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Abstract

In the classical contextual bandits problem, in each round ¢, a learner observes
some context ¢, chooses some action a to perform, and receives some reward
Tq,¢(c). We consider the variant of this problem where in addition to receiving the
reward 7, ¢ (c), the learner also learns the values of r, ;(¢’) for all other contexts
’; i.e., the rewards that would have been achieved by performing that action under
different contexts. This variant arises in several strategic settings, such as learning
how to bid in non-truthful repeated auctions, which has gained a lot of attention
lately as many platforms have switched to running first-price auctions. We call this
problem the contextual bandits problem with cross-learning. The best algorithms
for the classical contextual bandits problem achieve O(v/C KT) regret against all
stationary policies, where C' is the number of contexts, K the number of actions,
and T the number of rounds. We demonstrate algorithms for the contextual bandits
problem with cross-learning that remove the dependence on C and achieve regret
O(VKT). We simulate our algorithms on real auction data from an ad exchange
running first-price auctions (showing that they outperform traditional contextual
bandit algorithms).

1 Introduction

In the contextual bandits problem, a learner repeatedly observes some context, takes some action
depending on that context, and receives some reward depending on that context. The learner’s goal is
to maximize their total reward over some number of rounds. The contextual bandits problem is a
fundamental problem in online learning: it is a simplified (yet analyzable) variant of reinforcement
learning and it captures a large class of repeated decision problems. In addition, the algorithms
developed for the contextual bandits problem have been successfully applied in domains like ad
placement, news recommendation, and clinical trials [12} [16} 23]].

Ideally, one would like an algorithm for the contextual bandits problem which performs approximately
as well as the best stationary strategy (i.e., the best fixed mapping from contexts to actions). This can
be accomplished by running a separate instance of some low-regret algorithm for the non-contextual
bandits problem (e.g. EXP3) for every context. This algorithm achieves regret O(\/ CKT) where C
is the number of contexts, K the number of actions, and 1" the number of rounds. This bound can
be shown to be tight [6]. Since the number of contexts can be very large, these algorithms can be
impractical to use, and much modern current research on the contextual bandits problem instead aims
to achieve low regret with respect to some smaller set of policies [2} [15] 4].

However, some settings possess additional structure between the rewards and contexts which allow
one to achieve less than O(v/C KT) regret while still competing with the best stationary strategy.
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In this paper, we look at a specific type of structure we call cross-learning between contexts that is
particularly common in strategic settings. In variants of the contextual bandits problem with this
structure, playing an action @ in some context ¢ at round ¢ not only reveals the reward 7, +(c) of
playing this action in this context (which the learner receives), but also reveals to the learner the
rewards r, . (c’) for every other context ¢’. Some settings where this structure appears include:

o Bidding in nontruthful auctions: Consider a bidder trying to learn how to bid in a
repeated non-truthful auction (such as a first-price auction). Every round, the bidder receives
a (private, independent) value for the current item, and based on this must submit a bid for
the item. The auctioneer then collects the bids from all participants, and decides whether to
allocate the item to our bidder, and if so, how much to charge the bidder.

This can be seen as a contextual bandits problem for the bidder where the context c is the
bidder’s value for the item, the action a is their bid, and their reward is their net utility from
the auction: 0 if they do not win, and their value for the item minus their payment p if they
do win. Note that this problem also allows for cross-learning between contexts — the net
utility r, .(c) that would have been received if they had value ¢’ instead of value c is just
(¢ — p) - 1(win item), which is computable from the outcome of the auction.

The problem of bidding in nontruthful auctions has gained a lot of attention recently as many
online advertising platforms have recently switched from running second-price to first-price
auctionsﬂ In a first-price auction, the highest bidder is the winner and pays their bid (as
opposed to second-price auctions where the winner pays the second highest-bid). First-price
auctions are nontruthful mechanisms as bidders have incentives to shade bids so that they
enjoy a positive utility when they win [22].

e Multi-armed bandits with exogenous costs: Consider a multi-armed bandit problem
where at the beginning of each round ¢, a cost s; ; of playing arm ¢ at this round is publicly
announced. That is, choosing arm ¢ this round results in a net reward of r; ; — s; ;. This
captures settings where, for example, a buyer must choose every round to buy one of K
substitutable goods — he is aware of the price of each good (which might change from round
to round) but must learn over time the utility each type of good brings him.

