stochastic optimization
on a variety of benchmarks that span from reinforcement learning to robotics and natural sciences.
An implementation of TuRBO is available at https://github.com/uber-research/TuRBO.

1.1 Related work

BO has recently become the premier technique for global optimization of expensive functions,
with applications in hyperparameter tuning, aerospace design, chemical engineering, and materials
discovery; see [13, 35] for an overview. However, most of BO’s successes have been on low-
dimensional problems and small sample budgets. This is not for a lack of trying; there have been
many attempts to scale BO to more dimensions and observations. A common approach is to replace
the GP model: Hutter et al. [19] uses random forests, whereas Snoek et al. [38] applies Bayesian
linear regression on features from neural networks. This neural network approach was refined by
Springenberg et al. [39] whose BOHAMIANN algorithm uses a modified Hamiltonian Monte Carlo
method, which is more robust and scalable than standard Bayesian neural networks. Hernández-
Lobato et al. [18] combines Bayesian neural networks with Thompson sampling (TS), which easily
scales to large batch sizes. We will return to this acquisition function later.

There is a considerable body of work in high-dimensional BO [8, 21, 5, 44, 14, 45, 32, 26, 27, 6].
Many methods exist that exploit potential additive structure in the objective function [21, 14, 45].
These methods typically rely on training a large number of GPs (corresponding to different additive
structures) and therefore do not scale to large evaluation budgets. Other methods exist that rely on a
mapping between the high-dimensional space and an unknown low-dimensional subspace to scale to
large numbers of observations [44, 27, 15]. The BOCK algorithm of Oh et al. [29] uses a cylindrical
transformation of the search space to achieve scalability to high dimensions. Ensemble Bayesian
optimization (EBO) [45] uses an ensemble of additive GPs together with a batch acquisition function
to scale BO to tens of thousands of observations and high-dimensional spaces. Recently, Nayebi
et al. [27] have proposed the general HeSBO framework that extends GP-based BO algorithms to
high-dimensional problems using a novel subspace embedding that overcomes the limitations of the
Gaussian projections used in [44, 5, 6]. From this area of research, we compare to BOCK, BOHAMIANN,
EBO, and HeSBO.

To acquire large numbers of observations, large-scale BO usually selects points in batches to be
evaluated in parallel. While several batch acquisition functions have recently been proposed [9,
34, 43, 47, 48, 24, 16], these approaches do not scale to large batch sizes in practice. TS [41] is
particularly lightweight and easy to implement as a batch acquisition function as the computational
cost scales linearly with the batch size. Although originally developed for bandit problems [33], it
has recently shown its value in BO [18, 4, 22]. In practice, TS is usually implemented by drawing a
realization of the unknown objective function from the surrogate model’s posterior on a discretized
search space. Then, TS finds the optimum of the realization and evaluates the objective function at
that location. This technique is easily extended to batches by drawing multiple realizations as (see
the supplementary material for details).

2

https://github.com/uber-research/TuRBO


Evolutionary algorithms are a popular approach for optimizing black-box functions when thousands
of evaluations are available, see Jin et al. [20] for an overview in stochastic settings. We compare
to the successful covariance matrix adaptation evolution strategy (CMA-ES) of Hansen [17]. CMA-ES
performs a stochastic search and maintains a multivariate normal sampling distribution over the
search space. The evolutionary techniques of recombination and mutation correspond to adaptions of
the mean and covariance matrix of that distribution.

High-dimensional problems with large sample budgets have also been studied extensively in opera-
tions research and simulation optimization, see [11] for a survey. Here the successful trust region (TR)
methods are based on a local surrogate model in a region (often a sphere) around the best solution.
The trust region is expanded or shrunk depending on the improvement in obtained solutions; see Yuan
[49] for an overview. We compare to BOBYQA [31], a state-of-the-art TR method that uses a quadratic
approximation of the objective function. We also include the Nelder-Mead (NM) algorithm [28]. For
a d-dimensional space, NM creates a (d+ 1)-dimensional simplex that adaptively moves along the
surface by projecting the vertex of the worst function value through the center of the simplex spanned
by the remaining vertices. Finally, we also consider the popular quasi-Newton method BFGS [50],
where gradients are obtained using finite differences. For other work that uses local surrogate models,
see e.g., [23, 42, 1, 2, 25].

2 The trust region Bayesian optimization algorithm

In this section, we propose an algorithm for optimizing high-dimensional black-box functions. In
particular, suppose that we wish to solve:

Find x∗ ∈ Ω such that f(x∗) ≤ f(x), ∀x ∈ Ω,

where f : Ω→ R and Ω = [0, 1]d. We observe potentially noisy values y(x) = f(x) + ε, where
ε ∼ N (0, σ2). BO relies on the ability to construct a global model that is eventually accurate
enough to uncover a global optimizer. As discussed previously, this is challenging due to the curse
of dimensionality and the heterogeneity of the function. To address these challenges, we propose
to abandon global surrogate modeling, and achieve global optimization by maintaining several
independent local models, each involved in a separate local optimization run. To achieve global
optimization in this framework, we maintain multiple local models simultaneously and allocate
samples via an implicit multi-armed bandit approach. This yields an efficient acquisition strategy
that directs samples towards promising local optimization runs. We begin by detailing a single local
optimization run, and then discuss how multiple runs are managed.

