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Abstract

We propose a new algorithm—Stochastic Proximal Langevin Algorithm
(SPLA)—for sampling from a log concave distribution. Our method is a gen-
eralization of the Langevin algorithm to potentials expressed as the sum of one
stochastic smooth term and multiple stochastic nonsmooth terms. In each itera-
tion, our splitting technique only requires access to a stochastic gradient of the
smooth term and a stochastic proximal operator for each of the nonsmooth terms.
We establish nonasymptotic sublinear and linear convergence rates under convex-
ity and strong convexity of the smooth term, respectively, expressed in terms of
the KL divergence and Wasserstein distance. We illustrate the efficiency of our
sampling technique through numerical simulations on a Bayesian learning task.

1 Introduction

Many applications in the field of Bayesian machine learning require to sample from a probability
distribution µ? with density µ?(x), x ∈ Rd. Due to their scalability, Monte Carlo Markov Chain
(MCMC) methods such as Langevin Monte Carlo [48] or Hamiltonian Monte Carlo [28] are popular
algorithms to solve such problems. Monte Carlo methods typically generate a sequence of random
variables (xk)k≥0 with the property that the distribution of xk approaches µ? as k grows.

While the theory of MCMC algorithms has remained mainly asymptotic, in recent years the
exploration of non-asymptotic properties of such algorithms has led to a renaissance in the
field [14, 26, 39, 15, 16, 19, 22, 12, 53, 10, 52]. In particular, if µ?(x) ∝ exp(−U(x)), where
U is a smooth convex function, [14, 19] provide explicit convergence rates for the Langevin algo-
rithm (LA)

xk+1 = xk − γ∇U(xk) +
√

2γW k,

where γ > 0 and (W k)k≥0 is a sequence of i.i.d. standard Gaussian random variables. The function
U , also called the potential, enters the algorithm through its gradient.

In optimization, the problem minU where U is composite, i.e. is a sum of nonsmooth terms which
must be handled separately, has many instances, see [17, Section 2]. These optimization problems
can be seen as a Maximum A Posteriori (MAP) computation of some Bayesian model. Sampling
a posterori in these models allows for a better Bayesian inference [20]. In these cases, the task
of sampling a posterori takes the form of sampling from the target distribution µ?, where U has a
composite form.

In this work we study the setting where the potentialU is the sum of a single smooth and a potentially
large number of nonsmooth convex functions. In particular, we consider the problem

Sample from µ?(x) ∝ exp(−U(x)), where U(x) := F (x) +
n∑
i=1

Gi(x), (1)
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Table 1: Complexity results obtained in Corollaries 2, 3 and 4 of our main result (Theorem 1).

F Stepsize γ Rate Theorem

convex O (ε) KL(µx̂k | µ?) ≤ 1
2γ(k+1)

W 2(µx0 , µ
?) +O(γ) Cor 2

α-strongly convex O (εα) W 2(µxk , µ
?) ≤ (1− γα)kW 2(µx0 , µ

?) +O
(
γ
α

)
Cor 3

α-strongly convex O (εα) KL(µx̃k | µ?) ≤ α(1− γα)k+1W 2(µx0 , µ
?) +O(γ) Cor 4

where F : Rd → R is a smooth convex function and G1, . . . , Gn : Rd → R are (possibly nons-
mooth) convex functions. The additive model for U offers ample flexibility as typically there are
multiple decompositions of U in the form (1).

2 Contributions

We now briefly comment some of the key contributions of this work.

� A splitting technique for Langevin algorithm. We propose a new variant of LA for solving (1),
which we call Stochastic Proximal Langevin Algorithm (SPLA). We assume that F and G can be
written as expectations over some simpler functions f(·, ξ) and gi(·, ξ)

F (x) = Eξ(f(x, ξ)), and Gi(x) = Eξ(gi(x, ξ)). (2)

SPLA (see Algorithm 1 in Section 4) only requires accesses to the gradient of f(·, ξ) and to prox-
imity operators of the functions gi(·, ξ). SPLA can be seen as a Langevin version of the stochastic
Passty algorithm [30, 36]. To the best of our knowledge, this is the first time a splitting technique
that involves multiple (stochastic) proximity operators is used in a Langevin algorithm.

Remarks: Current forms of LA tackle problem (1) using stochastic subgradients [18]. If n = 1 and
G1 is proximable (i.e., the learner has access to the full proximity operator of G1), it has recently
been proposed to use proximity operators instead of (sub)gradients [20, 18], as it is done in the
optimization literature [29, 2]. Indeed, in this case, the proximal stochastic gradient method is an
efficient method to minimize U . If n > 1, and the functions Gi are proximable (but not U ), the
minimization of U is usually tackled using the operator splitting framework: the (stochastic) three-
operator splitting [51, 17] or (stochastic) primal dual algorithms [13, 46, 9, 35]. These algorithms
involve the computation of (stochastic) gradients and (full) proximity operators and enjoy numerical
stability properties. However, proximity operators are sometimes difficult to implement. In this
case, stochastic proximity operators are cheaper2 than full proximity operators and numerically more
stable than stochastic subgradients to handle nonsmooth terms [32, 31, 4, 5, 6] but also smooth [43]
terms. In this paper, we bring together the advantages of operator splitting and stochastic proximity
operators for sampling purposes.

� Theory. We perform a nonasymptotic convergence analysis of SPLA. Our main result, Theo-
rem 1, gives a tractable recursion involving the Kullback-Leibler divergence and Wasserstein dis-
tance (when U is strongly convex) between µ? and the distribution of certain samples generated by
our method. We use this result to show that the KL divergence is lower than ε afterO(1/ε2) iterations
if the constant stepsize γ = O(ε) is used (Corollary 2). Assuming F is α-strongly convex, we show
that the Wasserstein distance and (resp. the KL divergence) decrease exponentially, up to an oscil-
lation region of size O(γ/α) (resp. O(γ)) as shown in Corollary 3 (resp. Corollary 4). If we wish to
push the Wasserstein distance below ε (resp. the KL divergence below αε), this could be achieved
by setting γ = O(εα), and it would be sufficient to take O(1/ε log 1/ε) iterations. These results are
summarized in Table 1. The obtained convergence rates match the previous known results obtained
in simpler settings [18]. Note that convergence rates of optimization methods involving multiple
stochastic proximity operators haven’t been established yet.

2See www.proximity-operator.net
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Remarks: Our proof technique is inspired by [38], which is itself based on [18]. In [38], the authors
consider the n = 1 case, and assume that the smooth function F is proximable. In [18], a proximal
stochastic (sub)gradient Langevin algorithm is studied. In this paper, convergence rates are estab-
lished by showing that the probability distributions of the iterates shadow some discretized gradient
flow defined on a measure space. Hence, our work is a contribution to recent efforts to understand
Langevin algorithm as an optimization algorithm in a space of probability measures [26, 49, 3].