This is a contextual bandits problem where the context in round ¢ is the K costs s; ; at this
time. Cross-learning between contexts is present in this setting: given the net utility of
playing action ¢ with a given up-front cost s;, one can infer the net utility of playing ¢ with
any other up-front cost s.

e Dynamic pricing with variable cost: Consider a dynamic pricing problem where a firm
offers a service (or sells a product) to a stream of customers who arrive sequentially over
time. Consumer have private and independent willingness-to-pay and the cost of serving a
customer is exogenously given and customer dependent. After observing the cost, the firm
decides on what price to offer to the consumer who decides whether to accept the service
at the offered price. The optimal price for each consumer is contingent in the cost; for
example, when demand is relatively inelastic consumers that are more costly to serve should
be quoted higher prices. This extends dynamic pricing problems to cases where the firm has
exogenous costs (see, e.g., [8]] for an overview of dynamic pricing problems).

This is a special case of the multi-armed bandits with exogenous costs problem, and hence
an instance of contextual-bandits with cross-learning.

e Sleeping bandits: Consider the following variant of “sleeping bandits”, where there are
K arms and in each round some subset S; of these arms are awake. The learner can play
any arm and observe its reward, but only receives this reward if they play an awake arm.
This problem was originally proposed in [[13], where one of the motivating applications is
ecommerce settings where not all sellers or items (and hence “arms’) might be available
every round.

This is a contextual bandits problem where the context is the set .S; of awake arms. Again,
cross-learning between contexts is present in this setting: given the observation of the reward
of arm ¢, one can infer the received reward for any context .S; by just checking whether
i€ Sy
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o Repeated Bayesian games with private types: Consider a player participating in a
repeated Bayesian game with private, independent types. Each round the player receives
some type for the current game, performs some action, and receives some utility (which
depends on their type, their action, and the other players’ actions). Again, this can be viewed
as a contextual bandit problem where types are contexts, actions are actions, and utilities are
rewards, and once again this problem allows for cross-learning between contexts (as long as
the player can compute their utility based on their type and all players’ actions).

Note that in many of these settings, the number of possible contexts C' can be huge: exponential
in K or uncountably infinite. This makes the naive O(v/CKT')-regret algorithm undesirable in
these settings. We show that in contextual bandits problems with cross-learning, it is possible to
design algorithms which completely remove the dependence on the number of contexts C' in their
regret bound. We consider both settings where the contexts are generated stochastically (from some
distribution D that may or may not be known to the learner) and settings where the contexts are chosen
adversarially. Similarly, we also consider settings where the rewards are generated stochastically and
settings where they are chosen adversarially. Our results include:

e Stochastic rewards, stochastic or adversarial contexts: We design an algorithm called
algorithm UCB1.CL with regret of O(v KT).

e Adversarial rewards, stochastic contexts with known distribution: We design an algo-
rithm called EXP3.CL with regret of O(vV KT).

e Adversarial rewards, stochastic contexts with unknown distribution: We design an
algorithm called EXP3.CL-U with regret O(K1/3T2%/3).

e Lower bound for adversarial rewards, adversarial contexts: We show that when both
rewards and contexts are controlled by an adversary, any algorithm must obtain regret at

least Q(VOKT).

All of these algorithms are easy to implement, in the sense that they can be obtained via simple
modifications from existing multi-armed bandit algorithms like EXP3 and UCBI1, and efficient,
in the sense that all algorithms run in time at most O(C + K) per round (and for many of the
settings mentioned above, this can be further improved to O(K) time per round). Our main technical
contribution is our analysis of UCB1.CL, which requires arguing that UCB1 can effectively use
the information from cross-learning despite it being drawn from a distribution that differs from the
desired exploration distribution. We accomplish this by constructing a linear program whose value
upper bounds (one of the terms in) the regret of UCB1.CL, and bounding the value of this linear
program.

We then apply our results to some of the applications listed above. In each case, our algorithms obtain
optimal regret bounds with asymptotically less regret than a naive application of contextual bandits
algorithms. In particular:

e For the problem of learning to bid in a first-price auction, standard contextual bandit
algorithms get regret O(7°/*). Our algorithms achieve regret O(7'%/3). This is optimal
even when there is only a single context (value).

e For the problem of multi-armed bandits with exogenous costs, standard contextlgal bandit
algorithms get regret O (7 (K+1)/(K+2) ¢1/(K+2))  Our algorithms get regret O(v/KT),
which is tight.

e For our variant of sleeping bandits, standard contextual bandit algorithms get regret
O(V2KKT). Our algorithms get regret O(+v/ KT'), which is tight.