Local modeling. To achieve principled local optimization in the gradient-free setting, we draw
inspiration from a class of TR methods from stochastic optimization [49]. These methods make
suggestions using a (simple) surrogate model inside a TR. The region is often a sphere or a polytope
centered at the best solution, within which the surrogate model is believed to accurately model the
function. For example, the popular COBYLA [30] method approximates the objective function using
a local linear model. Intuitively, while linear and quadratic surrogates are likely to be inadequate
models globally, they can be accurate in a sufficiently small TR. However, there are two challenges
with traditional TR methods. First, deterministic examples such as COBYLA are notorious for handling
noisy observations poorly. Second, simple surrogate models might require overly small trust regions
to provide accurate modeling behavior. Therefore, we will use GP surrogate models within a TR.
This allows us to inherit the robustness to noise and rigorous reasoning about uncertainty that global
BO enjoys.

Trust regions. We choose our TR to be a hyperrectangle centered at the best solution found so far,
denoted by x?. In the noise-free case, we set x? to the location of the best observation so far. In
the presence of noise, we use the observation with the smallest posterior mean under the surrogate
model. At the beginning of a given local optimization run, we initialize the base side length of the
TR to L ← Linit. The actual side length for each dimension is obtained from this base side length
by rescaling according to its lengthscale λi in the GP model while maintaining a total volume of
Ld. That is, Li = λiL/(

∏d
j=1 λj)

1/d. To perform a single local optimization run, we utilize an
acquisition function at each iteration t to select a batch of q candidates {x(t)

1 , . . . ,x
(t)
q }, restricted

to be within the TR. If L was large enough for the TR to contain the whole space, this would be

3



equivalent to running standard global BO. Therefore, the evolution of L is critical. On the one hand,
a TR should be sufficiently large to contain good solutions. On the other hand, it should be small
enough to ensure that the local model is accurate within the TR. The typical behavior is to expand a
TR when the optimizer “makes progress”, i.e., it finds better solutions in that region, and shrink it
when the optimizer appears stuck. Therefore, following, e.g., Nelder and Mead [28], we will shrink
a TR after too many consecutive “failures”, and expand it after many consecutive “successes”. We
define a “success” as a candidate that improves upon x?, and a “failure” as a candidate that does not.
After τsucc consecutive successes, we double the size of the TR, i.e., L← min{Lmax, 2L}. After τfail
consecutive failures, we halve the size of the TR: L← L/2. We reset the success and failure counters
to zero after we change the size of the TR. Whenever L falls below a given minimum threshold Lmin,
we discard the respective TR and initialize a new one with side length Linit. Additionally, we do not
let the side length expand to be larger than a maximum threshold Lmax. Note that τsucc, τfail, Lmin,
Lmax, and Linit are hyperparameters of TuRBO; see the supplementary material for the values used in
the experimental evaluation.

Trust region Bayesian optimization. So far, we have detailed a single local BO strategy using a
TR method. Intuitively, we could make this algorithm (more) global by random restarts. However,
from a probabilistic perspective, this is likely to utilize our evaluation budget inefficiently. Just as we
reason about which candidates are most promising within a local optimization run, we can reason
about which local optimization run is “most promising.”

Therefore, TuRBO maintains m trust regions simultaneously. Each trust region TR` with ` ∈
{1, . . . ,m} is a hyperrectangle of base side length L` ≤ Lmax, and utilizes an independent lo-
cal GP model. This gives rise to a classical exploitation-exploration trade-off that we model by a
multi-armed bandit that treats each TR as a lever. Note that this provides an advantage over traditional
TR algorithms in that TuRBO puts a stronger emphasis on promising regions.

In each iteration, we need to select a batch of q candidates drawn from the union of all trust regions,
and update all local optimization problems for which candidates were drawn. To solve this problem,
we find that TS provides a principled solution to both the problem of selecting candidates within
a single TR, and selecting candidates across the set of trust regions simultaneously. To select the
i-th candidate from across the trust regions, we draw a realization of the posterior function from the
local GP within each TR: f (i)` ∼ GP(t)

` (µ`(x), k`(x,x
′)), where GP(t)

` is the GP posterior for TR`

at iteration t. We then select the i-th candidate such that it minimizes the function value across all m
samples and all trust regions:

x
(t)
i ∈ argmin

`
argmin
x∈TR`

f
(i)
` where f (i)` ∼ GP(t)

` (µ`(x), k`(x,x
′)).