� Online setting. In online settings, U is unknown but revealed across time. Our approach provides
a reasonable algorithm for such situations, especially in cases when the information revealed about
U is stationary in time. In particular, this includes online Bayesian learning with structured priors
or nonsmooth log likelihood [50, 23, 40, 47]. In this context, the learner is required to sample from
some posterior distribution µ? that takes the form (1) where F,G1, . . . , Gn are intractable. However,
these functions can be cheaply sampled, or are revealed across time through i.i.d. streaming data.

� Simulations. We illustrate the promise of our approach numerically by performing experiments
with SPLA. We first apply SPLA to a stochastic and nonsmooth toy model with a ground truth. Then,
we consider the problem of sampling from the posterior distribution in the Graph Trend Filtering
context [47]. For this nonsmooth large scale simulation problem, SPLA is performing better than the
state of the art method that uses stochastic subgradients instead of stochastic proximity operators.
Indeed, in the optimization litterature [2], proximity operators are already known to be more stable
than subgradients.

3 Technical Preliminaries

In this section, we recall certain notions from convex analysis and probability theory, which are keys
to the developments in this paper, state our main assumptions, and introduce needed notations.

3.1 Subdifferential, minimal section and proximity operator

Given a convex function g : Rd → R, its subdifferential at x, ∂g(x), is the set

∂g(x) :=
{
d ∈ Rd : g(x) + 〈d, y − x〉 ≤ g(y)

}
.

Since ∂g(x) is a nonempty closed convex set [2], the projection of 0 onto ∂g(x)—the least norm
element in the set ∂g(x)—is well defined, and we call this element ∇0g(x). The function ∇0g :
Rd → Rd is called the minimal section of ∂g. The proximity operator associated with g is the
mapping proxg : Rd → Rd defined by

proxg(x) := arg min
y∈Rd

{
1
2‖x− y‖

2 + g(y)
}
.

Due to its implicit definition, proxg can be hard to evaluate.

3.2 Stochastic structure of F and Gi: integrability, smoothness and convexity

Here we detail the assumptions behind the stochastic structure (2) of the functions F = Eξ(f(x, ξ))
and Gi = Eξ(gi(x, ξ)) defining the potential U . Let (Ω,F ,P) be a probability space and denote E
the mathematical expectation and V the variance. Consider ξ a random variable from Ω to another
probability space (Ξ,G ) with distribution µ.

Assumption 1 (Integrability). The functions f : Rd×Ξ→ Rd and gi : Rd×Ξ→ Rd, i = 1, . . . , n,
are µ-integrable for every x ∈ Rd.

Furthermore, we will make the following convexity and smoothness assumptions.
Assumption 2 (Convexity and differentiability). The function f(·, s) is convex and differentiable
for every s ∈ Ξ. The functions gi(·, s) are convex for every i ∈ {1, 2, . . . , n}.

The gradient of f(·, s) is denoted ∇f(·, s), the subdifferential of gi(·, s) is denoted ∂gi(·, s) and
its minimal section is denoted ∇0gi(·, s). Under Assumption 2, it is known that F is convex and
differentiable and that ∇F (x) = Eξ(∇f(x, ξ)) [34]. Next, we assume that F is smooth and α-
strongly convex. However, we allow α = 0 if F is not strongly convex. We will only assume that
α > 0 in Corollaries 3 and 4.
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Assumption 3 (Convexity and smoothness of F ). The gradient of F is L-Lipschitz continuous,
where L ≥ 0. Moreover, F is α-strongly convex, where α ≥ 0.

Under Assumption 2, the second part of the above holds for α = 0. Finally, we will introduce two
noise conditions on the stochastic (sub)gradients of f(·, s) and gi(·, s).

Assumption 4 (Bounded variance of∇f(x, ·)). There exists σF ≥ 0, such that Vξ(‖∇f(x, ξ)‖) ≤
σ2
F for every x ∈ Rd.

Assumption 5 (Bounded second moment of ∇0gi(x, ·)). For every i ∈ {1, 2, . . . , n}, there exists
LGi
≥ 0 such that Eξ(‖∇0gi(x, ξ)‖2) ≤ L2

Gi
for every x ∈ Rd.

Note that if gi(·, s) is `i(s)-Lipschitz continuous for every s ∈ Ξ, and if `i(s) is µ-square integrable,
then Assumption 5 holds.

3.3 KL divergence, entropy and potential energy

Recall from (1) that U := F +
∑n
i=1Gi and assume that

∫
exp(−U(x))dx < ∞. Our goal is to

sample from the unique distribution µ? over Rd with density µ?(x) (w.r.t. the Lebesgue measure
denoted L) proportional to exp(−U(x)), for which we write µ?(x) ∝ exp(−U(x)). The closeness
between the samples of our algorithm and the target distribution µ? will be evaluated in terms of
information theoretic and optimal transport theoretic quantities.

Let B(Rd) be the Borel σ-field of Rd. Given two nonnegative measures µ and ν on (Rd,B(Rd)), we
write µ � ν if µ is absolutely continuous w.r.t. ν, and denote dµ

dν its density. The Kullback-Leibler
(KL) divergence between µ and ν, KL(µ | ν), quantifies the closeness between µ and ν. If µ � ν,
then the KL divergence is defined by

KL(µ | ν) :=

∫
log

(
dµ

dν
(x)

)
dµ(x),

and otherwise we set KL(µ | ν) = +∞. Up to an additive constant, KL(· | µ?) can be seen as the
sum of two terms [37]: the entropyH(µ) and the potential energy EU (µ). The entropy of µ is given
byH(µ) := KL(µ | L), and the potential energy of µ is defined by EU (µ) :=

∫
Udµ(x).

3.4 Wasserstein distance

Although the KL divergence is equal to zero if and only if µ = ν, it is not a mathematical distance
(metric). The Wasserstein distance, defined below, metricizes the space P2(Rd) of probability mea-
sures over Rd with a finite second moment. Consider µ, ν ∈ P2(Rd). A transference plan of (µ, ν)
is a probability measure υ over (Rd×Rd,B(Rd×Rd)) with marginals µ, ν : for every A ∈ B(Rd),
υ(A × Rd) = µ(A) and υ(Rd × A) = ν(A). In particular, the product measure µ ⊗ ν is a trans-
ference plan. We denote Γ(µ, ν) the set of transference plans. A coupling of (µ, ν) is a random
variable (X,Y ) over some probability space with values in (Rd × Rd,B(Rd × Rd)) (i.e., X and Y
are random variables with values in Rd) such that the distribution of X is µ and the distribution of
Y is ν. In other words, (X,Y ) is a coupling of µ, ν if the distribution of (X,Y ) is a transference
plan of µ, ν. The Wasserstein distance of order 2 between µ and ν is defined by

W 2(µ, ν) := inf

{∫
Rd×Rd

‖x− y‖2dυ(x, y), υ ∈ Γ(µ, ν)

}
.