Finally, we test the performance of these algorithms on real auction data from a first-price ad exchange,
showing that our algorithms outperform traditional bandit algorithms.

1.1 Related Work

For a general overview of research on the multi-armed bandit problem, we recommend the reader to
the survey by Bubeck and Cesa-Bianchi [[6]. Our algorithms build off of pre-existing algorithms in



the bandits literature, such as EXP3 [2] and UCB1 [20, [14]. Contextual bandits were first introduced
under that name in [[15)], although similar ideas were present in previous works (e.g. the EXP4
algorithm was proposed in [2]).

One line of research related to ours studies bandit problems under other structural assumptions
on the problem instances which allow for improved regret bounds. Slivkins [21] studies a setting
where contexts and actions belong to a joint metric space, and context/action pairs that are close to
each other give similar rewards, thus allowing for some amount of “cross-learning”. Several works
[17,[1] study a partial-feedback variant of the (non-contextual) multi-armed bandit problem where
performing some action provides some information on the rewards of performing other actions (thus
interpolating between the bandits and experts settings). Our setting can be thought of as a contextual
version of this variant. However, since the learner cannot choose the context each round, these two
settings are qualitatively different. As far as we are aware, the specific problem of contextual bandits
with cross-learning between contexts has not appeared in the literature before.

Recently there has been a surge of interest in applying methods from online learning and bandits
to auction design. While the majority of the work in this area has been from the perspective of the
auctioneer [19,118,[7, 9, [11] — learning how to design an auction over time based on bidder behavior —
some recent work studies this problem from the perspective of a buyer learning how to bid [24} [10}5]].
In particular, [24]] studies the problem of learning to bid in a first-price auction over time, but where
the bidder’s value remains constant (so there is no context).

2 Model and Preliminaries

2.1 Multi-armed bandits

In the classic multi-armed bandit problem, a learner chooses one of K arms per round over the course
of T rounds. On round ¢, the learner receives some reward r; , € [0, 1] for pulling arm ¢ (where the
rewards r; ; may be chosen adversarially). The learner’s goal is to maximize their total reward.

Let I; denote the arm pulled by the decision maker at round ¢. The regret of an algorithm A for
the learner is the random variable Reg(A) = max; Zthl Tit — Zthl r1,+. We say an algorithm
A for the multi-armed bandit problem is J-low-regret if E[Reg(A)] < § (where the expectation is
taken over the randomness of A). We say an algorithm A is low-regret if it is J-low-regret for some
d = o(T). There exist simple multi-armed bandit algorithms which are O(\/ KT)-low-regret (e.g.
EXP3 when rewards are adversarial, and UCB1 when rewards are stochastic).

2.2 Contextual bandits

In our model, we consider a contextual bandits problem. In the contextual bandits problem, in
each round ¢ the learner is additionally provided with a context c;, and the learner now receives
reward ; ;(c) if he pulls arm ¢ on round ¢ while having context c. The contexts ¢, are either chosen
adversarially at the beginning of the game or drawn independently each round from some distribution
D. Similarly, the rewards r; 4 (c) are either chosen adversarially or each independently drawn from
some distribution F;(c). We assume as is standard that r; ;(c) is always bounded in [0, 1].

In the contextual bandits setting, we now define the regret of an algorithm A in terms of regret against
the best stationary policy 7; that is, max,.jc)—[x] 23:1 Tr(eo),t(Ct) — Zthl r1,¢(ct), where I is

the arm pulled by M on round ¢. The definition of best stationary policy 7 depends slightly on how
contexts and rewards are chosen:

e When rewards are stochastic (r; ¢(¢) drawn independently from F;(c) with mean p;(c)), we
define 7(c) = arg max; u;(c).

e When rewards are adversarial but contexts are stochastic, we define 7(c) to be the stationary
policy which maximizes E.,p[) 0, 7r(c,),(ct)]-

e When both rewards and contexts are adversarial, we define 7(c) to be the stationary policy
which maximizes ), 7 (c,),+(ct).

These choices are unified in the following way: in all of the above cases, 7 is the best stationary
policy in expectation for someone who knows all the decisions of the adversary and details of



the system ahead of time, but not the randomness in the instantiations of contexts/rewards from
distributions. This matches commonly studied notions of regret in the contextual bandits literature;
see Appendix A.1 of the Full Version [3] for further discussion. As before, we say an algorithm
is d-low regret if E[Reg(A)] < J, and say an algorithm is low-regret if it is J-low-regret for some
§=o(T).