That is, we select as point with the smallest function value after concatenating a Thompson sample
from each TR for i = 1, . . . , q. We refer to the supplementary material for additional details.

3 Numerical experiments

In this section, we evaluate TuRBO on a wide range of problems: a 14D robot pushing problem, a 60D
rover trajectory planning problem, a 12D cosmological constant estimation problem, a 12D lunar
landing reinforcement learning problem, and a 200D synthetic problem. All problems are multimodal
and challenging for many global optimization algorithms. We consider a variety of batch sizes and
evaluation budgets to fully examine the performance and robustness of TuRBO. The values of τsucc,
τfail, Lmin, Lmax, and Linit are given in the supplementary material.

We compare TuRBO to a comprehensive selection of state-of-the-art baselines: BFGS, BOCK,
BOHAMIANN, CMA-ES, BOBYQA, EBO, GP-TS, HeSBO-TS, Nelder-Mead (NM), and random search (RS).
Here, GP-TS refers to TS with a global GP model using the Matérn-5/2 kernel. HeSBO-TS combines
GP-TS with a subspace embedding and thus effectively optimizes in a low-dimensional space; this
target dimension is set by the user. Therefore, a small sample budget may suffice, which allows
to run p invocations in parallel, following [44]. This may improve the performance, since each
embedding may "fail" with some probability [27], i.e., it does not contain the active subspace even
if it exists. Note that HeSBO-TS-p recommends a point of optimal posterior mean among the p
GP-models; we use that point for the evaluation. The standard acquisition criterion EI used in BOCK
and BOHAMIANN is replaced by (batch) TS, i.e., all methods use the same criterion which allows for a

4



Trust Region Update

GP 
ModelTrue 

Function

Figure 1: Illustration of the TuRBO algorithm. (Left) The true contours of the Branin function.
(Middle left) The contours of the GP model fitted to the observations depicted by black dots. The
current TR is shown as a red square. The global optima are indicated by the green stars. (Middle
right) During the execution of the algorithm, the TR has moved towards the global optimum and has
reduced in size. The area around the optimum has been sampled more densely in effect. (Right) The
local GP model almost exactly fits the underlying function in the TR, despite having a poor global fit.

direct comparison. Methods that attempt to learn an additive decomposition lack scalability and are
thus omitted. BFGS approximates the gradient via finite differences and thus requires d+1 evaluations
for each step. Furthermore, NM, BFGS, and BOBYQA are inherently sequential and therefore have an
edge by leveraging all gathered observations. However, they are considerably more time consuming
on a per-wall-time evaluation basis since we are working with large batches.

We supplement the optimization test problems with three additional experiments: i) one that shows
that TuRBO achieves a linear speed-up from large batch sizes, ii) a comparison of local GPs and global
GPs on a control problem, and iii) an analytical experiment demonstrating the locality of TuRBO.
Performance plots show the mean performances with one standard error. Overall, we observe that
TuRBO consistently finds excellent solutions, outperforming the other methods on most problems.
Experimental results for a small budget experiment on four synthetic functions are shown in the
supplement, where we also provide details on the experimental setup and runtimes for all algorithms.

3.1 Robot pushing

The robot pushing problem is a noisy 14D control problem considered in Wang et al. [45]. We run
each method for a total of 10K evaluations and batch size of q = 50. TuRBO-1 and all other methods
are initialized with 100 points except for TuRBO-20 where we use 50 initial points for each trust
region. This is to avoid having TuRBO-20 consume its full evaluation budget on the initial points. We
use HeSBO-TS-5 with target dimension 8. TuRBO-m denotes the variant of TuRBO that maintains m
local models in parallel. Fig. 2 shows the results: TuRBO-1 and TuRBO-20 outperform the alternatives.
TuRBO-20 starts slower since it is initialized with 1K points, but eventually outperforms TuRBO-1.
CMA-ES and BOBYQA outperform the other BO methods. Note that Wang et al. [45] reported a median
value of 8.3 for EBO after 30K evaluations, while TuRBO-1 achieves a mean and median reward of
around 9.4 after only 2K samples.

3.2 Rover trajectory planning

Here the goal is to optimize the locations of 30 points in the 2D-plane that determine the trajectory of
a rover [45]. Every algorithm is run for 200 steps with a batch size of q = 100, thus collecting a total
of 20K evaluations. We use 200 initial points for all methods except for TuRBO-20, where we use
100 initial points for each region. Fig. 2 summarizes the performance. We observe that TuRBO-1 and
TuRBO-20 outperform all other algorithms after a few thousand evaluations. TuRBO-20 once again
starts slowly because of the initial 2K random evaluations. Wang et al. [45] reported a mean value
of 1.5 for EBO after 35K evaluations, while TuRBO-1 achieves a mean and median reward of about 2
after only 1K evaluations. We use a target dimension of 10 for HeSBO-TS-15 in this experiment.

5
