One can see that W 2(µ, ν) = inf E(‖X −Y ‖2), where the inf is taken over all couplings (X,Y ) of
µ, ν defined on some probability space with expectation E.
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4 The SPLA Algorithm and its Convergence Rates

4.1 The algorithm

To solve the sampling problem (1), our Stochastic Proximal Langevin Algorithm (SPLA) generates
a sequence of random variables (xk)k≥0 from (Ω,F ,P) to (Rd,B(Rd)) defined as follows

zk = xk − γ∇f(xk, ξk)

yk0 = zk +
√

2γW k

yki = proxγgi(·,ξk)(y
k
i−1) for i = 1, . . . , n

xk+1 = ykn,

where (W k)k≥0 is a sequence of i.i.d. standard Gaussian random variables, (ξk)k≥0 is a sequence of
i.i.d. copies of ξ and γ > 0 is a positive step size. Our SPLA method is formalized as Algorithm 1;
its steps are explained therein.

Algorithm 1 Stochastic Proximal Langevin Algorithm (SPLA)
Initialize: x0 ∈ Rd
for k = 0, 1, 2, . . . do

Sample random ξk . used for stoch. approximation: F ≈ f(·, ξk) and Gi ≈ gi(·, ξk)
zk = xk − γ∇f(xk, ξk) . a stochastic gradient descent step in F
Sample random W k . a standard Gaussian vector in Rd
yk0 = zk +

√
2γW k . a Langevin step w.r.t. F

for i = 1, . . . , n do
yki = proxγgi(·,ξk)(y

k
i−1) . prox step to handle the term Gi(·) = Eξgi(·, ξ)

end for
xk+1 = ykn . the final SPLA step, accounting for F and G1, G2, . . . , Gn

end for

4.2 Main theorem

We now state our main results in terms of Kullback-Leibler divergence and Wasserstein distance.
We denote µx the distribution of every random variable x defined on (Ω,F ,P).
Theorem 1. Let Assumptions 1–5 hold and assume that γ ≤ 1/L. There exists C ≥ 0 such that,

2γKL(µyk0 | µ
?) ≤ (1− γα)W 2(µxk , µ?)−W 2(µxk+1 , µ?) + γ2(2σ2

F + 2Ld+ C). (3)

The constant C can be expressed as a linear combination of L2
G1
, . . . , L2

Gn
with integer coefficients.

Moreover, if n = 2, then C := 2(L2
G1

+ L2
G2

). More generally, if for every i ∈ {2, . . . , n}, gi(·, ξ)
admits almost surely the representation gi(·, ξ) = g̃i(·, ξi) where ξ2, . . . , ξn are independent random

variables, then C := n
n∑
i=1

L2
Gi

.

Proof. A full proof can be found in the Supplementary material. We only sketch the main steps
here. For every µ-integrable function g : Rd → R, we denote Eg(µ) =

∫
gdµ. Moreover, we denote

F = EU +H. First, using [18, Lemma 1], µ? ∈ P2(Rd), EU (µ?),H(µ?) <∞ and if µ ∈ P2(Rd),
then

KL(µ | µ?) = EU (µ) +H(µ)− (EU (µ?) +H(µ?)) = F(µ)−F(µ?),

provided that EU (µ) < ∞. Then, we decompose EU (µ) = EF (µ) + EG(µ) where G =
∑n
i=1Gi.

Using [18] again, we can establish the inequality

2γ
[
H(µyk0 )−H(µ?)

]
≤W 2(µzk , µ

?)−W 2(µyk0 , µ
?). (4)

Then, if γ ≤ 1/L we obtain, for every random variable a with distribution µ?,

E
[∥∥zk − a∥∥2] ≤ (1− γα)E

[∥∥xk − a∥∥2]+ 2γ [EF (µ?)− EF (µzk)] + 2γ2σ2
F , (5)
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using standard computations regarding the stochastic gradient descent algorithm. Using the smooth-
ness of F and the definition of the Wasserstein distance, this implies

2γ
[
EF (µyk0 )− EF (µ?)

]
≤ (1− γα)W 2(µxk , µ?)−W 2(µzk , µ

?) + γ2(2σ2
F + 2Ld).

It remains to establish 2γ
[
EG(µyk0 )− EG(µ?)

]
≤ W 2(µyk0 , µ

?) −W 2(µxk+1 , µ?) + γ2C, which
is the main technical challenge of the proof. This is done using the frameworks of Yosida approx-
imation of random subdifferentials and Moreau regularizations of random convex functions [2].
Equation (3) is obtained by summing the obtained inequalities.

4.3 Link with Wasserstein Gradient Flows

Equation (3) is reminiscent of the fact that the SPLA shadows the gradient flow of KL(· | µ?) in
the metric space (P2(Rd),W ). To see this, first consider the gradient flow associated to F . By
definition, it is the flow of the differential equation [7]

d
dtx(t) = −∇F (x(t)), t > 0. (6)

The function x can alternatively be defined as a solution of the variational inequalities

2 (F (x(t))− F (a)) ≤ − d
dt‖x(t)− a‖

2, t > 0, ∀a ∈ Rd. (7)

The iterates (uk)k≥0 of the stochastic gradient descent (SGD) algorithm applied to F can be seen
as a (noisy) Euler discretization of (6) with a step size γ > 0. This idea has been used successfully
in the stochastic approximation litterature [33, 24]. This analogy goes further since a fundamental
inequality used to analyze SGD applied to F is ([27])

2γE
(
F (uk+1)− F (a)

)
≤ E‖uk − a‖2 − E‖uk+1 − a‖2 + γ2K, k ≥ 0,

where K ≥ 0 is some constant, which can be seen as a discrete counterpart of (7). Note that this
inequality is similar to (5) that is used in the proof of Theorem 1.

In the optimal transport theory, the point of view of (7) is used to define the gradient flow of a
(geodesically) convex functionF defined onP2(Rd) (see [37] or [1, Page 280]). Indeed, the gradient
flow (νt)t≥0 of F in the space (P2(Rd),W ) satisfies for every t > 0, µ ∈ P2(Rd),

2 (F(νt)−F(µ)) ≤ − d
dtW

2(νt, µ), (8)

which can be seen as a continuous time counterpart of Equation (3) by setting F = KL(· | µ?).
Furthermore, Equation (4) in the proof of Theorem 1 is also related to (8). It is obtained by applying
Equation (8) with F = H and ν0 = µzk (see e.g [18, Lemma 5]).

4.4 Explicit convergence rates for convex and strongly convex F

Corollaries 2, 3 and 4 below are obtained by unrolling the recursion provided by Theorem 1. The
results are summarized in Table 1.
Corollary 2 (Convex F ). Consider a sequence of independent random variables (jk)k≥0 such that
(jk)k≥0 is independent of (W k)k and (ξk)k, and the distribution of jk is uniform over {0, . . . , k}.
Denote x̂k = yjk0 . If γ ≤ 1/L, then,

KL(µx̂k | µ?) ≤ 1

2γ(k + 1)
W 2(µx0 , µ?) +

γ

2
(2σ2

F + 2Ld+ C).