There is a simple way to construct a low-regret algorithm A’ for the contextual bandits problem from
a low-regret algorithm A for the classic bandits problem: simply maintain a separate instance of A
for every different context c. In the contextual bandits literature, this is sometimes referred to as
the S-EXP3 algorithm when A is EXP3 [6]]. This algorithm is O(v/CKT)-low-regret. We define
the S-UCBI1 algorithm similarly, which is also O(v/C KT)-low-regret when rewards are generated
stochastically.

We consider a variant of the contextual bandits problem we call contextual bandits with cross-learning.
In this variant, whenever the learner pulls arm ¢ in round ¢ while having context c and receives reward
r;.1(c), they also learn the value of r; ;(¢) for all other contexts ¢’. We define the notions of regret
and low-regret similarly for this problem.

3 Cross-learning between contexts

In this section, we present two algorithms for the contextual bandits problem with cross-learning:
UCB1.CL, for stochastic rewards and adversarial contexts (Section [3.1)), and EXP3.CL, for adversarial
rewards and stochastic contexts (Section @ Then, in Section@ we show that it is impossible to
achieve regret better than O( v CKT) when both rewards and contexts are controlled by an adversary
(in particular, when both rewards and contexts are adversarial, cross-learning may not be beneficial at
all).

3.1 Stochastic rewards

In this section we will present an O (/KT log K) algorithm for the contextual bandits problem with
cross learning in the stochastic reward setting: i.e., every reward r; ;(c) is drawn independently from
an unknown distribution F;(c) supported on [0, 1]. Importantly, this algorithm works even when the
contexts are chosen adversarially, unlike our algorithms for the adversarial reward setting. We call
this algorithm UCB1.CL (Algorithm [T}

Algorithm 1 O(v/KT log K) regret algorithm (UCB1.CL) for the contextual bandits problem with
cross-learning where rewards are stochastic and contexts are adversarial.

1: Define the function w(s) = /(2logT)/s.

2: Pull each arm ¢ € [K] once (pulling arm ¢ in round 7).

3: Maintain a counter 7; ¢, equal to the number of times arm ¢ has been pulled up to round ¢ (so
7i, ik = 1 for all 7).

4: For all i € [K] and ¢ € [C], initialize variable o;  (c) to r; ;(c). Write 7; ;(c) as shorthand for
Oit (C)/Ti’t.

5. fort =K +1toT do

6:  Receive context ¢;.

7

8

Let I, be the arm which maximizes 7r, ;1 (¢;) + w(7T7, 1—1)-
: Pull arm I}, receiving reward 7y, ,(c;), and learning the value of ry, ,(c) for all c.
9:  foreach cin [C] do

10: Set oy,,.(c) = o1, 1—1(c) + 71, 4 (c).
11:  end for

12: Set Tt = Tl ,t—1 + 1.

13: end for

The UCB1.CL algorithm is a straightforward generalization of S-UCBI1; both algorithms maintain a
mean and upper confidence bound for each action in each context, and always choose the action with
the highest upper confidence bound (the difference being that UCB1.CL uses cross-learning to update
the appropriate means and confidence bounds for all contexts each round). The analysis of UCB1.CL,



however, requires new ideas to deal with the fact that the observations of rewards may be drawn from
a very different distribution than the desired exploration distribution.

Very roughly, the analysis is structured as follows. Since rewards are stochastic, in every context c,
there is a “best arm” i*(c) that the optimal policy always plays. Every other arm ¢ is some amount
A;(c) worse in expectation than the best arm. After observing this arm m;(c) = O(log(T)/A;(c)?)
times, one can be confident that this arm is not the best arm. We can decompose the regret into the
regret incurred “before” and “after” the algorithm is confident that an arm is not optimal in a specific
context. The regret “after” can be bounded using standard techniques from the bandit literature. Our
main contribution is the bound of the regret “before.”

Fix an arm ¢ and let X;(c) be the number of times the algorithm pulls arm ¢ in context ¢ before pulling
arm 7 a total of m;(c) times across all contexts. Because once arm ¢ is pulled m;(c) times we are
confident about the optimality of pulling that arm in context ¢, we only need to control the number
pulls before m;(c). Therefore, the regret “before” of arm ¢ is roughly Y~ . X;(c)A;(c).