Hence, given any ε > 0, choosing stepsize γ = min
{

1
L ,

ε
2σ2

F+2Ld+C

}
and a number of iterations

k + 1 ≥ max
{
L
ε ,

2σ2
F+2Ld+C

ε2

}
W 2(µx0 , µ?),

implies KL(µx̂k | µ?) ≤ ε.
Corollary 3 (Strongly convex F ). If α > 0 and γ ≤ 1/L, then,

W 2(µxk , µ?) ≤ (1− γα)kW 2(µx0 , µ?) +
γ(2σ2

F+2Ld+C)
α .
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Hence, given any ε > 0, choosing stepsize γ = min
{

1
L ,

εα
2(2σ2

F+2Ld+C)

}
and a number of iterations

k ≥ max
{
L
α ,

2(2σ2
F+2Ld+C)
εα2

}
log
(

2W 2(µx0 ,µ
?)

ε

)
,

implies W 2(µxk , µ?) ≤ ε.
Corollary 4 (Strongly convex F ). Consider a sequence of independent random variables (jk)k≥0
such that (jk)k is independent of (W k)k and (ξk)k. Assume that the distribution of jk is geometric
over {0, . . . , k}:

P(jk = r) ∝ (1− γα)−r.

Denote x̃k = xjk . If α > 0 and γ ≤ 1/L, then,

KL(µx̃k | µ?) ≤ αW 2(µx0 ,µ
?)

2 · (1−γα)k+1

1−(1−γα)k+1 +
γ(2σ2

F+2Ld+C)
2 .

Hence, given any ε > 0, choosing stepsize γ = min
{

1
L ,

εα
2σ2

F+2Ld+C

}
and a number of iterations

k ≥ max
{
L
α ,

2σ2
F+2Ld+C
εα2

}
log
(

2 max
{

1,
W 2(µx0 ,µ

?)

ε

})
,

implies KL(µx̃k | µ?) ≤ αε.

We can compare these bounds with the one of [18]. First, in the particular case n = 1 and
g1(·, s) ≡ G1, SPLA boils down to the algorithm of [18, Section 4.2], Corollary 2 matches ex-
actly [18, Corollary 18] and Corollary 3 matches [18, Corollary 22]. To our knowledge, Corollary 4
has no counterpart in the litterature. We now focus on the case F ≡ 0 and n = 1 of SPLA, as it con-
centrates the innovations of our paper. In this case, L = 0 and σF = 0. Compared to the Stochastic
Subgradient Langevin Algorithm (SSLA) [18, Section 4.1], Corollary 2 matches with [18, Corollary
14].

5 Numerical experiments

5.1 Simulations using a ground truth

We first concentrate on the case F ≡ 0 and n = 1. LetU = |x| = Eξ(|x|+xξ) (g1(x, s) = |x|+xs),
where ξ is standard Gaussian. The target µ? ∝ exp(−U) is a standard Laplace distribution in R.
In this case, L = α = σF = 0 and C = L2

G1
= 2. We shall illustrate the bound on KL(µx̂k |µ?)

(Corollary 2 for SPLA and [18, Corollary 14] for SSLA) for both algorithms using histograms. Note
that the distribution µx̂k of x̂k is a (deterministic) mixture of the µxj : µx̂k = 1

k

∑k
j=1 µxj . Using

Pinsker inequality, we can bound the total variation distance between µx̂k and µ? from the bound
on KL, and illustrate this by histograms. In Figure 1, we take γ = 10 and do 105 iterations of both
algorithms. Note that here the complexity of one iteration of SPLA or SSLA is the same. One can

Figure 1: Comparison between histograms of SPLA and SSLA and the true density 0.5 exp(−|x|).

see that SPLA enjoys the well known advantages of stochastic proximal methods [43]: precision,
numerical stability (less outliers), and robustness to step size.
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Algorithm 2 SPLA for the Graph Trend Filtering
Initialize: x0 ∈ RV
for k = 0, 1, 2, . . . do

zk = xk − γ
σ2 (xk − Y )

Sample random W k . standard Gaussian vector in RV
yk0 = zk +

√
2γW k

for i = 1, . . . , n do
Sample uniform random edges ei
yki = proxγgei

(yki−1)

end for
xk+1 = ykn

end for

5.2 Application to Trend Filtering on Graphs

In this section we consider the following Bayesian point of view of trend filtering on graphs [42].
Consider a finite undirected graph G = (V,E), where V is the set of vertices and E is the set of
edges. Denote d the cardinality of V and |E| the cardinality of E. A realization of a random vector
Y ∈ RV is observed. In a Bayesian framework, the distribution of Y is parametrized by a vector
X ∈ RV which is itself random and whose distribution p is proportional to exp(−λTV(x,G)),
where λ > 0 is a scaling parameter and where for every x ∈ RV

TV(x,G) =
∑

i,j∈V,{i,j}∈E
|x(i)− x(j)|,

is the Total Variation regularization over G. The goal is to learn X after an observation of Y . The
paper [47] consider the case where the distribution of Y givenX (a.k.a the likelihood) is proportional
to exp(− 1

2σ2 ‖X − y‖2), where σ ≥ 0 is another scaling parameter. In other words, the distribution
of Y given X is N(X,σ2I), a normal distribution centered at X with variance σ2I (where I is the
d× d identity matrix). Denoting

π(x | y) ∝ exp(−U(x)), U(x) = 1
2σ2 ‖x− y‖2 + λTV(x,G),

the posterior distribution of X given Y , the maximum a posteriori estimator in this Bayesian frame-
work is called the Graph Trend Filtering estimate [47]. It can be written

x? = arg max
x∈RV

π(x | Y ) = arg min
x∈RV

1
2σ2 ‖x− Y ‖2 + λTV(x,G).

Although maximum a posteriori estimators carry some information, they are not able to capture
uncertainty in the learned parameters. Samples a posteriori provide a better understanding of the
posterior distribution and allow to compute other Bayesian estimates such as confidence intervals.
This allows to avoid overfitting among other things. In our context, sampling a posteriori would
require to sample from the target distribution µ?(x) = π(x | Y ).

In the case where G is a 2D grid (which can be identified with an image), the proximity operator
of TV(·, G) can be computed using a subroutine [8] and the proximal stochastic gradient Langevin
algorithm can be used to sample from π(· | Y ) [20, 18]. However, on a large/general graph, the
proximity operator of TV(·, G) is hard to evaluate [41, 36]. Since TV(·, G) is written as a sum, we
shall rather select a batch of random edges and compute the proximity operators over these randomly
chosen edges. More precisely, we write the potential U defining π(x | Y ) in the form (1) by setting

U(x) = F (x) +
n∑
i=1

Gi(x), F (x) = 1
2σ2 ‖x− Y ‖2, Gi(x) = λ |E|n Eei (|x(vi)− x(wi)|) ,

where for every i ∈ {1, . . . , n}, ei = {vi, wi} ∈ E is an uniform random edge and the ei
are independent. For every edge e = {v, w} ∈ E, (where v, w are vertices) denote ge(x) =

λ |E|n |x(v) − x(w)| and note that Gi(x) = Eei(gei(x)). The parameter n can be seen as a
batch parameter:

∑n
i=1 gei(x) is an unbiaised approximation of TV (x,G). Also note that we set

f(·, s) ≡ F . The SPLA applied to sample from π(· | Y ) is presented as Algorithm 2. In our
simulations, the SPLA is compared to two different versions of the Langevin algorithm. In the
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Stochastic Subgradient Langevin Algorithm (SSLA) [18], stochastic subgradients of gei are used
instead of stochastic proximity operators. In the Proximal Langevin Algorithm (ProxLA) [18], the

full proximity operator of
n∑
i=1

Gi is computed using a subroutine. As mentioned in [36, 47], we

use the gradient algorithm for the dual problem. The plots in Figure 2 provide simulations of the
algorithms on our machine (using one thread of a 2,800 MHz CPU and 256GB RAM). Additional
numerical experiments are available in the Appendix. Four real life graphs from the dataset [25]
are considered : the Facebook graph (4,039 nodes and 88,234 edges, extracted from the Facebook
social network), the Youtube graph (1,134,890 nodes and 2,987,624 edges, extracted from the social
network included in the Youtube website), the Amazon graph (the 334,863 nodes represent products
linked by and 925,872 edges) and the DBLP graph (a co-authorship network of 317,080 nodes and
1,049,866 edges). On the larger graphs, we only simulate SPLA and SSLA since the computation
of a full proximity operator becomes prohibitive. Numerical experiments over the Amazon and the
DBLP graphs are available in the Supplementary material.

Figure 2: Top row: The functional F = H+ EU as a function of CPU time for the three algorithms
over the Facebook graph. Left: Y ∼ N(0, I). Right: Y ∼ N(0, I) and then half of the coordinates
of Y are put to zero. Bottom row: The functional F = H + EU as a function of CPU time for the
two algorithms over the Youtube graph. Left: Y ∼ N(0, I). Right: Y ∼ N(0, I) and then half of
the coordinates of Y are put to zero.

In our simulations, we represent the functionalF = H+EU as a function of CPU time while running
the algorithms. The parameters λ and σ are chosen such that the log likelihood term and the Total
Variation regularization term have the same weight. The functionals H and EU are estimated using
five random realizations of each iterate x̂k (H is estimated using a kernel density estimator). The
batch parameter n is equal to 400. We consider cases where Y has a standard gaussian distribution
and cases where half of the components of Y are standard gaussians and half are equal to zero (this
correspond to the graph inpainting task [11]). SPLA and SSLA are always simulated with the same
step size.

As expected, the numerical experiments show the advantage of using stochastic proximity operators
instead of stochastic subgradients. It is a standard fact that proximity operators are better than
subgradients to tackle `1-norm terms [2]. Our figures show that stochastic proximity operators are
numerically more stable than alternatives [43]. Our figures also show the advantage of stochastic
methods (SSLA or SPLA) over deterministic ones for large scale problems. The SSLA and the
SPLA provide iterates about one hundred times more frequently than ProxLA, and are faster in the
first iterations.
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A Lemmas Needed for the Proof of the Main Theorem

In order to prove Theorem 1, we will need to establish several lemmas. For every convex function
g : Rd → R, we denote Eg(µ) =

∫
gdµ. In the sequel, we assume that Assumptions 1–5 hold true.

We first recall [18, Lemma 1].

Lemma 5. The target distribution satisfies µ? ∈ P2(Rd), EU (µ?) andH(µ?) <∞.

Moreover, if µ ∈ P2(Rd), then

KL(µ | µ?) = EU (µ) +H(µ)− (EU (µ?) +H(µ?)) = F(µ)−F(µ?),

provided that EU (µ) <∞.

Lemma 6.
2γ
[
H(µyk0 )−H(µ?)

]
≤W 2(µzk , µ

?)−W 2(µyk0 , µ
?). (9)

Proof. This is an application of [18, Lemma 5] with µ← µzk and π ← µ?.

The proof is the roughly the same as proving the O(1/k) convergence rate of the gradient descent
algorithm, but in continuous time and in the space P2(Rd). For the sake of completeness, we
provide the main arguments of a different proof than [18] here, that makes easier the connection with
Lyapunov techniques used in the analysis of gradient descent/gradient flows in Euclidean spaces.

Consider Brownian motion (Bt) and the rescaled Brownian Motion (
√

2Bt) initialized with√
2B0 ∼ µzk and denote, for every t ≥ 0, νt the distribution of

√
2Bt. Then (νt)t is a gradi-

ent flow ofH (see [37]). This implies (see [1, Page 280])

∀t > 0, 2 (H(νt)−H(µ?)) ≤ − d

dt
W 2(νt, µ

?). (10)

This also implies [45, Page 711] that (the objective function) H is a Lyapunov function for (the
gradient flow) (νt)t≥0 :

∀t > 0,
d

dt
H(νt) ≤ 0. (11)

Now consider the function `(t) = t (H(νt)−H(µ?)) + 1
2W

2(νt, µ
?). For every t > 0,

d

dt
`(t) = (H(νt)−H(µ?)) + t

d

dt
H(νt)− (H(νt)−H(µ?)) ≤ 0,

using the inequalities (A) and (A). In other words, ` is also a Lyapunov function. Therefore, for
every ε > 0, `(γ) ≤ `(ε), which implies3 `(γ) ≤ `(0) i.e,

γ (H(νγ)−H(µ?)) ≤ 1

2
W 2(ν0, µ

?)− 1

2
W 2(νγ , µ

?).

It remains to note that ν0 = µzk and νγ = µyk0 .

Lemma 7.
2γ
[
EF (µyk0 )− EF (µzk)

]
≤ 2γ2Ld . (12)

Proof. This is an application of [18, Lemma 3] with µ← µzk . We provide the proof for the sake of
completeness. It can be related to smoothing techniques used in optimization [21].

First, using the convexity and the smoothness of F ,

0 ≤ F (yk0 )− F (zk) +
〈
∇F (zk), zk − yk0

〉
≤ L

2
‖yk0 − zk‖2. (13)

Note that yk0 − zk =
√

2γW k is independent of zk, that E(yk0 − zk) = 0 and that E(‖yk0 − zk‖2) =
2γd. Taking the expectation in (A) gives the result.

3Here, one has to prove the ` is continuous at 0, we skip this part of the proof
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Lemma 8. Let γ ≤ 1/L. Then

2γ [EF (µzk)− EF (µ?)] ≤ (1− γα)W 2(µxk , µ?)−W 2(µzk , µ
?) + 2γ2σ2

F . (14)

Proof. We choose arbitrary a ∈ Rd and start with an upper-bound for
∥∥zk − a∥∥2:∥∥zk − a∥∥2 =

∥∥xk − a− γ∇f(xk, ξk)
∥∥2

=
∥∥xk − a∥∥2 + 2γ

〈
∇f(xk, ξk), a− xk

〉
+ γ2

∥∥∇f(xk, ξk)
∥∥2 .