We control the regret “before” by setting up a linear program in the variables X;(c) with objective
>e.i Xi(c)Ai(c). Because X;(c) counts all pulls of arm i before m;(c) we have that X;(c) < m;(c).
This inequality, while valid, does not lead to a tight bound. To obtain a tighter inequality we first sort
the contexts in terms of the samples needed to learn whether an arm is optimal, i.e., in increasing
order of m;(c). Because a different context is realized in every round, we can consider the inequality

e oma () <mi(¢) Xi(€") < mi(c), which counts the subset of first m;(c) pulls of arm 7. Bounding
the value of this objective (by effectively taking the dual), we can show that the total regret is at most

O(WT).

Theorem 1 (Regret of UCB1.CL). UCB1.CL (Algorithm |I)) has expected regret O(\/KT log K)
for the contextual bandits problem with cross-learning in the setting with stochastic rewards and
adversarial contexts.

As a consequence of the proof of Theorem [I] we have the following gap-dependent bound on the
regret of UCB1.CL.

Corollary 2 (Gap-dependent Bound for UCB1.CL). Let A,,;, = min; . p*(c) — pi(c) (where

w*(¢) = max; pi(c)). Then UCB1.CL (Algorithm has expected regret of O (%) for the

contextual bandits problem with cross-learning in the setting with stochastic rewards and adversarial
contexts.

3.2 Adversarial rewards and stochastic contexts

We now present a O(y/KT log K) regret algorithm for the contextual bandits problem with cross
learning when the rewards are adversarially chosen but contexts are stochastically drawn from some
distribution D. We call this algorithm EXP3.CL (Algorithm 2)). For now we assume the learner knows
the distribution over contexts D.

Algorithm 2 O(1/KT log K) regret algorithm (EXP3.CL) for the contextual bandits problem with
simulated contexts.

1: Choose o = 3 = 1‘}57{(.
2: Initialize K - C' weights, one for each pair of action ¢ and context ¢, letting w; ;(c) be the value
of the ith weight for context c at round ¢. Initially, set all w; o = 1.
3: fort =1to T do
4:  Draw context ¢; from D.
50 Foralli € [K]and c € [C], letp;+(c) = (1 — Ka)zéu“%l(c)l() + a.
j=1 Wj,t—1(C
6:  Sample an arm [; from the distribution p(c;).
7: Pull arm Iy, receiving reward 77, ;(c;), and learning the value of 71, ;(c) for all c.
8:  for each cin [C] do
. _ r1,,¢(c)
9: Set wlt,t(c) - wltytfl(c) - €Xp (5 . 5:1 Pr[C’]~p1t,t(C’))'
10:  end for
11: end for




Both EXP3.CL and S-EXP3 maintain a weight for each action in each context, and update the weights
via multiplicative updates by an exponential of an unbiased estimator of the reward. We modify
S-EXP3 by changing the unbiased estimator in the update rule to take advantage of the information
from cross-learning. To minimize regret, we wish to choose an unbiased estimator with minimal
variance (as the expected variance of this estimator shows up in the final regret bound). The new
estimator in question is

7 t(C) = ri7t(6)
’ Y1 Prole] - pi(c)

1y,

There are two ways of thinking about this estimator. The first is to note that the denominator of this
estimator is exactly the probability of pulling arm 7 on round ¢ before you learn the realization of
¢; (and hence this estimator is unbiased). The second way is to note that for every context ¢/, it is
possible to construct an estimator of the form

” T3 t(C)
) SR A
7it(c) Prp[c] - pis(c) Ii=i,ci=

The estimator used in EXP3.CL is the linear combination of these estimators which minimizes
variance (i.e. the estimator obtained from importance sampling over this class of estimators). We can

show that the total expected variance of this estimator is on the order of O(v/ KT'), independent of C,
implying the following regret bound.

Theorem 3. EXP3.CL (Algorithm has regret O(\/TK log K) for the contextual bandits problem
with cross learning when rewards are adversarial and contexts are stochastic.

Calculating this estimator 7; +(c) requires the learner to know the distribution D. What can we do if
the learner does not know the distribution D? Unlike distributions of rewards (where the learner must
actively choose which reward distribution to receive a sample from), the learner receives exactly one
sample from D every round regardless of their action. This suggests the following approach: learn an

approximation D to D by observing the context for some number of rounds, and run EXP3.CL using
D to compute estimators. Unfortunately, a straightforward analysis of this approach gives regret that
scales as T'%/3 due to the approximation error in D.

In Appendix A.2 of the Full Version [3]], we design a learning algorithm EXP3.CL-U which achieves

regret O(K 1/372/3) even when the distribution D is unknown by using a much simpler (but higher
variance) estimator that does not require knowledge of D to compute. It is an interesting open

problem whether it is possible to obtain O(\/ KT) regret when D is unknown.

3.3 Adversarial rewards, adversarial contexts

A natural question is whether we can achieve low-regret when both the rewards and contexts are
chosen adversarially (but where we still can cross-learn between different contexts). A positive
answer to this question would subsume the results of the previous sections. Unfortunately, we will
show in this section that any learning algorithm for the contextual bandits problem with cross-learning
must necessarily incur Q(v/CKT) regret (which is achieved by S-EXP3).

We will need the following regret lower-bound for the (non-contextual) multi-armed bandits problem.

Lemma 4 (see [2]). There exists a distribution over instances of the multi-armed bandit problem
where any algorithm must incur an expected regret of at least Q(v/ KT).

With this lemma, we can construct the following lower-bound for the contextual bandits problem
with cross-learning by connecting C' independent copies of these hard instances in sequence with one
another so that cross-learning between instances is not possible.

Theorem 5. There exists a distribution over instances of the contextual bandit problem with cross-
learning where any algorithm must incur a regret of at least Q(~v/CKT).



4 Empirical evaluation

In this section, we empirically evaluate the performance of our contextual bandit algorithms on the
problem of learning how to bid in a first-price auction.

Recall that our cross-learning algorithms rely on cross-learning between contexts being possible: if
the outcome of the auction remains the same, the bidder can compute their net utility they would
receive given any value they could have for the item. This is true if the bidder’s value for the item is
independent of the other bidders’ values for the item. Of course, this assumption (while common in
much research in auction theory) does not necessarily hold in practice. We can nonetheless run our
contextual bandit algorithms as if this were the case, and compare them to existing contextual bandit
algorithms which do not make this assumption.

Our basic experimental setup is as follows. We take existing first-price auction data from a large
ad exchange that runs first-price auctions on a significant fraction of traffic, remove one participant
(whose true values we have access to), substitute in one of our bandit algorithms for this participant,
and replay the auction, hence answering the question “how well would this (now removed) participant
do if they instead ran this bandit algorithm?”.

We collected anonymized data from 10 million consecutive auctions from this ad exchange, which
were then divided into 100 groups of 105 auctions. To remove outliers, bids and values above the
90% quantile were removed, and remaining bids/values were normalized to fit in the [0, 1] interval.
We then replayed each group of 10° auctions, comparing the performance of our three algorithms
with cross-learning (EXP3.CL-U, EXP3.CL, and UCB1.CL) and the performance of classic contextual
bandits algorithms that take no advantage of cross-learning (S-EXP3, and S-UCBI1). Since all
algorithms require a discretized set of actions, allowable bids were discretized to multiples of 0.01.
Parameters for each of these algorithms (including level of discretization of contexts for S-EXP3 and
S-UCB1) were optimized via cross-validation on a separate data set of 10 auctions from the same
ad exchange.

1000

EXP3.CL
EXP3.CL-U
UCB1.CL
SEXP3
SuUCB1

20000 40000 60000 80000 100000

Figure 1: Graph of average cumulative regrets of various learning algorithms (y-axis) versus time
(x-axis). Grey regions indicate 95% confidence intervals.

The results of this evaluation are summarized in Figure[T} which plots the average cumulative regret
of these algorithms over the 10° rounds. The three algorithms which take advantage of cross-learning
(EXP3.CL-U, EXP3.CL, and UCB1.CL) significantly outperform the two algorithms which do not
(S-EXP3 and S-UCB1). Of these, EXP3.CL-U performs the worst, followed by EXP3.CL, followed
by UCB1.CL, which vastly outperforms both EXP3.CL-U and EXP3.CL.

What is surprising about these results is that cross-learning works at all, let alone gives an advantage,
given that the basic assumption necessary for cross-learning — that your values are independent from
other players’ bids, so that you can predict what would have happened if your value was different
— does not hold. Indeed, for this data, the Pearson correlation coefficient between the values v and
the maximum bids r of the other bidders is approximately 0.4. This suggests that these algorithms
are somewhat robust to errors in the cross-learning hypothesis. It is an interesting open question to
understand this phenomenon theoretically.
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