By taking an expectation with respect to ξk we get

Eξk
[∥∥zk − a∥∥2] =

∥∥xk − a∥∥2 + 2γ
〈
∇F (xk), a− xk

〉
+ γ2

∥∥∇F (xk)
∥∥2

+ γ2Eξk
[∥∥∇F (xk)−∇f(xk, ξk)

∥∥2]
≤
∥∥xk − a∥∥2 + 2γ

(
F (a)− F (xk)− α

2

∥∥xk − a∥∥2)+ γ2
∥∥∇F (xk)

∥∥2 + γ2σ2
F

= (1− γα)
∥∥xk − a∥∥2 + 2γ

(
F (a)− F (xk)

)
+ γ2

∥∥∇F (xk)
∥∥2 + γ2σ2

F . (15)

Next, we use the L-smoothness of F and the fact that γ ≤ 1/L:

EξkF (zk) ≤ F (xk) + Eξk
[〈
∇F (xk), zk − xk

〉]
+
L

2
Eξk

[∥∥zk − xk∥∥2]
= F (xk)− γ

(
1− Lγ

2

)∥∥∇F (xk)
∥∥2 +

L

2
γ2Eξk

[∥∥∇f(xk, ξk)
∥∥2 − ∥∥∇F (xk)

∥∥2]
≤ F (xk)− γ

2

∥∥∇F (xk)
∥∥2 +

L

2
γ2σ2

F .

Since Lγ ≤ 1,
EξkF (zk) ≤ F (xk)− γ

2

∥∥∇F (xk)
∥∥2 +

γ

2
σ2
F ,

which gives us an upper-bound for γ2
∥∥∇F (xk)

∥∥2:

γ2
∥∥∇F (xk)

∥∥2 ≤ 2γ
(
F (xk)− EξkF (zk)

)
+ γ2σ2

F ,

since γ ≤ 1/L. Plugging this into (A) we obtain

Eξk
[∥∥zk − a∥∥2] ≤ (1− γα)

∥∥xk − a∥∥2 + 2γ
(
F (a)− EξkF (zk)

)
+ 2γ2σ2

F . (16)

Now, let a ∼ µ?, i.e. a is a random vector sampled from the distribution with density µ?. By taking
the full expectation in (A) we get

E
[∥∥zk − a∥∥2] ≤ (1− γα)E

[∥∥xk − a∥∥2]+ 2γ [EF (µ?)− EF (µzk)] + 2γ2σ2
F .

Using the definition of Wasserstein distance we get

W 2(µzk , µ
?) ≤ (1− γα)E

[∥∥xk − a∥∥2]+ 2γ [EF (µ?)− EF (µzk)] + 2γ2σ2
F

Note that in the last inequality, xk can be replaced by any random variable with distribution µxk .
Taking the inf over all possible couplings of µxk and µ? we get

W 2(µzk , µ
?) ≤ (1− γα)W 2(µxk , µ?) + 2γ [EF (µ?)− EF (µzk)] + 2γ2σ2

F .

Remark 1. We now recall standard facts from convex analysis that will be used without mention
in the sequel. These results can be found in [2] or [7]. Let g : Rd → R be a convex function. The
Moreau envelope gγ of g is defined by

gγ(x) = min
y∈Rd

g(y) +
1

2γ
‖y − x‖2 ,
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and is a 1/γ-smooth convex function such that gγ(x) ≤ g(x) and gγ(x) →γ→0 g(x) for every
x ∈ Rd. The proximity operator of g and the Moreau envelope are linked through their definitions

gγ(x) =
1

2γ

∥∥proxγg(x)− x
∥∥2 + g(proxγg(x)),

but also through the relation
proxγg(x) = x− γ∇gγ(x).

The function ∇gγ is called the Yosida approximation of ∂g. The proximity operator proxγg is
1-Lipschitz continuous, and so is γ∇gγ . The Yosida approximation satisfies moreover

∇gγ(x) ∈ ∂g
(
proxγg(x)

)
,

for every x ∈ Rd. Since g only takes finite values, for every x ∈ Rd, ∂g(x) 6= ∅. Furthermore, the
Yosida approximation satisfies for every x ∈ Rd,

‖∇gγ(x)‖ ≤
∥∥∇0g(x)

∥∥ .
Lemma 9. Let g : Rd → R be a convex function. Then,

gγ(x) ≥ g(x)− γ

2

∥∥∇0g(x)
∥∥2 .

Proof. Let x ∈ Rd. Using the convexity of g we have for every y ∈ Rd,

g(y) +
1

2γ
‖y − x‖2 ≥ g(x) +

〈
∇0g(x), y − x

〉
+

1

2γ
‖y − x‖2 . (17)

We conclude the proof by taking the minimum over y on both sides of (A).

Lemma 10. For every i ∈ {1, . . . , n}, let gi : Rd → R a convex function. Consider
a, y0, y1, . . . , yn ∈ Rd such that for every k = 1, . . . , n, yk = proxγgk(yk−1). Then,

‖yn − a‖2 ≤ ‖y0 − a‖2 − 2γ

n∑
k=1

(gγk (yk−1)− gk(a)).

Proof. Iterating Equation 1, we have for every i ∈ {1, . . . , n}:

yi = y0 − γ
i∑

j=1

∇gγj (yj−1).

Therefore,

‖yn − a‖2 = ‖y0 − a‖2 − 2γ

〈
n∑
i=1

∇gγi (yi−1), y0 − a

〉
+ γ2

∥∥∥∥∥
n∑
i=1

∇gγi (yi−1)

∥∥∥∥∥
2

. (18)

Since∇gγi (yi−1) ∈ ∂gi(yi),

〈∇gγi (yi−1), y0 − a〉 = 〈∇gγi (yi−1), yi − a〉+ γ ‖∇gγi (yi−1)‖2 + γ

〈
∇gγi (yi−1),

i−1∑
j=1

∇gγj (yj−1)

〉

≥ gi(yi)− gi(a) + γ ‖∇gγi (yi−1)‖2 + γ

〈
∇gγi (yi−1),

i−1∑
j=1

∇gγj (yj−1)

〉
.
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Furthermore,

− 2γ

〈
n∑
i=1

∇gγi (yi−1), y0 − a

〉
+ γ2

∥∥∥∥∥
n∑
i=1

∇gγi (yi−1)

∥∥∥∥∥
2

=− 2γ

n∑
i=1

(gi(yi)− gi(a))− 2γ2
n∑
i=1

‖∇gγi (yi−1)‖2

+ γ2

∥∥∥∥∥
n∑
i=1

∇gγi (yi−1)

∥∥∥∥∥
2

− 2γ2
n∑
i=1

〈
∇gγi (yi−1),

i−1∑
j=1

∇gγj (yj−1)

〉
.

Expanding the square norm γ2 ‖
∑n
i=1∇g

γ
i (yi−1)‖2, all the cross products vanish with the last term.

It remains only

− 2γ

〈
n∑
i=1

∇gγi (yi−1), y0 − a

〉
+ γ2

∥∥∥∥∥
n∑
i=1

∇gγi (yi−1)

∥∥∥∥∥
2

=− 2γ

n∑
i=1

(gi(yi)− gi(a))− γ2
n∑
i=1

‖∇gγi (yi−1)‖2 .

Since gγi (yi−1) = 1
2γ ‖yi − yi−1‖

2
+ gi(yi),

−2γ

〈
n∑
i=1

∇gγi (yi−1), y0 − a

〉
+ γ2

∥∥∥∥∥
n∑
i=1

∇gγi (yi−1)

∥∥∥∥∥
2

= −2γ

n∑
i=1

(gγi (yi−1)− gi(a)).

Plugging the last equation into (A) gives the result.

Lemma 11. There exists C ≥ 0 which can be expressed as a linear combination of L2
G1
, . . . , L2

Gn

with integer coefficients such that

2γ

n∑
i=1

[
EGi(µyk0 )− EGi(µ

?)
]
≤W 2(µyk0 , µ

?)−W 2(µxk+1 , µ?) + γ2C. (19)

Moreover, if, for every i ∈ {2, . . . , n}, gi(·, ξ) admits almost surely the representation gi(·, ξ) =

g̃i(·, ξi) where ξ2, . . . , ξn are independent random variables, then one can set C := n
n∑
i=1

L2
Gi

.

Proof. Using the convexity of gγi (·, ξk) and Lemma 9,

gγi (yki−1, ξ
k) ≥ gγi (yk0 , ξ

k) +
〈
∇gγi (yk0 , ξ

k), yki−1 − yk0
〉

≥ gi(yk0 , ξk)− γ

2

∥∥∇0gi(y
k
0 , ξ

k)
∥∥2 +

〈
∇gγi (yk0 , ξ

k), yki−1 − yk0
〉

We now look at the last term at the right hand side. If i = 1 it is equal to zero. If i ≥ 2, using
Young’s inequality,

−2γ
〈
∇gγi (yk0 , ξ

k), yki−1 − yk0
〉

=

i−1∑
j=1

−2
〈
γ∇gγi (yk0 , ξ

k), ykj − ykj−1
〉

≤ (i− 1)
∥∥γ∇gγi (yk0 , ξ

k)
∥∥2 +

i−1∑
j=1

∥∥ykj − ykj−1∥∥2 .
Combining the two last inequalities with Lemma 10 applied to yi ← yki and gi ← gi(·, ξk), we have∥∥ykn − a∥∥2 ≤∥∥yk0 − a∥∥2 (20)

− 2γ

n∑
i=1

(gi(y
k
0 , ξ

k)− gi(a, ξk))

+ γ2
n∑
i=1

∥∥∇0gi(y
k
0 , ξ

k)
∥∥2 +

n∑
i=2

(i− 1)
∥∥γ∇gγi (yk0 , ξ

k)
∥∥2 +

i−1∑
j=1

∥∥ykj − ykj−1∥∥2
 .
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We now consider two cases. First, assume that for every i ∈ {2, . . . , n}, gi(·, ξ) admits almost
surely the representation gi(·, ξ) = g̃i(·, ξi) where ξ2, . . . , ξn are independent random variables. In
this case, ξkj – the kth i.i.d copy of ξj – is independent of ykj−1 for every j ∈ {1, . . . , n}. Noting
that ykj − ykj−1 = −γ∇g̃jγ(ykj−1, ξ

k
j ) and using Assumption 5

E
(∥∥∇g̃jγ(ykj−1, ξ

k
j )
∥∥2 | ykj−1) = E

(∥∥∇g̃jγ(·, ξkj )
∥∥2) (ykj−1) = E

(∥∥∇gγj (·, ξk)
∥∥2) (ykj−1) ≤ L2

Gj
.

Taking a full expectation,

γ2E

 n∑
i=1

∥∥∇0g̃i(y
k
0 , ξ

k
i )
∥∥2 +

(i− 1)
∥∥γ∇g̃iγ(yk0 , ξ

k
i )
∥∥2 +

i−1∑
j=1

∥∥ykj − ykj−1∥∥2
 ≤ γ2n n∑

i=1

L2
Gi
.

(21)
In this case we set C := n

∑n
i=1 L

2
Gi

. Obviously, this cover the case n = 2.

Second (general case), denote βj = E
∥∥ykj − ykj−1∥∥2 . We write

∇gγj (ykj−1, ξ
k) = ∇gγj (yk0 , ξ

k)+
(
∇gγj (ykj−1, ξ

k)−∇gγj (ykj−2, ξ
k)
)
+. . .+

(
∇gγj (yk1 , ξ

k)−∇gγj (yk0 , ξ
k)
)
.

Using Young’s inequality and the fact that γ∇gγj (·, ξk) is 1-Lipschitz continous,

βj ≤ j
(
L2
Gj

+ βj−1 + . . .+ β1

)
.

Noting that β1 ≤ L2
G1

, it is easy to prove (by induction) that there exists a linear combination of the
L2
G1
, . . . , L2

Gn
with integer coefficients denoted C ≥ 0 such that

γ2E

 n∑
i=1

∥∥∇0gi(y
k
0 , ξ

k)
∥∥2 +

(i− 1)
∥∥γ∇gγi (yk0 , ξ

k)
∥∥2 +

i−1∑
j=1

∥∥ykj − ykj−1∥∥2
 ≤ γ2C.

(22)
Finally, taking the expectation in (A) and plugging (A) or (A),

E
∥∥ykn − a∥∥2 ≤E∥∥yk0 − a∥∥2

− 2γ

n∑
i=1

(E(Gi(y
k
0 ))− E(Gi(a))) + γ2C.

Using the definition of EGi and taking the inf over all couplings yk0 , a of µyk0 , µ
?, we get

W 2(µxk+1 , µ?) = W 2(µykn , µ
?) ≤W 2(µyk0 , µ

?) + 2γ

n∑
i=1

[
EGi(µ

?)− EGi(µyk0 )
]

+ γ2C.

18



B Proof of Theorem 1

By summing up (8) and (7) we get

2γ
[
EF (µyk0 )− EF (µ?)

]
≤ (1− γα)W 2(µxk , µ?)−W 2(µzk , µ

?) + γ2(2σ2
F + 2Ld).

Adding (6) leads to

2γ
[
EF (µyk0 )− EF (µ?) +H(µyk0 )−H(µ?)

]
≤ (1− γα)W 2(µxk , µ?)−W 2(µyk0 , µ

?)

+ γ2(2σ2
F + 2Ld).

Finally, by adding (11) we get

2γ

[
EF (µyk0 )− EF (µ?) +H(µyk0 )−H(µ?) +

n∑
i=1

(
EGi

(µyk0 )− EGi
(µ?)

)]
≤ (1− γα)W 2(µxk , µ?)−W 2(µxk+1 , µ?) + γ2(2σ2

F + 2Ld+ C),

which, along with Lemma 5, concludes the proof.
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C Proof of Corollary 2

From (3), for all j = 0, . . . , k we get

2γ
[
F(µyj0

)−F(µ?)
]
≤W 2(µxj , µ?)−W 2(µxj+1 , µ?) + γ2(2σ2

F + 2Ld+ C). (23)

Summing up (C) for j = 0, . . . , k leads to

2γ

k∑
j=0

[
F(µyj0

)−F(µ?)
]
≤W 2(µx0 , µ?)−W 2(µxk+1 , µ?) + γ2(k + 1)(2σ2

F + 2Ld+ C)

≤W 2(µx0 , µ?) + γ2(k + 1)(2σ2
F + 2Ld+ C).

Using Lemma 5 and the convexity of KL divergence [44, Theorem 11], F is convex on P2(Rd).
Since µx̂k = 1

k+1

∑k
j=0 µyj0

,

F(µx̂k) ≤ 1

k + 1

k∑
j=0

F(µyj0
),

hence
F(µx̂k)−F(µ?) ≤ 1

2γ(k + 1)
W 2(µx0 , µ?) +

γ

2
(2σ2

F + 2Ld+ C).

Hence, given any ε > 0, choosing stepsize γ = min
{

1
L ,

ε
2σ2

F+2Ld+C

}
leads to

γ

2
(2σ2

F + 2Ld+ C) ≤ ε

2
.

If the number of iterations is

k + 1 ≥ max
{
L
ε ,

2σ2
F+2Ld+C

ε2

}
W 2(µx0 , µ?),

then,
1

2γ(k + 1)
W 2(µx0 , µ?) ≤ ε

2
.

This implies F(µx̂k)−F(µ?) ≤ ε, and the proof is concluded by applying Lemma 5.
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D Proof of Corollary 3

From (5), F(µyj0
) ≥ F(µ?). From (3), for all j = 0, . . . , k − 1 we get

W 2(µxj+1 , µ?) ≤ (1− γα)W 2(µxj , µ?) + γ2(2σ2
F + 2Ld+ C).

After unrolling this recurrence we get

W 2(µxk , µ?) ≤ (1− γα)kW 2(µx0 , µ?) + γ2(2σ2
F + 2Ld+ C)

k−1∑
j=0

(1− γα)j

= (1− γα)kW 2(µx0 , µ?) + γ2(2σ2
F + 2Ld+ C)

1− (1− γα)k

γα

≤ (1− γα)kW 2(µx0 , µ?) +
γ(2σ2

F + 2Ld+ C)

α
.

The first part is proven. Setting γ = min
{

1
L ,

εα
2(2σ2

F+2Ld+C)

}
gives

W 2(µxk , µ?) ≤ (1− γα)kW 2(µx0 , µ?) +
ε

2
.

If

k ≥ 1

γα
log

(
2W 2(µx0 , µ?)

ε

)
,

then,
(1− γα)kW 2(µx0 , µ?) ≤ ε

2
,

which concludes the proof.
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E Proof of Corollary 4

From (3), for all j = 0, . . . , k we get

2γ
[
F(µyj0

)−F(µ?)
]
≤ (1− γα)W 2(µxj , µ?)−W 2(µxj+1 , µ?) + γ2(2σ2

F + 2Ld+ C). (24)

By dividing (E) by (1− γα)j we get

2γ

(1− γα)j

[
F(µyj0

)−F(µ?)
]
≤ W 2(µxj , µ?)

(1− γα)j−1
− W 2(µxj+1 , µ?)

(1− γα)j
+
γ2(2σ2

F + 2Ld+ C)

(1− γα)j
. (25)

Summing up (E) for j = 0, . . . , k gives

k∑
j=0

2γ

(1− γα)j

[
F(µyj0

)−F(µ?)
]
≤ (1− γα)W 2(µx0 , µ?)− W 2(µxk+1 , µ?)

(1− γα)k
+

k∑
j=0

γ2(2σ2
F + 2Ld+ C)

(1− γα)j

≤ (1− αγ)W 2(µx0 , µ?) +

k∑
j=0

γ2(2σ2
F + 2Ld+ C)

(1− γα)j
.

Using Lemma 5 and the convexity of KL divergence [44, Theorem 11], F is convex on P2(Rd).
Since

µx̃k =

k∑
j=0

(1− γα)−j∑k
r=0(1− γα)−r

µxj ,

F(µx̃k)

k∑
j=0

(1− γα)−j =

k∑
j=0

(1− γα)−jF(µx̃k) ≤
k∑
j=0

(1− γα)−jF(µxj ),

hence

2γ

k∑
j=0

(1− γα)−j [F(µx̃k)−F(µ?)] ≤ (1− αγ)W 2(µx0 , µ?) +

k∑
j=0

γ2(2σ2
F + 2Ld+ C)

(1− γα)j
.

After dividing by 2γ
k∑
j=0

(1− γα)−j we obtain

F(µx̃k)−F(µ?) ≤ W 2(µx0 , µ?)

2γ
∑k
j=0(1− γα)−(j+1)

+
γ(2σ2

F + 2Ld+ C)

2
. (26)

Now, we perform a simplification of the sum:

k∑
j=0

γ(1− γα)−(j+1) =
γ

(1− γα)

k∑
j=0

(1− γα)−j =
γ

(1− γα)
· (1− γα)−(k+1) − 1

(1− γα)−1 − 1

=
(1− γα)−(k+1) − 1

α
.

Plugging this into (E) gives

F(µx̃k)−F(µ?) ≤ αW 2(µx0 , µ?)

2((1− γα)−(k+1) − 1)
+
γ(2σ2

F + 2Ld+ C)

2

= α

[
W 2(µx0 , µ?)

2
· (1− γα)k+1

1− (1− γα)k+1
+
γ(2σ2

F + 2Ld+ C)

2α

]
.

If γ = min
{

1
L ,

εα
2σ2

F+2Ld+C

}
and

k ≥ max
{
L
α ,

2σ2
F+2Ld+C
εα2

}
log
(

2 max
{

1,
W 2(µx0 ,µ

?)

ε

})
,
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then k ≥ 1
γα log 2. Moreover, (1− γα)k+1 ≤ 1/2,

F(µx̃k)−F(µ?) ≤ α
[
(1− γα)k+1W 2(µx0 , µ?) +

γ(2σ2
F + 2Ld+ C)

2α

]
,

and
F(µx̃k)−F(µ?) ≤ α

[
(1− γα)k+1W 2(µx0 , µ?) +

ε

2

]
.

The conclusion follows from Lemma 5.
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F Additional Numerical Experiments

Figure 3: Top row: The functional F = H + EU as a function of CPU time for the Amazon
graph with Y ∼ N(0, I). Left: SSLA and SPLA. Right: Only SPLA. Bottom row: The functional
F = H + EU as a function of CPU time for the DBLP graph with Y ∼ N(0, I). Left: SSLA and
SPLA. Right : Only SPLA.

These numerical experiments are conducted over the Amazon and the DBLP graphs. The left curves
show the numerical stability of the proximal method (SPLA) with respect to the subgradient method
(SSLA). The right curves are zoomed in view of the behavior of SPLA during the same experiments.
It can be seen that SPLA still decreases the KL divergence.
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